Способ формирования цуга воздушных ударных волн и ударная труба для его реализации

Группа изобретений относится к испытательной технике и может быть использована для создания цуга воздушных ударных волн (ВУВ) для исследования воздействия ВУВ на различные объекты. Способ заключается в генерировании перемещающейся по волноводу ударной трубы ударной волны и повторении с требуемым временным интервалом указанного цикла и реализуется посредством того, что в волновод ударной трубы устанавливают с возможностью заданного продольного перемещения относительно друг друга перфорированный диск и мембрану, расположенную на заданном расстоянии перед диском по направлению к выходу из волновода. Генерирование положительной фазы ударной волны осуществляют разгоном диска с последующим присоединением к нему мембраны и их совместным движением по волноводу до остановки в крайнем переднем положении. Затем дополнительно реализуют отрицательную фазу в профиле ударной волны путем перемещения диска с мембраной в обратном направлении со знакопеременным ускорением до полной остановки в крайнем заднем положении, причем перед остановкой мембраны с диском в крайнем заднем положении их вновь разводят на заданное расстояние друг от друга. Устройство содержит волновод с установленными на одном его конце генератором ударной волны, а на противоположном конце - волногасителем. Генератор ударной волны выполнен в виде перфорированного диска и мембраны, размещенных в волноводе с возможностью перемещения вдоль него, установленного на торце волновода магазина с пиромеханическими толкателями, расположенными в нем в ряд в вертикальной плоскости и снабженными подвижными звеньями, упора и возвратной пружины. Перфорированный диск с тыльной стороны снабжен штоком, поочередно контактирующим с подвижными звеньями пиромеханических толкателей. Мембрана размещена перед диском по направлению к выходу из волновода с возможностью фиксации ее исходного положения относительно диска и изменения расстояния между ними. При этом она соединена механическими связями, симметрично проходящими через перфорационные отверстия в диске, с одним концом возвратной пружины, другой конец которой соединен с неподвижной опорой. Магазин установлен в направляющих на торце волновода с возможностью перемещения по ним вниз под собственным весом до совпадения осей штока диска и подвижного звена очередного пиромеханического толкателя. Упор установлен на одной из направляющих и выполнен с возможностью ограничения перемещения магазина до срабатывания очередного толкателя. Шток диска со стороны магазина может быть снабжен магнитной вставкой, а контактирующие с ним подвижные звенья пиромеханических толкателей при этом выполнены из ферромагнитного материала. Мембрана может быть выполнена многослойной. Технический результат заключается в возможности проведения в лабораторных условиях исследований реакции различных объектов на воздействие формируемых через заданные интервалы времени ВУВ без загрязнения рабочего газа и окружающей среды продуктами взрыва. 2 н. и 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к испытательной технике и может быть использовано для создания цуга воздушных ударных волн (ВУВ), подобных возникающим в атмосфере при взрыве сосредоточенных зарядов ВВ, профиль каждой из которых характеризуется крутым ударным фронтом, положительной фазой, в которой давление больше атмосферного, и отрицательной фазой, в которой давление меньше атмосферного.

Преимущественная область использования - исследование воздействия формируемых через заданные интервалы времени ВУВ на различные объекты.

Известен способ создания ВУВ, описанный в статье «Импульсные газодинамические установки для испытаний РАВ на воздействие поражающих механических факторов» (сборник докладов научной конференции Волжского регионального центра РАРАН «Современные методы проектирования и отработки ракетно-артиллерийского вооружения»: авторы Бичегов В.И., Залесский В.В. и др., Саров, ВНИИЭФ, 2000 г., стр.235-237). Внутри ударной трубы монтируют заряд взрывчатого вещества и производят его подрыв, в результате которого формируют направленную воздушную ударную волну.

К недостаткам данного способа следует отнести:

- невозможность воспроизведения цуга воздушных ударных волн;

- неполное соответствие формы ВУВ и несоответствие давления и массовой скорости в отрицательной фазе, создаваемой воздушной ударной волной, этим параметрам в ВУВ, возникающей в атмосфере при взрыве сосредоточенного заряда ВВ;

- загрязнение воздушной среды в трубе продуктами взрыва.

Известен способ имитации давления ядерного взрыва, описанный в патенте США «Имитатор давления ядерного взрыва», №3495455, G01M 9/00, опубл. 17.02.70, выбранный в качестве прототипа для заявляемого способа формирования цуга воздушных ударных волн. Во взрывные камеры, соединенные с ударной трубой (волноводом), помещают заряды ВВ и осуществляют их подрывы или одновременно, или для организации цуга ударных волн с заданным временным интервалом. Расширяясь, газообразные продукты детонации зарядов ВВ затекают в ударную трубу через перфорированную дроссельную пластину, при помощи которой понижают давление и выравнивают по сечению в ней скорость и расход газа, формируя, таким образом, плоские фронты ударных волн с выраженной положительной фазой. Размещением на открытом торце ударной трубы заглушки в форме сеточных экранов (волногасителя) обеспечивают спад давления в волноводе и исключают отражение ударных волн и влияние на них атмосферы со стороны открытого торца ударной трубы.

К недостаткам данного способа можно отнести:

- ограниченные возможности регулирования формы ВУВ и ее неполное соответствие параметрам ВУВ, возникающей в атмосфере при взрыве сосредоточенного заряда ВВ, из-за отсутствия в воспроизводимой волне отрицательной фазы;

- загрязнение воздушной среды в трубе продуктами взрыва.

Известно «Устройство для нагружения объектов воздушной ударной волной», патент RU 2217723 С1, МПК 7 G01M 9/00, 7/08, опубл. 27.11.03, бюлл. №33. Устройство содержит ударную трубу (волновод) с открытым и закрытым торцами для размещения объекта испытаний, источник ударной волны в виде взрывной камеры с размещенным в ней зарядом ВВ и экран для гашения ударной волны, выполненный в виде гибких элементов, закрепленных вертикально и горизонтально на открытом торце ударной трубы, и содержащий заслонки в виде прямоугольных листов, установленных на горизонтальных гибких элементах с возможностью поворота относительно них.

К недостаткам данного устройства следует отнести:

- невозможность воспроизведения цуга ударных волн;

- ограниченные возможности регулирования формы ВУВ;

- отсутствие в воспроизводимой волне отрицательной фазы;

- искажение формы ВУВ из-за низкого быстродействия экрана для гашения ударной волны;

- загрязнение воздушной среды в трубе продуктами взрыва.

Известен «Имитатор давления ядерного взрыва», патент США №3495455, G01M 9/00, опубл. 17.02.70, выбранный в качестве прототипа для заявляемой ударной трубы. Устройство представляет собой взрывные камеры с размещенными в них зарядами ВВ и источниками их инициирования, соединенные через дроссель, выполненный в виде перфорированной пластины (генератор ударных волн), с ударной трубой (волноводом), на открытом торце которого расположена перфорированная заглушка (волногаситель).

К недостаткам данного устройства можно отнести:

- ограниченные возможности регулирования формы ВУВ и ее неполное соответствие параметрам ВУВ, возникающей в атмосфере при взрыве сосредоточенного заряда ВВ, из-за отсутствия в воспроизводимой волне отрицательной фазы;

- загрязнение воздушной среды в трубе продуктами взрыва.

Решаемой технической задачей является создание способа и реализующего его устройства, позволяющих моделировать повторяющиеся с заданным временным интервалом воздействия ВУВ на различные объекты исследований.

Ожидаемый технический результат при использовании заявляемых способа и устройства заключается в создании приближенных к натурным условий нагружения объектов исследований путем реализации положительной и отрицательной фаз в профиле формируемых ВУВ и исключения загрязнения воздушной среды в трубе продуктами взрыва, а также более низкой стоимости проведения экспериментальных работ за счет использования значительно меньшего количества взрывчатых материалов.

Технический результат достигается за счет применения способа, заключающегося в генерировании перемещающейся по волноводу ударной трубы ударной волны с плоским фронтом и выраженной положительной фазой с последующим спадом давления в волноводе и повторении с требуемым временным интервалом указанного цикла, отличающегося от прототипа тем, что:

- в волновод ударной трубы устанавливают с возможностью заданного продольного перемещения относительно друг друга перфорированный диск и мембрану, расположенную на заданном расстоянии перед диском по направлению к выходу из волновода, при этом генерирование положительной фазы ударной волны осуществляют разгоном диска с последующим присоединением к нему мембраны и их совместным движением по волноводу до остановки в крайнем переднем положении;

- дополнительно реализуют отрицательную фазу в профиле ударной волны путем перемещения диска с мембраной в обратном направлении со знакопеременным ускорением до полной остановки в крайнем заднем положении;

- перед остановкой диска с мембраной в крайнем заднем положении их вновь разводят на заданное расстояние друг от друга.

Установка в волновод ударной трубы с возможностью заданного продольного перемещения относительно друг друга перфорированного диска и мембраны, расположенной на заданном расстоянии перед диском по направлению к выходу из волновода, разгон диска с последующим присоединением к нему мембраны и их совместное движение по волноводу до остановки в крайнем переднем положении обеспечивают формирование положительной фазы ВУВ, характеризующейся крутым ударным фронтом.

Дополнительная реализация отрицательной фазы в профиле ударной волны путем перемещения диска с мембраной в обратном направлении со знакопеременным ускорением до полной остановки в крайнем заднем положении позволяет обеспечить полное соответствие создаваемой с помощью ударной трубы воздушной ударной волны параметрам ВУВ, возникающей в атмосфере при взрыве сосредоточенного заряда ВВ.

Разведением диска и мембраны перед их остановкой в крайнем заднем положении подготавливается следующий цикл воспроизведения ВУВ.

Технический результат достигается также за счет применения ударной трубы, содержащей волновод с установленными на одном его конце генератором ударной волны, а на противоположном конце - волногасителем, отличающейся от прототипа тем, что:

- генератор ударной волны выполнен в виде перфорированного диска и мембраны, размещенных в волноводе с возможностью перемещения вдоль него, установленного на торце волновода магазина с пиромеханическими толкателями, расположенными в нем в ряд в вертикальной плоскости и снабженными подвижными звеньями, упора и возвратной пружины;

- перфорированный диск с тыльной стороны снабжен штоком, поочередно контактирующим с подвижными звеньями пиромеханических толкателей;

- мембрана размещена перед диском по направлению к выходу из волновода с возможностью фиксации ее исходного положения относительно диска и изменения расстояния между ними;

- мембрана соединена механическими связями, симметрично проходящими через перфорационные отверстия в диске, с одним концом возвратной пружины, другой конец которой соединен с неподвижной опорой;

- магазин установлен в направляющих на торце волновода с возможностью перемещения по ним вниз под собственным весом до совпадения осей штока диска и подвижного звена очередного пиромеханического толкателя, при этом упор установлен на одной из направляющих и выполнен с возможностью ограничения перемещения магазина до срабатывания очередного толкателя;

- шток диска со стороны магазина может быть снабжен магнитной вставкой, а контактирующие с ним подвижные звенья пиромеханических толкателей при этом выполнены из ферромагнитного материала;

- мембрана может быть выполнена многослойной.

Выполнение генератора ударной волны в виде перфорированного диска и мембраны, размещенных в волноводе с возможностью перемещения вдоль него, установленного на торце волновода магазина с пиромеханическими толкателями, расположенными в нем в ряд в вертикальной плоскости и снабженными подвижными звеньями, упора и возвратной пружины, есть конструктивное исполнение механизма, обеспечивающего возвратно-поступательное движение диска с мембраной по заданному закону, создающему условия формирования воздушных ударных волн, характеризующихся крутым ударным фронтом, положительной фазой, в которой давление больше атмосферного, и отрицательной фазой, в которой давление меньше атмосферного.

Снабжение перфорированного диска с тыльной стороны штоком, поочередно контактирующим с подвижными звеньями пиромеханических толкателей, обеспечивает передачу толкающего усилия от толкателей диску.

Размещение мембраны перед диском по направлению к выходу из волновода с возможностью фиксации ее исходного положения относительно диска и изменения расстояния между ними в процессе перемещения диска позволяет обеспечить практически мгновенный разгон мембраны из состояния покоя до скорости, приобретенной диском на момент их соединения.

Соединение мембраны механическими связями, симметрично проходящими через перфорационные отверстия в диске, с одним концом возвратной пружины, другой конец которой соединен с неподвижной опорой, позволяет перемещать диск с мембраной в волноводе по заданному закону, обеспечивающему получение требуемых параметров воспроизводимой ВУВ.

Размещение магазина в направляющих на торце волновода с возможностью перемещения по ним вниз под собственным весом до совпадения осей штока диска и подвижного звена очередного пиромеханического толкателя, а также установка на одной из направляющих упора, выполненного с возможностью ограничения перемещения магазина до срабатывания очередного толкателя, обеспечивают перезарядку ударной трубы для последующего цикла.

Снабжение штока диска со стороны магазина магнитной вставкой и выполнение контактирующих с ним подвижных звеньев пиромеханических толкателей из ферромагнитного материала обеспечивают исключение удара подвижного звена толкателя по штоку при разгоне диска, который может иметь место в случае наличия зазора между ними, а также для фиксации положения толкателя и штока.

Выполнение мембраны многослойной позволяет повысить ее изгибную жесткость и задемпфировать ее собственные колебания, инициируемые в момент удара по ней диска, которые могут привести к искажению формы воспроизводимой ударной волны.

Изобретение поясняется рисунками. На фиг.1 приведена схема ударной трубы, реализующей способ формирования цуга воздушных ударных волн, на фиг.2 изображено взаимодействие подвижных звеньев пиромеханических толкателей с упором, на фиг.3-6 показаны последовательные стадии работы ударной трубы.

Ударная труба (см. фиг.1) содержит волновод 1 с установленными на одном его конце генератором ударной волны 2, на противоположном конце - волногасителем 3.

Генератор ударной волны 2 выполнен в виде перфорированного диска 4 и мембраны 5, размещенных в волноводе 1 с возможностью перемещения вдоль него, установленного на торце волновода 1 магазина 6 с пиромеханическими толкателями 7, расположенными в нем в ряд в вертикальной плоскости и снабженными подвижными звеньями 8, упора 9 и возвратной пружины 10. Количество пиромеханических толкателей 7 равняется числу рабочих циклов ударной трубы.

Перфорированный диск 4 с тыльной стороны снабжен штоком 11, поочередно контактирующим с подвижными звеньями 8 пиромеханических толкателей 7.

Мембрана 5 размещена перед диском 4 по направлению к выходу из волновода 1 с возможностью фиксации ее исходного положения относительно диска 4 и изменения расстояния L между ними в процессе перемещения диска 4 и соединена механическими связями 12, симметрично проходящими через перфорационные отверстия 13 в диске 4, с одним концом возвратной пружины 10, другой конец которой соединен с неподвижной опорой 14.

Магазин 6 установлен в направляющих 15 на торце волновода 1 с возможностью перемещения по ним вниз под собственным весом до совпадения осей штока 11 диска 4 и подвижного звена 8 очередного пиромеханического толкателя 7. В данном положении подвижное звено 8 до срабатывания пиромеханического толкателя 7 своей боковой поверхностью касается размещенного на одной из направляющих 15 упора 9, исключающего перемещение магазина 6 вниз.

Шток 11 диска 4 со стороны магазина 6 может быть снабжен магнитной вставкой 16, а контактирующие с ним подвижные звенья 8 пиромеханических толкателей 7, взаимодействующие со штоком 11, при этом выполнены из ферромагнитного материала.

Мембрана 5 может быть выполнена многослойной.

Работа ударной трубы, реализующей способ формирования цуга воздушных ударных волн, поясняется рисунками 1-6 и заключается в следующем.

В волновод 1 (см. фиг.1 и 3) помещают объект исследований 17. В направляющие 15 устанавливают магазин 6 со снаряженными пиромеханическими толкателями 7 до касания боковой поверхностью подвижного звена 8 нижнего толкателя 7 упора 9. Диск 4 с мембраной 5 располагают в волноводе 1 таким образом, чтобы шток 11 диска 4 упирался в подвижное звено 8 пиромеханического толкателя 7 и фиксировался в таком (заднем) положении, в том числе и с помощью магнитной вставки 16. При этом конструктивно обеспечивают зазор L между диском 4 и мембраной 5 несколько больший, чем рабочий ход подвижного звена 8 толкателя 7. Усилие F натяжения возвратной пружины 10 в исходном состоянии определяют исходя из требований к форме воспроизводимой ВУВ. При требовании асимптотического приближения избыточного давления к нулю в конце отрицательной фазы устанавливают F=0.

При выдаче сигнала на запускающий механизм 18, например, боек с электромеханическим приводом, запускающим механизмом 18 инициируют срабатывание заряда 19 соответствующего пиромеханического толкателя 7, подвижное звено 8 которого разгоняет посредством штока 11 перфорированный диск 4 (см. фиг.4). Скорость диска 4 задают исходя из того, чтобы после присоединения к нему неподвижной мембраны 5 их совместная скорость в момент контакта соответствовала требуемой массовой скорости в генерируемой воздушной ударной волне. Перфорация в движущимся диске 4 позволяет исключить возникновение воздушной подушки между ним и неподвижной мембраной 5 вплоть до их соприкосновения (в противном случае мембрана 5 начнет движение до контакта с нею диска 4). В момент касания диском 4 мембраны 5 она практически мгновенно страгивается с места и продолжает движение вместе с диском 4, генерируя перед собой воздушную волну сжатия, которая при своем движении по волноводу перерождается в ВУВ с крутым плоским фронтом и выраженной положительной фазой.

При перемещении мембраны 5 на расстояние ΔХ происходит растяжение пружины 10, жесткость К которой выбирают исходя из массы диска 4 с присоединенной к нему мембраной 5, их начальной совместной скорости движения и заданного профиля ударной волны. В результате действия избыточного давления на мембрану 5 и возрастающего усилия пружины F=К(Х0+ΔХ) скорость диска 4 с мембраной 5 постепенно снижается. На фиг.5 представлен момент времени, соответствующий максимальному их смещению в крайнее переднее положение. После остановки диска 4 с мембраной 5 в крайнем переднем положении за счет накопленной энергии пружиной 10 начинается их движение назад со знакопеременным ускорением, в результате чего осуществляется формирование отрицательной фазы ВУВ.

После срабатывания пиромеханического толкателя 7 (см. фиг.2) боковая поверхность подвижного звена 8 в результате его перемещения теряет контакт с упором 9, и магазин 6, разблокируясь, под собственным весом смещается вниз. Очередной снаряженный толкатель 7 занимает место отработавшего.

При возвращении диска 4 в крайнее заднее положение (см. фиг.1 и 6) его скорость падает практически до нуля, мембрана 5 останавливается в первоначальном положении, а перфорированный диск 4, пройдя расстояние L, упирается штоком 11 в подвижное звено 8 снаряженного толкателя 7, переместившегося на место отработанного, и фиксируется в этом положении.

Воздушная ударная волна, пробегая по каналу волновода 1, нагружает исследуемый объект 17 и продолжает движение до волногасителя 3, который исключает ее отражение и компенсирует влияние атмосферы.

Производя повторные пуски ударной трубы через установленные интервалы времени, получают цуг воздействующих на испытываемый объект ВУВ.

Предложенные способ формирования цуга воздушных ударных волн и реализующая его ударная труба обладают существенными положительными качествами по отношению к прототипу, позволяющими в лабораторных условиях проводить исследования реакции различных объектов на воздействие формируемых через заданные интервалы времени ВУВ без загрязнения рабочего газа и окружающей среды продуктами взрыва.

1. Способ формирования цуга воздушных ударных волн, включающий генерирование перемещающейся по волноводу ударной трубы ударной волны с плоским фронтом и выраженной положительной фазой с последующим спадом давления в волноводе и повторение с требуемым временным интервалом указанного цикла, отличающийся тем, что в волновод ударной трубы устанавливают с возможностью заданного продольного перемещения относительно друг друга перфорированный диск и мембрану, расположенную на заданном расстоянии перед диском по направлению к выходу из волновода, генерирование положительной фазы ударной волны осуществляют разгоном диска с последующим присоединением к нему мембраны и их совместным движением по волноводу до остановки в крайнем переднем положении, затем дополнительно реализуют отрицательную фазу в профиле ударной волны путем перемещения диска с мембраной в обратном направлении со знакопеременным ускорением до полной остановки в крайнем заднем положении, причем перед остановкой мембраны с диском в крайнем заднем положении их вновь разводят на заданное расстояние друг от друга.

2. Ударная труба, содержащая волновод с установленными на одном его конце генератором ударной волны, а на противоположном конце - волногасителем, отличающаяся тем, что генератор ударной волны выполнен в виде перфорированного диска и мембраны, размещенных в волноводе с возможностью перемещения вдоль него, установленного на торце волновода магазина с пиромеханическими толкателями, расположенными в нем в ряд в вертикальной плоскости и снабженными подвижными звеньями, упора и возвратной пружины; перфорированный диск с тыльной стороны снабжен штоком, поочередно контактирующим с подвижными звеньями пиромеханических толкателей, мембрана размещена перед диском по направлению к выходу из волновода с возможностью фиксации ее исходного положения относительно диска и изменения расстояния между ними, соединена механическими связями, симметрично проходящими через перфорационные отверстия в диске, с одним концом возвратной пружины, другой конец которой соединен с неподвижной опорой, магазин установлен в направляющих на торце волновода с возможностью перемещения по ним вниз под собственным весом до совпадения осей штока диска и подвижного звена очередного пиромеханического толкателя, при этом упор установлен на одной из направляющих и выполнен с возможностью ограничения перемещения магазина до срабатывания очередного толкателя.

3. Ударная труба по п.2, отличающаяся тем, что шток диска со стороны магазина снабжен магнитной вставкой, а контактирующие с ним подвижные звенья пиромеханических толкателей выполнены из ферромагнитного материала.

4. Ударная труба по п.2, отличающаяся тем, что мембрана выполнена многослойной.



 

Похожие патенты:

Изобретение относится к испытательной технике, а именно к стендам для испытаний на комплексное воздействие механического удара и различных физических факторов, в частности к стендам для испытаний изделий на воздействие ударных нагрузок.

Изобретение относится к области строительства. .

Изобретение относится к контрольно-измерительной технике и предназначено для создания поверочных ударных импульсов, необходимых для осуществления контроля трактов измерения ударных ускорений.

Изобретение относится к испытательной технике и может быть использовано для исследования стойкости различных изделий, их узлов и приборов к воздействию импульсных инерционных нагрузок.

Изобретение относится к области испытательной техники, в частности к технологии испытаний трубопроводов, и направлено на повышение эффективности строительства и/или капитального ремонта трубопровода за счет оптимизации использования имеющихся труб.

Изобретение относится к технике испытаний конструкций на динамические воздействия. .

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции самолета при столкновении с птицей или другими посторонними предметами.

Изобретение относится к испытательной технике, в частности к стендам для испытаний конструкций изделий на ударные перегрузки. .

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции самолета при столкновении с птицей или другими посторонними предметами.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для подбора толщины ограждения, предназначенного для защиты от осколков взрывного характера технологического оборудования. Стенд для подбора толщины ограждения, предназначенный для защиты от осколков взрывного характера, содержит взрывную камеру, в верхнем основании которой имеется отверстие, перекрываемое элементом, площадь отверстия может меняться путем ввинчивания сменных колец, элемент перекрывает отверстие в кольце, над которым закрепляется ограждение. Второе отверстие перекрывается клапаном, который прижимается к отверстию с помощью электромагнита и открывается пружиной при размыкании контактов. Усилие прижатия клапана и сжатия пружины устанавливается таким образом, чтобы суммарное усилие было равно допускаемому давлению, умноженному на площадь отверстия клапана. Перекрывающий элемент выполнен иммитирующим осколок взрывного характера, над которым установлено модельное защитное ограждение. Поверхность перекрывающего элемента, обращенная в сторону модельного защитного ограждения, имеет поверхность, моделирующую неровности, присущие осколкам взрывного характера. Достигается повышение эффективности защиты ограждения. 1 ил.

Изобретение относится к области испытательной техники и, в частности, к технологии восстановления несущей способности трубопровода. Способ включает в себя лабораторные испытания на удар и растяжение-сжатие по схеме «стресс-теста» цилиндрических образцов с трещиноподобными дефектами, моделирование условий деформирования металла труб под действием внутреннего давления в направлении действия главного напряжения. По результатам испытаний определяют предельную величину деформации, обеспечивающую запас пластичности металла труб в условиях действия кольцевых напряжений, равных 110% предела текучести. С учетом результатов лабораторных испытаний осуществляют испытание участка трубопровода на удар методом «стресс-теста» и восстановление его несущей способности. Напряженно-деформированное состояние и прогнозируемый срок безопасной эксплуатации отремонтированного участка трубопровода определяют расчетным путем. Технический результат - повышение эффективности капитального ремонта трубопровода. 1 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к испытательной технике, в частности к ударным испытательным стендам. Устройство содержит корпус, выполненный в виде двух соединенных между собой щек, поворотный захват, закрепленный на корпусе, фиксатор, предназначенный для удержания захвата в рабочем положении, приспособление для изменения положения фиксатора, содержащее реверсивный электродвигатель, установленный на одной из щек, шестерню, закрепленную на валу электродвигателя, ходовой винт, размещенный между щеками с возможностью вращения вокруг собственной оси, зубчатое колесо, жестко закрепленное на ходовом винте и находящееся в зубчатом зацеплении с шестерней, каретку, образующую с ходовым винтом резьбовую передачу. При этом фиксатор установлен на корпусе с возможностью вращения относительно расположенной в корпусе оси и шарнирно соединен с одним концом тяги, другой конец которой шарнирно соединен с кареткой. Технический результат заключается в возможности проведения испытаний крупногабаритных объектов большой массы и автоматизации процесса сброса объекта. 1 з.п. ф-лы, 5 ил.

Изобретение относится к способам и устройствам для исследования работоспособности и надежности устройств ударного действия. Сущность: сваебойный молот располагают на стенде с возможностью перемещения вдоль вертикальной оси, а энергопоглотитель располагают под шаботом молота соосно с последним. Испытания производят при постоянной на всем пути торможения силе сопротивления, близкой к режиму отказов, т.е. при максимальных нагрузках. Давление в тормозной камере устройства определяется скоростью истечения рабочей жидкости через щель между наружной поверхностью бойка и внутренней боковой поверхностью цилиндрического двухступенчатого кольца, которую выполняют в форме параболоида, а передачу энергии от ударника в энергопоглотитель осуществляют через жидкость. Стенд содержит вертикально расположенные испытываемый молот, рабочий орган и энергопоглотитель. Корпус энергопоглотителя с наружным фланцем в верхней части выполнен в виде цилиндрической полости, соосной с испытуемым молотом и снабженной глухим днищем, на обращенной внутрь корпуса торцевой поверхности которого образована коаксиальная глухая двухступенчатая расточка, в которой установлено сопряженное с нею по соответствующей наружной боковой поверхности двухступенчатое кольцо, снабженное коаксиальной внутренней боковой поверхностью, выполненной в форме параболоида. В направляющем блоке, закрепленном на фланце корпуса, образована коаксиальная с корпусом сквозная цилиндрическая ступенчатая расточка, в которой как в направляющих размещен ограниченно подвижный вдоль оси и снабженный кольцевым выступом в средней части ударник. Технический результат: повышение надежности и расширение функциональных возможностей. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка выполнена в виде сужающейся по ходу движения ударной волны оболочки, в стенке которой выполнены отверстия, снабженные клапанами, обеспечивающими в каждый момент времени пропорциональность эффективной открытой площади дроссельных отверстий модулю разности между давлениями внутри и снаружи ударной трубы. Технический результат заключается в возможности компенсации влияния окружающей атмосферы на газодинамические процессы внутри ударной трубы и получения неискаженной формы ударной волны в волноводе ударной трубы при общей длительности ударной волны не ограниченной длиной волновода. 2 з.п. ф-лы, 3 ил.

Изобретение относится к средствам испытания устройств на ударные нагрузки и может быть использовано для проведения испытаний защитных устройств, в том числе бамперов, транспортного средства. Данный стенд имеет платформу, которая образует рабочую плоскость для установки на ней транспортного средства, выставленную на контрольную высоту от ударной части. Одна из торцевых частей платформы расположена под ударной частью между вертикальными опорными стойками. Концы вертикальных и наклонных опорных стоек, которые находятся с противоположной стороны от упомянутой горизонтальной рамы, снабжены средствами регулирования их по высоте. Шарнирные соединения маятника с несущим каркасом и несущей плитой, соединения несущего каркаса и платформы выполнены сборно-разборными. Несущий каркас, платформа, маятник с устройством его отвода и груз переменной массы выполнены с возможностью их транспортирования в кузове грузового транспортного средства. Обеспечивается сокращение времени на монтаж и демонтаж, возможность быстрой транспортировки элементов конструкции и снижение требований к месту проведения испытаний, для которого нет необходимости в подведении электросети и подготовке основания. 2 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала. Ударник выполнен в форме плиты со ступенчатым профилем ее тыльной поверхности, размещенной на лицевой поверхности обтюратора, имеющей ответный ступенчатый профиль. Обеспечивается возможность воспроизведения приближенных к натурным условий ударного нагружения объекта при встрече с преградой. 4 ил.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон, опасных для человека. Способ заключается в следующем. Предварительно определяют атмосферное давление и характеристики сосуда со сжатым газом, такие как исходное давление в сосуде, объем сосуда, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва, полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей, а по параметрам сосуда и окружающей среды, а именно по значениям исходного давления в сосуде, атмосферного давления и объема сосуда, определяют радиус круговой зоны разрушения промышленного здания. Технический результат заключается в расширении функциональных возможностей. 1 табл., 1 ил.

Изобретение относится к испытательной технике и может быть применено в устройствах для испытания изделий на воздействие ударных ускорений в большом диапазоне параметров удара при единичном и циклическом ударах. Устройство содержит основание для размещения испытуемого изделия, боек с осевым отверстием и упругие ускорители, выполненные в виде элементов сжатия. Основание и боек подвижно соединены посредством упомянутых упругих ускорителей, на концах которых установлены шарниры. Ускорители расположены наклонно относительно направления взаимодействия бойка и основания. В осевом отверстии бойка установлен толкатель с возможностью возвратно-поступательного перемещения в нем. Технический результат заключается в упрощении устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон, опасных для человека. Способ заключается в следующем. Предварительно определяют атмосферное давление, характеристики трубопровода со сжатым газом и расстояние от места разрыва до ближайшего места завершения трубопровода. Затем определяют коэффициент эффективности ВУВ, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва. Полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей. По параметрам трубопровода и окружающей среды определяют радиус круговой зоны разрушения (м) промышленного здания. Технический результат заключается в расширение функциональных возможностей. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для создания цуга воздушных ударных волн, подобных возникающим в атмосфере при взрыве сосредоточенных зарядов ВВ, профиль каждой из которых характеризуется крутым ударным фронтом, положительной фазой, в которой давление больше атмосферного, и отрицательной фазой, в которой давление меньше атмосферного

Наверх