Антенный обтекатель



Антенный обтекатель
Антенный обтекатель

 


Владельцы патента RU 2494504:

Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" (RU)

Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов. Технический результат - обеспечение работоспособности антенного обтекателя для условий одновременного удовлетворения воздействию превалирующих нагрузок: тепловой - при менее значительной силовой и силовой - при менее значительной тепловой, а также при любом соотношении нагрузок на промежуточных траекториях. Антенный обтекатель содержит керамическую оболочку и металлический стыковой шпангоут, соединенные между собой термостойким клеем. Изгибная жесткость внутренней полки шпангоута составляет 85-95% от изгибной жесткости оболочки в поперечном сечении, проходящем через переднюю кромку шпангоута. Длину клеевого соединения определяют при максимальном силовом воздействии, а радиальный зазор между оболочкой и шпангоутом равен максимальному радиальному расширению шпангоута от теплового воздействия на обтекатель. Торцевой зазор между оболочкой и шпангоутом принимается пропорционально радиальному зазору, с коэффициентом пропорциональности, равным соотношению между длиной клеевого соединения и наружным диаметром шпангоута, с учетом модуля нормальной упругости клея. 2 ил.

 

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям радиопрозрачных обтекателей летательных аппаратов, и может быть использовано при разработке керамических головных обтекателей высокоскоростных ракет.

Основная проблема создания работоспособной конструкции головного обтекателя ракеты, состоящего из радиопрозрачной керамической оболочки и металлического стыкового шпангоута и находящегося под воздействием аэродинамической нагрузки (внешнего давления), обусловлена сложностью разработки надежного соединения оболочки со шпангоутом. Поскольку керамические материалы радиопрозрачных оболочек, в основном, имеют природно низкий температурный коэффициент линейного расширения (ТКЛР), выбор металлических материалов для шпангоута с ТКЛР, близким к ТКЛР керамики, ограничен небольшим количеством прецизионных сплавов инварной группы.

При разработке конструкции обтекателя распределенная по поверхности оболочки аэродинамическая нагрузка приводится к распределенным осевой (продольной) и поперечной составляющим, причем последняя создает относительно основания оболочки изгибающий момент в соединении со шпангоутом. В результате этого, несущая способность керамической оболочки в зоне соединения определяется растягивающими напряжениями, вызванными совместным воздействием как внешних силовых факторов, так и внутренним распором от нагретой внутренней полки шпангоута, обусловленным разностью ТКЛР материалов соединяемых элементов конструкции. Чтобы исключить (или значительно снизить) воздействие теплового расширения шпангоута на оболочку при их непосредственном, например, клеевом соединении, зазоры между оболочкой и шпангоутом, определяющие толщину клеевого слоя, должны одновременно компенсировать разницу взаимных тепловых перемещений оболочки и шпангоута (с учетом деформируемости адгезива). Оптимальная толщина клеевого слоя соответствует оптимальному распределению усилий от аэродинамической нагрузки.

Задача разработки конструкции обтекателя сводится к тому, чтобы путем выбора параметров элементов соединения обеспечить такой уровень вышеуказанных напряжений растяжения, который являлся бы допустимым для керамического материала оболочки. Параметрами элементов могут являться как геометрические характеристики узла соединения, так и термомеханические свойства применяемых материалов.

В последнее время актуальным является создание конструкций носовых обтекателей ракет для таких условий, когда в спектре программных траекторий полета ракеты выделяются граничные по аэродинамическому воздействию на обтекатель: с максимальной силовой составляющей нагрузки при незначительном нагреве конструкции (короткая по времени траектория) и с максимальным прогревом соединения при незначительной силовой нагрузке (более длинная по времени траектория). Аэродинамическое воздействие на остальных траекториях программного спектра находится в промежутке между граничными траекториями. В большинстве случаев, обтекатель должен быть устойчивым к аэродинамическому воздействию в обоих крайних случаях, исключая одновременное воздействие максимальной силовой и максимальной тепловой нагрузок.

В общем случае, обеспечить работоспособность любого обтекателя допустимо простым увеличением толщины стенки оболочки в зоне соединения, но это не технологично, увеличивает вес оболочки, а чаще всего - не возможно из-за недостаточной строительной высоты для компоновки конструкции.

Известен ряд технических решений для конструкций антенных обтекателей, включающих керамическую оболочку и металлический шпангоут, в которых работоспособность может обеспечиваться либо некоторым увеличением толщины оболочки в зоне соединения, либо увеличением толщины шпангоута с целью большего отвода тепла внутрь оболочки и снижения нагрева самого шпангоута, либо увеличением радиальных тепловых зазоров, а также установкой промежуточных теплоизоляционных элементов между оболочкой и шпангоутом.

Известна конструкция обтекателя по патенту США №3114319, НКИ 102.92.5, 1962, состоящая из керамической оболочки и установленного в ее полости с зазором металлического кольца (шпангоута), связанных через эластичные резиновые кольца, помещенные в проточках наружной поверхности металлического кольца.

Основным недостатком такой конструкции является то, что для снижения уровня распора оболочки при тепловом расширении шпангоута за счет упругого деформирования резиновых колец приходится увеличивать радиальный зазор по мере роста эксплуатационных температур; при этом снижается прочность клеевого соединения, возрастают угловые и меридиональные смещения оболочки и шпангоута, вследствие чего возможно разрушение оболочки в зоне растяжения при опирании ее на передний торец шпангоута.

Известна конструкция соединительного неразъемного узла по патенту РФ №2145005, МПК 7 F16B 4/00, 11/20, 1998, состоящая из керамической оболочки и металлического шпангоута, в которой используется эффект дополнительного теплового сопротивления за счет выполнения шпангоута из двух частей, соединенных между собой посредством перемычек: внутренняя часть - сплошное кольцо, внешняя - не соприкасающиеся друг с другом отдельные участки.

Такая конструкция имеет следующие недостатки:

- неравномерный прогрев клеевого слоя на внешней и внутренней частях металлического шпангоута затрудняет эффективный отвод тепла от клеевого слоя и внешней части шпангоута его внутренней частью;

- высокая радиальная жесткость сплошной внутренней части шпангоута при значительных прогревах соединения приводит к разрушению оболочки от распора ее шпангоутом;

- низкая технологичность конструкции.

Наиболее близким устройством по совокупности признаков, выбранным в качестве прототипа, является обтекатель по патенту РФ №2168815, МПК 7 H01Q 1/42, 2000, состоящий из керамического колпака (оболочки) и металлического шпангоута, соединенных между собой слоем эластичного термостойкого адгезива. В этой конструкции в расширяющуюся полость, образованную в носовой части шпангоута, введена эластичная (клеевая) обечайка, а к шпангоуту подсоединен или выполнен за одно целое с ним аккумулятор тепла. В такой конструкции эффективность отвода тепла от нагретой оболочки и клеевого слоя в случае применения шпангоута, изготовленного из материала с высокой теплопроводностью, приводит к быстрому нагреву шпангоута и распору керамической оболочки, а при использовании шпангоута, изготовленного из материала с низкой теплопроводностью, наиболее теплонагруженным оказывается клеевой слой. В результате происходит разрушение оболочки либо от распора ее шпангоутом, либо вследствие деструкции эластичного адгезива и потери прочности клеевого соединения.

Задачей настоящего изобретения является создание работоспособной конструкции антенного обтекателя, устойчивой к разноплановому аэродинамическому воздействию на граничных траекториях, за счет рационального выбора конструктивных параметров элементов узла соединения.

Поставленная задача решается тем, что предложен:

Антенный обтекатель, содержащий керамическую оболочку и металлический шпангоут, соединенные между собой термостойким клеем, отличающийся тем, что изгибная жесткость внутренней полки шпангоута составляет 85-95% от изгибной жесткости оболочки в поперечном сечении, проходящем через переднюю кромку шпангоута, при этом длину клеевого соединения (высоту шпангоута) определяют при максимальном силовом воздействии на обтекатель, исходя из величины предела прочности на сдвиг адгезива, радиальный зазор между оболочкой и шпангоутом (толщина клеевого слоя) принимают равным максимальному радиальному расширению шпангоута от теплового воздействия, а торцевой зазор между оболочкой и шпангоутом принимают пропорционально радиальному зазору, с коэффициентом пропорциональности, зависящим от соотношения между длиной клеевого соединения и наружным диаметром шпангоута, с учетом значения модуля нормальной упругости клея.

На фигурах 1 и 2 представлены общий вид антенного обтекателя с узлом соединения и продольное сечение его в зоне узла соединения.

Антенный обтекатель включает керамическую оболочку 1 и металлический шпангоут 2, соединенные между собой теплостойким клеем 3. Длина клеевого соединения L (соответственно - высота шпангоута) определяется прочностным расчетом от максимальной нагрузки, а толщина клеевого слоя - максимальным радиальным тепловым зазором S1 с учетом деформирования клеевого слоя, зависящим от модуля нормальной упругости клея.

При восприятии теплосиловой нагрузки, вызванной аэродинамическим воздействием на обтекатель, в узле соединения оболочки со шпангоутом возникает изгибающий момент Мизг (фиг.1), который перемещает оболочку в зоне растяжения к переднему торцу шпангоута, выбирая тепловой зазор S1, а в зоне сжатия - к торцу шпангоута, выбирая зазор S2 (фиг.2). В зависимости от прочности клеевого соединения, определяемой длиной L клеевого слоя 3, и соотношения зазоров S1 и S2, опирание оболочки в зоне растяжения на переднюю кромку шпангоута (условно - т.А на фиг.1) может произойти раньше или позже опирания на торец шпангоута в зоне сжатия (условно - т.Б на фиг.1), выбирая зазор S2, заполненный демпфирующим материалом 4, например термостойким герметиком или стеклотканью, пропитанной герметиком, для исключения прямого контакта керамики и металла. При опирании оболочки на переднюю кромку шпангоута раньше опирания на торец в зоне сжатия наиболее напряженным становится поперечное сечение оболочки в растянутой зоне, т.к. прочность керамического материала на изгиб и растяжение на порядок ниже прочности на сжатие. Поэтому при использовании в устройствах деталей, изготавливаемых из керамического материала, их заставляют "работать" в условиях сжатия.

Для того чтобы избежать разрушения оболочки при опирании на переднюю кромку шпангоута, необходимо выполнить следующие условия:

- опирание оболочки на шпангоут в т.Б должно происходить раньше опирания в т.А, и нагрузка от изгибающего момента должна восприниматься сжатым торцем оболочки, а в идеальном случае - одновременно;

- изгибная жесткость шпангоута должна быть меньше изгибной жесткости оболочки, что обусловливает опережающее деформирование шпангоута и отсутствие его локального надавливания изнутри на оболочку; при этом в последней не возникают дополнительные зоны контактных напряжений.

Известно, что изгибная жесткость сечения цилиндрической оболочки определяется произведением E·I, где:

Е - модуль нормальной упругости материала оболочки;

I - момент инерции сечения.

Таким образом, условием опережающего деформирования шпангоута в зоне растяжения (т.А) является соотношение:

Е ш п I ш п < Е о б I о б ( 1 )

Теоретическими расчетами и экспериментально установлено, что для удовлетворения условию (1) изгибная жесткость шпангоута должна составлять не более 85-95% от изгибной жесткости оболочки.

Поскольку величина зазора S1 обусловлена максимальным тепловым расширением шпангоута от максимальной тепловой нагрузки в зоне узла соединения, то для выполнения условия опережающего опирания оболочки на шпангоут в зоне сжатия (т.Б) величина зазора S2 должна быть пропорциональна зазору S1 с коэффициентом пропорциональности, определяемым из соотношения:

S 1 = к S 2 , к = f ( D / 2 L , E ш п , E а д г ) к = S 1 / S 2 = D / 2 L ( 2 )

Коэффициент пропорциональности должен быть всегда больше единицы:

к > 1 ( 3 )

В случае, если зазор S2 выбирается конструктивно (с учетом деформации уплотнительной прокладки), то зазор S1 также определяется из соотношения (2), но не должен быть меньше расчетного теплового зазора (с учетом деформации адгезива).

Достигнутым результатом применения изобретения явилось создание работоспособных конструкций антенных обтекателей в условиях повышенного аэродинамического теплосилового воздействия для случаев эксплуатации по одной и нескольким программным траекториям с превалирующими либо силовой, либо тепловой нагрузками.

Антенный обтекатель, содержащий керамическую оболочку и металлический шпангоут, соединенные между собой термостойким клеем, отличающийся тем, что изгибная жесткость внутренней полки шпангоута составляет 85-95% от изгибной жесткости оболочки в поперечном сечении, проходящем через переднюю кромку шпангоута, при этом длину клеевого соединения определяют при максимальном силовом воздействии на обтекатель, радиальный зазор между оболочкой и шпангоутом принимают равным максимальному радиальному расширению шпангоута от теплового воздействия, а торцевой зазор между оболочкой и шпангоутом принимают пропорционально радиальному зазору, с коэффициентом пропорциональности, зависящим от соотношения между длиной клеевого соединения и наружным диаметром шпангоута, с учетом значения модуля нормальной упругости клея.



 

Похожие патенты:
Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей скоростных ракет из керамики.
Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей скоростных ракет из пористой керамики.

Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов. .

Изобретение относится к судостроению, а именно к обтекателям гидроакустических станций, и касается вопроса конструирования обтекателя антенны гидроакустической станции.

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении головных радиопрозрачных обтекателей летательных аппаратов.

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель» для работы в совмещенных диапазонах. .

Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов. .

Изобретение относится к области радиотехники и может быть использовано для испытаний и измерений радиотехнических характеристик (РТХ) антенных обтекателей. .

Изобретение относится к области авиационной и ракетной техники, преимущественно к антенным обтекателям скоростных ракет различных классов. .

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным антенным системам «антенна-обтекатель». .

Изобретение относится к конструктивным элементам фюзеляжа летательного аппарата. Обтекатель антенны, установленный на самолете, содержит радиопрозрачную переднюю и металлическую заднюю части, обшивку, подкрепленную силовым набором. Обтекатель выполнен обтекаемой сигарообразной формы с жесткой металлической панелью в верхней части по всей длине, являющейся основанием для установки наружных антенн и имеющей люки, закрываемые крышками. На верхней поверхности радиопрозрачной передней части установлена металлизирующая накладка. Обтекатель установлен на пилоне над фонарем кабины летчиков, приподнят над поверхностью фюзеляжа, выдвинут вперед относительно выступа упомянутого фонаря, имеет вырез внизу по контуру пилона и закреплен легкосъемными замками на силовом поясе с ответным силовым поясом пилона, стационарно установленного на фюзеляже, в силовую схему которого включены балки для крепления поворотной антенны. Изобретение направлено на увеличение зоны обзора. 9 ил.

Изобретение относится к области авиационной и ракетной техники и может использоваться преимущественно в конструкциях высокоскоростных ракет различных классов. Технический результат - увеличение длительности эксплуатационного режима за счет сохранения прочности соединения металл-керамика при силовых и тепловых воздействиях на обтекатель. Антенный обтекатель включает (соединенный эластичным клеем на кремнеорганической основе) керамический колпак с выполненной на внутренней поверхности выборкой, металлические шпангоут и соединительный переходник, металлическое разрезное кольцо, соединенные между собой крепежными элементами и эластичным клеем на кремнеорганической основе к сопрягаемым поверхностям. К торцу керамического колпака пристыковано опорное металлическое кольцо, а на внутренней поверхности керамического колпака выполнена выборка, в которой по сопрягаемым поверхностям установлено разрезное металлическое кольцо длиной, соизмеримой с длиной шпангоута, и снабженное буртиком, размещенным в ответном пазу опорного кольца. Опорное кольцо связано с металлическим шпангоутом фиксаторами в виде радиально ориентированных штифтов, а с соединительным переходником скреплено неподвижно винтами по окружной соприкасаемой поверхности и по торцевым соприкасаемым поверхностям дополнительно связано посредством соответствующих друг другу скосов. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники, а именно к защите антенн от воздействия внешних факторов окружающей среды. Техническим результатом является расширение диапазона частот проходящих радиоволн от 3 до 30 ГГц через многослойное радиопрозрачное укрытие для антенн с одновременным упрощением его конструкции. Широкодиапазонное многослойное радиопрозрачное укрытие для антенн, содержащее ряд расположенных параллельно друг другу тонких слоев, включающих несущий слой, отличается тем, что входной наружный слой, обращенный в сторону падающего излучения, имеет диэлектрическую проницаемость от 1,8 до 2,2 и толщину от 2 до 4 мм, а наружный выходной слой выполнен электропроводящим, имеющим поверхностное электрическое сопротивление от 300 до 700 Ом. 1 з.п. ф-лы, 4 ил.

Изобретение относится к авиационной и ракетно-космической технике, а именно к головным отсекам (ГО) летательных аппаратов (ЛА). ГО ЛА содержит переднюю панель в виде клина с плоскими иллюминаторами, осесимметричную с переменным сечением боковую обечайку со стыковочным шпангоутом, складную телескопическую аэродинамическую иглу. Иллюминаторы выполнены с различным диапазоном пропускания. Боковая обечайка выполнена биконической, оживальной, параболической, в виде сплайна или их комбинаций. В боковой обечайке выполнена призматическая, цилиндрическая, оптически- и радиопрозрачная вставка. Передняя панель и часть боковой обечайки выполнены поворотными и отделены от неподвижной части герметичной мембраной и в плоскости их разделения установлен подшипник. На внутренней стороне боковой обечайки и передней панели установлена теплоизоляция, на внутренней стороне иллюминаторов установлены сдвигающиеся теплоизолирующие накладки. Изобретение позволяет повысить точность наведения ГО ЛА. 18 з.п. ф-лы, 7 ил.

Изобретение относится к области радиолокации и может быть использовано в радиотехнических устройствах подводных судов. Технический результат - уменьшение громоздкости без увеличения задержки излучения и приема электромагнитных сигналов. Антенное устройство, состоящее из антенны и привода над корпусом рубки и блока управления приводом, имеющим выход, соединенный с входом привода, жестко связанного с антенной, отличающееся тем, что вводится радиопрозрачный глубоководный защитный кожух с антенной и приводом, внутри жестко связанный с корпусом рубки, имеющим жесткую связь с приводом, вход которого соединен с выходом блока управления приводом через отверстие в корпусе рубки. 1 ил.

Изобретение относится к области судостроения, а именно к обтекателям гидроакустических станций. Технический результат - создание обтекателя антенн гидроакустических станций из композиционных материалов, обладающего повышенной прочностью и эксплуатационной надежностью с улучшенными акустическими свойствами. Безреберный обтекатель антенны гидроакустической станции состоит из наружного, внутреннего слоев и размещенного между ними среднего слоя, выполненных из полимерных композиционных материалов, и отличается тем, что средний слой обтекателя армирован полиарамидными волокнами, а наружный и внутренний слои армированы водостойкими волокнами, при этом суммарная толщина наружного и внутреннего слоев составляет не более 0,25 толщины среднего слоя. 2 з.п. ф-лы, 3 ил.

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель». Технический результат - повышение коэффициента прохождения электромагнитной волны и снижение пеленгационных ошибок в системе «антенна-обтекатель» в широкой полосе частот. Для этого широкополосная система «антенна-обтекатель» содержит пеленгующую линейно-поляризованную антенну, механизм поворота антенны на цель и обтекатель в виде колпака с выпуклой формой образующей и однослойной стенкой, снабженный узлом жесткого крепления к летательному аппарату, при этом плоскость поляризации антенны совпадает с плоскостью пеленгации, а в радиопрозрачной зоне либо образующая внешней поверхности колпака выполнена в виде логарифмической спирали, полюс которой совпадает с центром вращения антенны, а внутренняя образующая колпака выбрана конгруентной внешней либо внешняя и внутренняя образующие колпака выполнены неконгруентными, в виде логарифмических спиралей с полюсами, совпадающими с центром вращения антенны. 35 ил., 3 табл.

Изобретение относится к области радиотехники, а именно к антенным системам. Технический результат - упрощение конструкции антенной системы и ослабление климатико-механических требований к составным частям антенной системы. Антенная система с частичной металлизацией радиопрозрачного защитного кожуха содержит зеркало, малошумящий усилитель с преобразователем частоты и устройство наведения на объект излучений, при этом в ее состав введен защитный радиопрозрачный кожух, соответствующий конфигурации для зеркала антенны и установленный на вращающейся по кругу платформе, при этом половина или часть кожуха металлизирована и представляет собой зеркало антенны, а малошумящий усилитель с преобразователем частоты установлен на кронштейне, обеспечивающем его перемещение в горизонтальной и вертикальной плоскости, для ослабления ветровых нагрузок защитный кожух укрепляется растяжками, а также дополнительно введен компрессор с регулируемым температурным режимом для поддержания внутри кожуха соответствующего температурного режима. 1 ил.

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Технический результат - снижение теплового воздействия на АУ ГСН и наружную керамическую оболочку антенного обтекателя в условиях нестационарного высокотемпературного воздействия. Для этого антенный обтекатель содержит керамическую оболочку, металлический стыковой шпангоут и расположенный во внутренней полости соосно с ними куполообразный радиопрозрачный теплозащитный экран, соединенный с оболочкой термостойким адгезивом по всей поверхности прилегания к оболочке. Экран изготовлен из термостойкого стеклопластика на основе кремнийорганического, полиимидного или фенолформальдегидного связующих и кварцевых стеклотканей сатинного и объемного плетения. На наружную и внутреннюю поверхности экрана нанесено теплостойкое покрытие кремнийорганической или фторопластовой эмалью. Во внутренней полости экрана установлено металлическое кольцо, соединенное с экраном термостойким адгезивом, а со шпангоутом - через экран крепежными элементами, выполненными в виде шпилек или винтов. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Технический результат - снижение теплового воздействия на АУ ГСН и снижение температуры прогрева шпангоута в условиях нестационарного аэродинамического нагрева с обеспечением высоких радиотехнических характеристик в широком диапазоне частот. Для этого антенный обтекатель содержит керамическую оболочку, металлический стыковой шпангоут, куполообразный радиопрозрачный теплозащитный экран и теплоизоляционное кольцо. Экран выполнен трехслойным с внешними слоями из термостойкого стеклопластика на основе хромалюмофосфатного, полиимидного, кремнийорганического или фенолформальдегидного связующих и внутренним слоем, выполненным из теплостойкого материала на основе стеклянного или кремнеземного волокон. На наружную поверхность экрана нанесено теплостойкое покрытие. Теплоизоляционное кольцо жестко присоединено к экрану или выполнено за одно целое с ним из материала внешних слоев экрана, и соединено с оболочкой и шпангоутом термостойким адгезивом. 3 з.п. ф-лы, 1 ил.
Наверх