Гибкий фотоэлектрический модуль

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве источников электричества в системах энергообеспечения различных объектов - автомобилей, катеров, яхт, пунктов метеонаблюдения, телекоммуникационных систем, информационных стендов. Гибкий фотоэлектрический модуль включает последовательно расположенные нижнюю несущую пленку, нижнюю армирующую сетку, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы из монокристаллического кремния, верхнюю скрепляющую пленку, верхнюю армирующую сетку и верхнюю несущую пленку. Несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, а армирующие сетки выполнены из полимерных нитей, прозрачных для солнечного света и пропитанных веществом или содержащих такое вещество с низким коэффициентом поглощения и рассеивания света. В качестве армирующих сеток используют терморелаксированные сетки из термоусадочного полимера. Изобретение обеспечивает возможность фиксации сложнопрофилированной поверхности гибкого фотоэлектрического модуля. 1 ил.

 

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве источников электричества в системах энергообеспечения различных объектов - автомобилей, катеров, яхт, пунктов метеонаблюдения, телекоммуникационных систем, информационных стендов.

Предназначенный для подобных целей гибкий фотоэлектрический модуль должен обладать достаточной жесткостью, чтобы обеспечить устойчивое сопротивление распределенным ветровым или сосредоточенным нагрузкам, приложенным к модулю, например, при попадании в него ледяных градин или случайном падении модуля на жесткую поверхность, с другой стороны - должен иметь фиксированный профиль поверхности, обеспечивающий монтаж модуля на заданной неплоской поверхности объекта.

Кроме того, фотоэлектрический модуль должен быть максимально легким.

Известен гибкий фотоэлектрический модуль, состоящий из эластичного полимерного основания, на котором сформирован слой аморфного кремния методом осаждения из газовой фазы [1].

Подобная конструкция при использовании в качестве основания тонкой полимерной пленки может иметь высокую гибкость, практически достигающую 100%.

Указанный модуль может быть смонтирован практически на любой сложнопрофилированной плоскости объекта.

К недостаткам модулей на основе аморфного кремния следует отнести их низкую эффективность - КПД модуля составляет 8÷11%, что существенно ниже, чем КПД для модулей на основе монокристаллического кремния, который может достигать 30%, и малый ресурс - модули из аморфного кремния менее долговечны из-за значительной деградации электрофизических свойств аморфного кремния при длительном воздействии солнечного света.

Известен гибкий фотоэлектрический модуль, представляющий собой массив закрепленных на гибких печатных платах и электрически соединенных между собой кремниевых солнечных элементов полусферической формы, которые в свою очередь закреплены на гибком основании из синтетического материала типа «Неопрен», а сверху покрыты прозрачной для видимого света защитной пленкой [2].

К недостаткам такой конструкции следует отнести:

- низкую надежность модуля, обусловленную большим количеством и разветвленностью сети коммутативных соединительных шин;

- сложность сборки модуля, обусловленную необходимостью коммутации на печатных платах нескольких десятков полусферических солнечных элементов и последующей сборкой коммутированных плат в единую конструкцию;

- большой вес и высокую стоимость модуля вследствие использования не плоских, а более дорогих и тяжелых полусферических солнечных элементов из кремния.

Наиболее близким по технической сущности и достигаемому результату является гибкий фотоэлектрический модуль, содержащий прозрачные для солнечного света верхнюю и нижнюю несущие пленки, расположенные между несущими пленками электрически соединенные между собой солнечные элементы, скрепленные с несущими пленками прозрачными для солнечного света верхней и нижней скрепляющей пленками, содержащими армирующие слои в виде сетки из высокопрочных искусственных нитей, прозрачных для солнечного света и пропитанных веществом или содержащих такое вещество с низким коэффициентом поглощения и рассеивания света [3].

В случаях, когда гибкий фотоэлектрический модуль предполагается эксплуатировать в виде изогнутой в продольном и поперечном направлении упругодеформированной конструкции при размещении его на сложнопрофилированных поверхностях, таких как бампер автомобиля, элементы такелажа катеров или яхт, оптимальным расположением высокопрочных искусственных нитей в таком случае является диагонально-перекрестное.

Для того чтобы дополнительно введенная в конструкцию гибкого фотоэлектрического модуля сетка из высокопрочных искусственных нитей не ухудшала его электрофизические параметры, высокопрочные искусственные нити пропитывают веществом с низким коэффициентом поглощения и рассеивания света: например кремнийорганической жидкостью, представляющей собой смесь полисилоксана, содержащего диметил- или/и диэтилвинилсилоксановые звенья, платинового катализатора и сшивающего агента.

Толщина верхней и нижней несущей пленки ~0,4 мм. Толщина верхней и нижней скрепляющих пленок вместе с введенными в них сетками из высокопрочных искусственных нитей составляет ~0,3 мм. Толщина кремниевых монокристаллических солнечных элементов составляет 100÷250 мкм. Общая толщина фотоэлектрического гибкого модуля составляет ~1,4÷1,5 мм.

Указанный гибкий фотоэлектрический модуль изначально имеет плоскую поверхность и может быть подвергнут упругой деформации только в одном - продольном, поперечном либо диагональном - направлении, при этом возможный радиус кривизны модуля примерно равен соответственно длине или ширине фотоэлектрического гибкого модуля при изгибающих напряжениях, приложенных соответственно к противоположным краям по длине или по ширине модуля.

Недостатком такой конструкции является невозможность обеспечения фиксации сложнопрофилированной поверхности гибкого модуля.

Задачей изобретения является создание фиксированного профиля поверхности модуля.

Это достигается за счет того, что в гибком фотоэлектрическом модуле, представляющем собой последовательно расположенные нижнюю несущую пленку, нижнюю армирующую сетку, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы из монокристаллического кремния, верхнюю скрепляющую пленку, верхнюю армирующую сетку и верхнюю несущую пленку, причем несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, а армирующие сетки выполнены из полимерных нитей, прозрачных для солнечного света и пропитанных веществом или содержащих такое вещество с низким коэффициентом поглощения и рассеивания света, в качестве сеток используют терморелаксированные сетки из термоусадочного полимера.

Конструкция заявляемого гибкого фотоэлектрического модуля поясняется фиг.1, где:

1 и 7 - верхняя и нижняя несущая пленки соответственно;

2 и 6 - верхняя и нижняя скрепляющая пленки соответственно;

3 и 5 - нити верхней и нижней армирующих сеток соответственно;

4 - солнечные элементы;

R - радиус кривизны поверхности модуля, мм.

Виды А и Б - форма поверхности модуля соответственно до и после терморелаксирования армирующих сеток.

В качестве армирующих сеток используют сетки из переплетенных нитей, выполненных из так называемого «сшитого» полимера: термоусадочного пластика - полиэтилена или полиолефина, модифицированного гамма-излучением радиоактивного кобальта Co60.

Сеткам из «сшитого» полимера в высокоэластичном нагретом состоянии на заранее изготовленном шаблоне придают требуемую форму, которая сохраняется при последующем охлаждении сетки в специальном режиме.

Армирующие сетки перед укладкой разогревают до эластичного состояния с целью придания им плоской формы.

При осуществлении процесса последующего ламинирования при температуре T≈150°C происходит сцепление несущей и скрепляющей пленок друг с другом, а армирующие сетки оказываются зафиксированными на границе этих пленок.

Температура ламинирования оказывается достаточной для осуществления процесса терморелаксации, то есть восстановления первоначальной формы под действием температуры армирующих сеток. После охлаждения ламинированного модуля его поверхность повторяет форму шаблона, использованного при изготовлении сетки.

Поскольку варьированием режимов модификации полимеров можно обеспечить уровень их термоусадки в широких пределах (до 50%), минимальный радиус кривизны поверхности гибкого фотоэлектрического модуля R, содержащего терморелаксированные армирующие сетки, может достигать 150 мм. Во избежание механических повреждений солнечных элементов при малых радиусах кривизны поверхности модуля геометрические размеры солнечных элементов должны быть уменьшены. В основном это линейный размер L элементов в направлении градиента деформации плоскости поверхности модуля.

Экспериментально установлено, что подобные условия уверенно реализуются при соотношении L R 0,1 .

В известных науке и технике решениях аналогичной задачи не обнаружено использование в гибких фотоэлектрических модулях в качестве армирующих сеток терморелаксированных сеток, выполненных из нитей термоусадочного полимера.

Конкретная реализация предлагаемой конструкции гибкого фотоэлектрического модуля с использованием армирующих сеток из нитей модифицированного полиэтилена с целью получения «волнообразного» профиля плоскости модуля осуществляется следующим образом.

На монтажном столе раскладывается первая несущая пленка - прозрачная этилен-тетрафлюроэтиленовая пленка «TEFZEL» заданной площади. На нее сверху укладывается третья армирующая сетка из нитей модифицированного полиэтилена ⌀1 мм и размером ячейки (10×10) мм. Сверху этой сетки укладывается вторая скрепляющая пленка - этиленвинилацетатная пленка «ЭВА». Поверх сформированной стопки укладывается четвертый слой, представляющий собой распаянную цепочку псевдоквадратных солнечных элементов размером (125×125) мм из монокристаллического кремния. Толщина каждого солнечного элемента не превышает 200 мкм. Поверх солнечных элементов последовательно укладывают шестую скрепляющую пленку - пленку «ЭВА», пятую армирующую сетку, аналогичную третьей сетке, и седьмую несущую пленку.

Третью и пятую армирующие сетки перед укладкой разогревают до эластичного состояния с целью придания им плоской формы.

Приготовленная таким образом слоистая заготовка (фиг.1, вид А) помещается в ламинатор, где происходит формирование фотоэлектрического модуля при температуре ~150°C в течение 20 мин.

Сформированный фотоэлектрический гибкий модуль после охлаждения принимает форму шаблона, на котором формировали конфигурацию третьей и пятой сеток (фиг.1, вид Б).

Технический результат, достигаемый при использовании предлагаемой конструкции, заключается в обеспечении фиксированного «волнообразного» профиля поверхности фотоэлектрического гибкого модуля.

Источники информации

1. Патент РФ №2190901 от 24 сентября 1997 г.

2. Заявка на патент США №20100101627 от 29 апреля 2010 г.

3. Патент РФ №2416056 от 17 декабря 2009 г. - прототип.

Гибкий фотоэлектрический модуль, включающий последовательно расположенные нижнюю несущую пленку, нижнюю армирующую сетку, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы из монокристаллического кремния, верхнюю скрепляющую пленку, верхнюю армирующую сетку и верхнюю несущую пленку, причем несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, а армирующие сетки выполнены из полимерных нитей, прозрачных для солнечного света и пропитанных веществом или содержащие такое вещество с низким коэффициентом поглощения и рассеивания света, отличающийся тем, что в качестве армирующих сеток используют терморелаксированные сетки из термоусадочного полимера.



 

Похожие патенты:

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, и технологии их изготовления, в частности к полупроводниковым фотоэлектрическим генераторам.

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые, помимо основной функции - генерации фототоэлектричества, могут использоваться в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении - кручению или изгибу.

Изобретение относится к фотоэлектрической битумной черепице для фотоэлектрической кровли. Технический результат: создание фотоэлектрической кровельной плитки с оптимизированной поверхностью с высокой улавливающей способностью, с высоким энергетическим выходом, обеспечение надежности, атмосферостойкости и снижение массы плитки.

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных элементов.

Изобретение относится к гелиотехнике. .

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА.

Изобретение относится к гелеотехнике и обеспечивает возможность создания усовершенствованных фотогальванических элементов простой конструкции и пониженной стоимости.

Изобретение относится к области солнечной энергетики. .

Изобретение относится к устройствам и способам изготовления фотоэлектрических солнечных модулей. .

Задний лист для модуля солнечных элементов содержит лист подложки и отвержденный слой пленки покрытия из материала покрытия, сформированного на одной стороне или на каждой стороне листа подложки, причем указанный материал покрытия содержит фторполимер (А), имеющий повторяющиеся звенья на основе фторолефина (а), повторяющиеся звенья на основе мономера (b), содержащего группы для поперечного сшивания и повторяющиеся звенья на основе мономера (с), содержащего алкильные группы, где C2-20 линейная или разветвленная алкильная группа не имеет четвертичного атома углерода, а ненасыщенные группы, способные к полимеризации, связаны друг с другом посредством эфирной связи или сложноэфирной связи. Также предложен модуль солнечных элементов с использованием такого заднего листа и варианты способа изготовления заднего листа для модуля солнечных элементов. Предложенное изобретение обеспечивает возможность создания отвержденного слоя гибкого с хорошей адгезией за счет исключения растрескивания, разламывания, замутнения и расслоения. 5 н. и 10 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к изготовлению модулей солнечных элементов, а также к соответствующим модулям солнечных элементов. Предложено применение а) по меньшей мере одного полиалкил(мет)-акрилата и b) по меньшей мере одного соединения формулы (I), в которой остатки R1 и R2 соответственно независимо друг от друга означают алкил или циклоалкил с 1-20 атомами углерода, для изготовления модулей солнечных элементов, прежде всего для изготовления световых концентраторов модулей солнечных элементов. Заявлен также модуль солнечных элементов и вариант модуля. Технический результат - температура эксплуатации модуля солнечных элементов составляет 80°C и выше, полное светопропускание формовочных масс в диапазоне волн от 400 до 500 нм предпочтительно составляет по меньшей мере 90%, полное светопропускание формовочных масс в диапазоне волн от 500 до 1000 нм предпочтительно составляет по меньшей мере 80%. 3 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачную фокусирующую призму с углом полного внутреннего отражения где n - коэффициент преломления материала призмы, с треугольным поперечным сечением, имеющую грань входа, на которую падает излучение по нормали к поверхности грани входа, и грань переотражения излучения, образующую острый двухгранный угол φ с гранью входа, и грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправленно с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, установленных на некотором расстоянии друг от друга, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ, который расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, линии касания плоскости дополнительного зеркального отражателя с гранью входа и линия касания плоскости зеркального отражателя устройства переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность грани входа больше длины проекции зеркального отражателя устройства отражения на поверхность грани входа на величину В другом варианте солнечного модуля с концентратором, содержащем прозрачную фокусирующую призму с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения , где n - коэффициент преломления призмы, имеющую грань входа и грань переотражения излучения, образующие общий двухгранный угол φ, грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправлено с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность входа больше длины проекции зеркального отражателя устройства отражения на поверхность входа на величину В способе изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения с зеркальными отражателями из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 2-12° и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и производят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения. В результате использования изобретения увеличивается оптический КПД модуля, снижаются оптические потери при переотражении излучения и увеличивается коэффициент концентрации солнечного излучения. 3 н. и 7 з.п. ф-лы, 3 ил.

Многофункциональная солнечноэнергетическая установка (далее МСЭУ) относится к возобновляемым источникам энергии, в частности к использованию солнечного излучения для получения электрической энергии, обеспечения горячего водоснабжения и естественного освещения помещений различного назначения, содержащая оптически активный прозрачный купол, представляющий собой двояковыпуклую прямоугольную линзу, фотоэлектрическую панель, солнечный коллектор, круглые плоские горизонтальные заслонки полых световодов, полые световодные трубы, теплоприемную медную пластину солнечного коллектора, рассеиватель солнечного света, микродвигатели круглых плоских горизонтальных заслонок полых световодных труб, круговые светодиодные лампы, аккумуляторные батареи, датчики света и температуры, электронный блок управления, пульт управления, бак-аккумулятор, теплообменник, насос, обратный клапан, шестигранные медные трубопроводы, инвертор и опору с опорными стойками для поддержания конструкции МСЭУ. Актуальность заявленного изобретения заключается: в снижении финансовых затрат на традиционную электрическую энергию в уменьшении выбросов парниковых газов за счет замещения солнечной энергией выработку энергии тепловыми электростанциями; в преобразовании энергии Солнца в электрическую и тепловую энергию, а также для естественного освещения помещений различного назначения, например детских садиков и зон отдыха, коттеджей, торговых центров, помещений, развернутых в полевых условиях, стационарных парников, объектов агропромышленного комплекса, спортивных сооружений, цехов промышленных предприятий, складов, хранилищ техники и других объектов двойного назначения, а также в качестве энергоактивных крыш в различных постройках. 9 з.п. ф-лы, 4 ил.

Согласно изобретению предложенный генератор (100) на солнечной энергии содержит термоэлектрические элементы, примыкающие к солнечным элементам и расположенные ниже солнечных элементов. Обеспечивается концентрированный поток солнечной энергии. Теплоотвод (104), температура и эффективность которого могут изменяться, контактирует с холодным спаем (108) термоэлектрического устройства (103). Термическое сопротивление рассчитывается в отношении потока энергии, в результате чего в термоэлектрическом устройстве (103) создается градиент температуры в несколько сотен градусов Кельвина. Предпочтительно солнечный элемент содержит полупроводник с большой шириной запрещенной энергетической зоны. Генератор (100) сохраняет относительно подходящую эффективность (кпд) в некотором диапазоне температуры холодного спая (108). Теплоотводом (104) может служить система горячей воды. Высокие значения к.п.д. достигаются за счет использования нанокомпозиционных термоэлектрических материалов. Равномерно, но редко распределенные термоэлектрические сегменты в матрице из материала с высокими теплоизоляционными свойствами уменьшают количество материала, необходимого для сегментов, без ухудшения рабочих характеристик. Дополнительные преимущества обеспечивает единая конструкция солнечного элемента и термоэлектрических элементов. 3 н. и 14 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к области кремниевых многопереходных фотоэлектрических преобразователей (ФЭП) солнечных батарей. Конструкция «наклонного» кремниевого монокристаллического многопереходного (МП) фотоэлектрического преобразователя (ФЭП) согласно изобретению содержит диодные ячейки (ДЯ) с n+-p--p+ (р+-n--n+) переходами, параллельными горизонтальной светопринимающей поверхности, диодные ячейки содержат n+(p+) и р+(n+) области n+-p--p+(p+-n--n+) переходов, через которые они соединены в единую конструкцию металлическими катодными и анодными электродами, расположенными на поверхности n+(p+) и p+(n+) областей с образованием соответствующих омических контактов - соединений, при этом, что n+(p+) и p+(n+) области и соответствующие им катодные и анодные электроды расположены под углом в диапазоне 30-60 градусов к светопринимающей поверхности, металлические катодные и анодные электроды расположены на их поверхности частично, а частично расположены на поверхности оптически прозрачного диэлектрика, расположенного на поверхности n+(p+) и p+(n+) областей, при этом они с металлическими электродами и оптически прозрачным диэлектриком образуют оптический рефлектор. Также предложен способ изготовления описанной выше конструкции «наклонного» кремниевого монокристаллического многопереходного (МП) фотоэлектрического преобразователя (ФЭП). Техническим результатом изобретения является повышение коэффициента полезного действия фотопреобразователей. 2 н.п. ф-лы, 3 ил.

Использование: для реализации панелей солнечных генераторов с целью обеспечения питания электрической энергией космических аппаратов, в частности спутников. Сущность изобретения заключается в том, что каждый фотогальванический элемент решетки крепят на подложке при помощи мягкого самоклеящегося и легко отсоединяемого устройства крепления, при этом заднюю сторону каждой ячейки и переднюю сторону подложки покрывают слоем, улучшающим их свойства теплового излучения. Технический результат: уменьшение механической связи фотогальванической решетки солнечного генератора по отношению к ее опорной подложке с одновременным обеспечением достаточной радиационной связи ячейки с подложкой, чтобы избегать ее нагрева в полете и потери ее эффективности. 4 з.п. ф-лы, 4 ил.

Изобретение относится к полимерному фотоэлектрическому модулю, выполненному на основе допированной пленки проводящего полимера полианилина. Модуль характеризуется тем, что полианилин допирован гетерополианионным комплексом 2-18 ряда, имеющим химическую формулу [P2W18O62]6-. Допированная пленка полианилина 1 нанесена на тонкий прозрачный проводящий слой, который может состоять из оксида индия (III) или оксида олова (IV) 2, который в свою очередь напылен на материал 3, который обладает высокими пропускными способностями для электромагнитных волн в диапазоне от 3·10-2 до 4·10-6 см. Данный материал с напыленным проводящим слоем и полианилиновой пленкой образует один из электродов фотоэлектрического модуля, а второй противоэлектрод, который служит одновременно задней стенкой изделия, может быть выполнен из проводящего материала 4, к которому с наружной стороны прикреплены термогенераторы 5 с воздушными или водяными радиаторами для отвода тепла 6, соединенные между собой электрическими последовательно-параллельными цепями 7, а электроды скрепляются между собой боковыми стенками, которые могут быть выполнены из любого неагрессивного диэлектрического материала 8, а между электродами заливается водный электролит, содержащий смесь водорастворимых неорганических солей, где pH электролита 9 может варьироваться от 5 до 3, токосъемы прикреплены соответственно к проводящему материалу с полимерной пленкой и к проводящей задней стенке изделия, а также к выходным клеммам термогенераторов 10, образуя тем самым две независимые электрические цепи. Также изобретение относится к способу получения указанного модуля. Предложенный фотоэлектрический модуль обладает высоким КПД преобразования электромагнитной энергии в электрическую. 2 н.п. ф-лы, 1 пр., 1 ил.

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ). Техническим результатом изобретения является: повышение стойкости СБ к термоударам, к воздействию механических и термомеханических нагрузок, повышение технологичности конструкции, увеличение срока активного существования СБ космических аппаратов, повышение функциональных возможностей за счет расширения температурного диапазона функционирования и оптимизации конструкции СБ, упрощение коммутационной системы, что достигается путем повышения прочности соединения шунтирующих диодов и СЭ, повышение воспроизводимости процесса изготовления СБ космических аппаратов за счет оптимизации технологии изготовления шунтирующих диодов и СЭ СБ, а также коммутирующих шин, соединяющих СЭ и шунтирующие диоды, которые выполнены многослойными. Солнечная батарея для малоразмерных космических аппаратов содержит: панели с приклеенными на них модулями с солнечными элементами (СЭ), шунтирующий диод; коммутирующие шины, соединяющие лицевую и обратную стороны шунтирующего диода с СЭ, при этом шунтирующий диод установлен в вырезе в углу СЭ, при этом коммутирующие шины выполнены многослойными, состоящими из молибденовой фольги, с двух сторон которой последовательно нанесены слой ванадия или титана, слой никеля и слой серебра соответственно. 2 н. и 5 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении (кручение или изгиб, в качестве элементов электропитания дирижаблей, аэростатов, беспилотных летательных аппаратов и т.п. Задачей изобретения является обеспечение обратимой (упругой) деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях при одновременном снижении веса и толщины модуля. Фотоэлектрический гибкий модуль представляет собой последовательно расположенные нижнюю несущую пленку, нижний армирующий слой, нижнюю скрепляющую пленку, электрически соединенные между собой солнечные элементы, верхнюю скрепляющую пленку, верхний армирующий слой и верхнюю несущую пленку, причем нижние и верхние несущие и скрепляющие пленки выполнены из прозрачного для солнечного света материала, при этом в качестве армирующих слоев используют непрозрачные для солнечного света перфорированные пленки из антиадгезивного материала, перфорация в которых выполнена в виде регулярно расположенных квадратных отверстий размером от 0,8×0,8 мм до 10,0×10,0 мм, расположенных на расстоянии 0,5÷0,8 мм друг от друга. Задачей изобретения является обеспечение обратимой (упругой) деформации плоскости фотоэлектрического модуля одновременно в двух и более направлениях при одновременном снижении веса и толщины модуля.2 ил.
Наверх