Способ управления движением ракеты-носителя на начальном участке полета

Изобретение относится к ракетно-космической технике. Способ управления движением ракеты-носителя на начальном участке полета заключается в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение качающейся части маршевого двигателя ракеты-носителя в зависимости от программного угла, отклонения и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства, угла и угловой скорости тангажа ракеты-носителя и в одновременной стабилизации углового положения ракеты-носителя в плоскости, перпендикулярной заданной. Отклонение качающейся части маршевого двигателя осуществляют, принимая упомянутый программный угол отклонения качающейся части маршевого двигателя и коэффициенты усиления командного сигнала по отклонению и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства по заранее выбранным зависимостям от периодически измеряемой высоты подъема над горизонтальной плоскостью пускового устройства характерной точки ракеты-носителя, в качестве которой берут центр качания качающейся части маршевого двигателя. Достигается увеличение ресурса конструкции пускового устройства. 4 ил.

 

Изобретение относится к ракетно-космической технике, а именно к способам управления движением ракет-носителей (РН) на начальном участке полета, обеспечивающим защиту сооружений стартового комплекса от газодинамического воздействия струй реактивных двигателей.

В ракетной технике известен выбранный в качестве аналога способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты [1], заключающийся в выполнении маневра углового разворота ракеты по заранее введенной в систему управления (СУ) программе, при этом за определенное время до старта ракеты измеряют скорость и направление горизонтального осредненного ветра в районе пускового устройства (ПУ), затем рассчитывают программные зависимости изменения углов тангажа и рыскания, обеспечивающие с учетом действия ветра желаемое положение следов струй ракетных двигателей на горизонтальной плоскости ПУ, после чего вводят рассчитанные программные зависимости в полетное задание.

Одним из недостатков этого способа является сложность его реализации, связанная с необходимостью измерения и введения в бортовую СУ информации о ветре.

Наиболее близким по технической сущности к предлагаемому изобретению является выбранный в качестве прототипа способ управления движением ракеты-носителя на начальном участке полета [2], заключающийся в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение качающейся части маршевого двигателя ракеты-носителя в зависимости от программного угла, отклонения и скорости отклонения характерной точки ракеты носителя от вертикальной оси пускового устройства, угла и угловой скорости тангажа ракеты-носителя и в одновременной стабилизации углового положения ракеты-носителя в плоскости, перпендикулярной заданной.

Недостатком данного способа является его чувствительность к отклонениям от номинальных значений (разбросам) ряда характеристик ракеты-носителя, таких как тяга двигателя, масса ракеты и др., так как в способе-прототипе коэффициенты закона управления и программный угол отклонения качающейся части двигателя являются заранее рассчитанными функциями времени. Кроме того, общим недостатком аналога и прототипа является то, что они рассчитаны на защиту от воздействия газодинамических струй двигателей только определенных зон на горизонтальной плоскости ПУ (плоскости «нулевой отметки»), и не обеспечивают достаточную защиту элементов конструкции кабель-заправочной башни, располагающихся на различных высотах, таких как фермы удержания с блоками разъемных соединений (БРС), площадки обслуживания и др.

Задачей предложенного изобретения является разработка способа управления движением ракеты-носителя на начальном участке полета обеспечивающего защиту от воздействия струй элементов конструкции кабель-заправочной башни на заданной высоте и заданных зон на плоскости «нулевой отметки» ПУ в условиях действия ветровых возмущений и с учетом разбросов на характеристики ракеты-носителя.

Техническим результатом предлагаемого изобретения является увеличение ресурса конструкции пускового устройства и снижение расходов на его эксплуатацию.

Указанный технический результат достигается тем, что в способе управления движением ракеты-носителя на начальном участке полета, заключающемся в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение качающейся части маршевого двигателя ракеты-носителя в зависимости от программного угла, отклонения и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства, угла и угловой скорости тангажа ракеты-носителя, в одновременной стабилизации углового положения ракеты-носителя в плоскости, перпендикулярной заданной, в соответствии с изобретением отклонение качающейся части маршевого двигателя осуществляют, принимая упомянутый программный угол отклонения качающейся части маршевого двигателя и коэффициенты усиления командного сигнала по отклонению и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства по заранее выбранным зависимостям от периодически измеряемой высоты подъема над горизонтальной плоскостью пускового устройства характерной точки ракеты-носителя, в качестве которой берут центр качания качающейся части маршевого двигателя.

Сущность предлагаемого изобретения иллюстрируется фиг.1-4.

Фиг.1 - Параметры движения РН на начальном участке.

Фиг.2 - Расположение РН на пусковом устройстве и направление увода.

Фиг.3 - Типичные зависимости от высоты программного отклонения и программной скорости отклонения характерной точки РН.

Фиг.4 - Типичные зависимости от высоты коэффициентов закона управления.

После отрыва РН от стартового стола РН начинает движение в заданной вертикальной плоскости увода. Плоскость увода выбирается заранее исходя из требования минимального воздействия струи двигателя на сооружения стартового комплекса. Направление увода РН выбирается в сторону от высотных конструкций стартового комплекса (кабель-мачты или кабель-заправочной башни). В качестве примера рассмотрим одну из РН легкого класса, разрабатываемых в ГКНПЦ им. М.В. Хруничева. Расположение РН на пусковом устройстве и типичное направление увода показаны на фиг.2. В плоскости увода след струи двигателя на горизонтальной плоскости пускового устройства характеризуется параметром s - удалением следа оси струи от вертикали, проходящей через центр ПУ, а положение «факела» - отклонением l центра качания двигателя от вертикали и углом отклонения качающейся части двигателя.

В процессе подъема РН характерная точка РН (в соответствии с изобретением - центр качания качающейся части маршевого двигателя) движется по программе, заданной в функции высоты подъема h. Высота подъема определяется на борту РН двойным интегрированием вертикального ускорения РН. Командный сигнал на отклонение качающейся части маршевого двигателя ракеты в заданной плоскости увода струи периодически вычисляется в виде

δ = K l l + K V l V l + K ϑ ϑ + K ω ω + δ п р ,

где Vl - горизонтальная скорость удаления в этой плоскости характерной точки ракеты-носителя; ϑ, ω - соответственно угол и угловая скорость отклонения ракеты-носителя от вертикали в указанной плоскости; δпр - программный угол отклонения качающейся части маршевого двигателя; Kl, K V l ,Kϑ, Kω - коэффициенты усиления. При этом в соответствии с изобретением программный угол отклонения качающейся части маршевого двигателя периодически вычисляют по формуле δ п р ( h ) = K l ( h ) l п р ( h ) K V l ( h ) V l п р ( h ) , где lпр(h) и Vlпр(h) - заранее определенные зависимости от высоты подъема характерной точки.

Типичные зависимости от высоты программного отклонения l пр(h) и программной скорости отклонения Vlпр(h) характерной точки РН от вертикали в заданной плоскости увода струи показаны на фиг.3. При выборе данных программных зависимостей учтено наличие на определенной высоте кабель-заправочной башни (КЗБ) ферм удержания с БРС.

Коэффициенты закона управления Кl и K V l также выбираются в функции высоты подъема характерной точки h. Типичные зависимости коэффициентов от h представлены на фиг.4. Использование зависимостей программных значений и коэффициентов от высоты (а не от времени, как в способе-прототипе) позволяет уменьшить чувствительность предлагаемого способа управления к отклонениям от номинальных значений ряда физических параметров, которые известны при разработке системы управления с определенной точностью. Так, например, масса РН известна на этапе проектирования с точностью около 1%, тяга маршевого двигателя с точностью около 3% и т.д. Эти и другие разбросы приводят к отличию высоты подъема в заданный момент времени от номинального значения. Использование в законе управления вычисленного значения фактической (а не программной) высоты подъема характерной точки ракеты (центра качания качающейся части маршевого двигателя) позволяет повысить точность управления положением струй двигателя относительно элементов конструкции КЗБ с учетом разбросов физических параметров и других возмущающих факторов. Кроме того, проведенное статистическое моделирование показало, что при использовании предлагаемого способа управления уменьшаются также размеры областей, в которых располагаются следы осей струй на горизонтальной плоскости ПУ, при действии ветра и с учетом разбросов физических параметров РКН и термодинамических параметров атмосферы.

Таким образом, благодаря реализации предложенного в изобретении технического решения решается задача обеспечения защиты от воздействия струй элементов конструкции кабель-заправочной башни на заданной высоте и заданных зон на плоскости «нулевой отметки» ПУ в условиях действия ветровых возмущений и с учетом разбросов на характеристики ракеты-носителя. Этим достигается технический результат предлагаемого изобретения - увеличение ресурса конструкции пускового устройства и снижение расходов на его эксплуатацию.

Источники информации:

1. Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты. Патент на изобретение №2407680, заявка №2009125704.

2. А.Ш. Альтшулер, В.Д. Володин. Управление движением ракеты космического назначения на начальном участке полета с учетом требований по снижению газодинамического воздействия струй двигателей на сооружения стартового комплекса. Авиакосмическая техника и технология, 2007 г., №2.

Способ управления движением ракеты-носителя на начальном участке полета, заключающийся в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение качающейся части маршевого двигателя ракеты-носителя в зависимости от программного угла, отклонения и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства, угла и угловой скорости тангажа ракеты-носителя, в одновременной стабилизации углового положения ракеты-носителя в плоскости, перпендикулярной заданной, отличающийся тем, что отклонение качающейся части маршевого двигателя осуществляют, принимая упомянутый программный угол отклонения качающейся части маршевого двигателя и коэффициенты усиления командного сигнала по отклонению и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства по заранее выбранным зависимостям от периодически измеряемой высоты подъема над горизонтальной плоскостью пускового устройства характерной точки ракеты-носителя, в качестве которой берут центр качания качающейся части маршевого двигателя.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике. Многоразовый возвращаемый ракетный блок содержит фюзеляж, крыло с двумя консолями, левый и правый блоки двигателей управления.

Изобретение относится к ракетам, в частности к ракетам с бескорпусными бессопловыми двигателями торцевого горения. Ракета с бескорпусным бессопловым двигателем торцевого горения содержит головную часть и шашку твердого ракетного топлива.

Изобретение относится к ракетно-космической технике. .

Изобретение относится к ракетно-космической отрасли, а именно к наземному вспомогательному оборудованию. .

Изобретение относится к боеприпасам, в частности к тактическим управляемым ракетам, используемым в условиях жестких габаритных ограничений. .

Изобретение относится к ракетно-космической технике, а именно к ракетам-носителям для выведения в космос космических аппаратов. .

Изобретение относится к ракетной технике и может быть использовано в конструкции крылатой ракеты. .

Изобретение относится к боеприпасам, в частности к устройству и способу увеличения дальности полета артиллерийских снарядов. .

Изобретение относится к области ракетостроения. .

Изобретение относится к ракетно-космической технике, а именно к средствам выведения аппаратов космического назначения на заданные орбиты. .

Изобретение относится к космической технике и может быть использовано для стыковки двух космических объектов, один из которых активный, а другой - пассивный. .

Изобретение относится к ракетно-космической технике, в частности к ракетам космического назначения (РКН) с жидкостными ракетными двигателями (ЖРД). .

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения (РКН) с многодвигательной первой ступенью. .

Изобретение относится к ракетно-космической технике и касается ракетного разгонного блока и элементов его конструкции, предназначенных для его стабилизации и увода от отделившегося космического аппарата.

Изобретение относится к ракетно-космической технике и может быть использовано для программного смещения координат точек падения отделяющихся частей (ОЧ) ступеней ракет космического назначения.

Изобретение относится к управлению движением изделий ракетно-космической техники. .

Изобретение относится к области ракетно-космической техники. .
Изобретение относится к контролю запуска маршевого двигателя (МД) разгонного блока (РБ) при выведении его на опорную орбиту после отделения от ракеты-носителя (РН). .

Изобретение относится к космонавтике и служит для полетов астронавтов в космосе. .

Изобретение относится к области реактивных двигательных установок, а именно к ракетным двигателям, и предназначено для управления малыми космическими аппаратами. .

Изобретение относится к ракетно-космической технике с жидкостными ракетными двигателями (ЖРД), разгонным блокам и могут быть использованы при запуске двигательных установок (ДУ), когда остатки запасов жидкого топлива малы и не превышают 3% от начальной заправки. В способе увода отделяющейся части (ОЧ) ступени ракеты-носителя, основанном на газификации жидких остатков невыработанных компонентов ракетного топлива (КРТ) в баках окислителя и горючего, обеспечении тормозного импульса за счет их сгорания в камере газового ракетного двигателя (ГРД) и высокоскоростного истечения продуктов сгорания в космическое пространство, согласно изобретению для газификации невыработанных остатков КРТ используют твердотопливные газогенерирующие составы (ТГГС), причем в бак окислителя подают ТГГС с избытком кислорода, а в бак горючего - с недостатком кислорода, при этом химический состав и количество ТГГС при минимально возможных остатках КРТ определяют исходя из условий реализации заданной величины характеристической скорости: где - характеристическая скорость; - импульс, реализуемый за счет минимальных невыработанных остатков КРТ в баках ОЧ и ТГГС, необходимых для их газификации; - импульс, реализуемый только за счет сгорания в ГРД газов ТГГС. Устройство для реализации способа в виде двигательной установки (ДУ), включающей в свой состав топливные баки окислителя и горючего, систему наддува баков, газовый ракетный двигатель с системой питания и системой газификации остатков КРТ, причем ДУ снабжена твердотопливными газогенераторами, выходы которых соединены с устройствами ввода газа, снабженными пиромембранами, в соответствующие топливные баки с остатками жидких КРТ. Изобретение обеспечивает повышение эффективности использования жидких остатков КРТ в топливных баках на момент выключения маршевого ЖРД. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.
Наверх