Способ получения высокотемпературного радиотехнического материала


 


Владельцы патента RU 2498964:

Открытое акционерное общество "Композит" (ОАО "Композит") (RU)

Изобретение относится к области высокотемпературных радиотехнических материалов для спецтехники и электротехнической промышленности. Технический результат изобретения заключается в повышении температуры эксплуатации радиотехнического материала до 1800-2000°C с максимальным сохранением диэлектрических свойств материала. Объемно-упрочненные тканые материалы из кремнеземных и кварцевых волокон пропитывают водным раствором кремнезоля с последующей сушкой и термообработкой. Цикл «пропитки, сушки, термообработки» повторяется до достижения заготовками плотности 1400±100 кг/м3. Сушку проводят на воздухе и термообрабатывают по режиму: подъем температуры до 120±50°C и выдержка 3,0±0,5 часа; подъем температуры до 230±50°C и выдержка 3,0±0,5 часа; подъем температуры до 500±50°C и выдержка 5,0±0,5 часа. Далее пропитку продолжают водорастворимыми соединениями циркония 30-55% концентрации, при этом термообрабатывают по режиму: подъем температуры до 150±100°C и выдержка 3,0±0,5 часа; подъем до температуры 600±100°C и выдержка 6,0±0,5 часа до достижения заготовками плотности 1600±100 кг/м3. В качестве соединений циркония используют раствор нитрата цирконила или хлорида цирконила. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к области электротехнических материалов и предназначено для изготовления высокотемпературного радиотехнического материала для спецтехники и электротехнической промышленности, а также может быть использовано и для материалов, применяемых в самолетостроении.

Наиболее близким по технической сущности и предлагаемому решению является способ получения радиотехнического материала, включающий пропитку объемно-упрочненных тканых материалов из кремнеземных или кварцевых волокон 23,0-25,0% водным раствором кремнезоля. В известном способе заготовка подвергается пятикратной пропитке и сушке при 200°C и завершающей термообработке при температуре 600±10°C в течение 8±0,25 ч (см. патент РФ №2210555, по кл. C04B 35/78, 2001 г). Недостатком указанного способа получения радиотехнического материала является невысокая температура эксплуатации (1000-1200°C).

Задачами, решаемыми предлагаемым способом получения высокотемпературного радиотехнического материала, являются повышение температуры эксплуатации до 1800-2000°C с максимальным сохранением диэлектрических свойств материала.

Технический результат достигается предлагаемым способом получения высокотемпературного радиотехнического материала, который включает пропитку заготовок вакуумным способом из объемно-упрочненных тканых материалов из кремнеземных и кварцевых волокон водным раствором кремнезоля с последующей сушкой и термообработкой, причем цикл «пропитки, сушки, термообработки» повторяется до достижения заготовками плотности 1400±100 кг/м3, при этом сушку проводят на воздухе и термообрабатывают по режиму:

- подъем температуры до 120±50°C и выдержка 3,0±0,5 часа;

- подъем температуры до 230±50°C и выдержка 3,0±0,5 часа;

- подъем температуры до 500±50°C и выдержка 5,0±0,5 часа,

далее пропитку продолжают водорастворимыми соединениями циркония 30-55% концентрации, при этом термообрабатывают по режиму:

- подъем температуры до 150±100°C и выдержка 3,0±0,5 часа,

- подъем температуры до 600±100°C и выдержка 6,0±0,5 часа,

до достижения заготовками плотности 1600+100 кг/м3,

в качестве пропитки водорастворимыми соединениями циркония используют раствор нитрата цирконила или хлорида цирконила с 30-55% концентрацией раствора.

Предлагаемый способ получения высокотемпературного радиотехнического материала осуществляют следующим образом. Объемно-упрочненый тканый материал из кремнеземных или кварцевых волокон пропитывают водным раствором кремнезоля с концентрацией 22,0-26,0% вакуумным способом в течение 40 минут. Увеличение времени пропитки не целесообразно из соображений технологичности. После пропитки заготовка выдерживается на воздухе 8-10 часов и термообрабатывается по режиму:

- подъем температуры до 120±50°C;

- выдержка при температуре 120±50°C - 3,0±0,5 часа;

- подъем температуры до 230±50°C;

- выдержка при температуре 230±50°C - 3,0±0,5 часа;

- подъем до температуры 500±50°C;

- выдержка при температуре 500±50°C - 5,0±0,5 часа.

Ступенчатый режим термообработки до 500±50°C выбран с целью максимально возможного плавного удаления структурированной воды. Цикл «пропитки, сушки, термообработки» повторяется до достижения заготовкой плотности 1400±100 кг/м3, которая выбрана в связи с тем, что заготовка еще достаточно пористая для проведения дальнейшей пропитки водорастворимыми соединениями циркония 30-55% концентрации до достижения плотности заготовки 1600±100 кг/см3. Указанная концентрация водорастворимых соединений циркония способствует оптимальному набору удельного веса заготовки. Пропитка водорастворимыми соединениями циркония, например, растворами нитрата цирконила или хлорида цирконила, проводится в течение 30±5 мин., термообрабатывается заготовка по режиму:

- подъем температуры до 150±100°C;

- выдержка при температуре 150±100°C - 3,0±0,5 часа;

- подъем до температуры 600±100°C;

- выдержка при температуре 600±100°C - 6,0±0,5 часа.

Увеличение времени вакуумной пропитки растворами солей не технологично. Цикл «пропитка водорастворимыми солями циркония, сушка, термообработка» повторяют двукратно.

Температура и время термообработки заготовки выбрано с целью полного удаления водной составляющей и разложения нитрата или хлорида цирконила до диоксида циркония. Конечная температура термообработки выше 700°C нецелесообразна из соображений технологичности.

Предложенный способ получения высокотемпературного радиотехнического материала был опробован. Свойства материала, изготовленного предлагаемым способом получения, приведены в таблице 1. Полученные результаты приведены в таблице №2.

Как видно из данных, приведенных в таблицах №№1 и 2, использование предлагаемого способа получения высокотемпературного радиотехнического материала позволяет получить материал заданной плотности с температурой эксплуатации 1800-2000°C с максимальным сохранением диэлектрических свойств материала (Δε - 3-5%)

Таблица 1
Характеристики Материал, изготовленный предлагаемым способом получения Прототип
Температура эксплуатации, °С 1800-2000 1000-1200
Изменение диэлектрической проницаемости в интервале температур 20-2000°С Δε≤5 Δε≤10
Примечание: Δε - максимальное изменение диэлектрической проницаемости в интервале температур 20-2000°С
Таблица 2
№№ пп Режимы способа Показатели
Температура эксплуатации, °С Δε, %
1 Прототип. Вакуумная пропитка 23% раствором кремнезоля в течение 0,5 ч с последующей сушкой при 90°C и 200°C в течение 4 ч каждая и циклы «пропитка-сушка» повторяются пятикратно, а завершающая термообработка ведется при температуре 600°C в течение 8 ч. 1000-1200 5-10
2 Вакуумная пропитка 23% раствором кремнезоля до плотности 1270 кг/м3, двукратная пропитка водным раствором соединений циркония с 25% концентрацией, плотность материала 1580 кг/м3 1600-1800 5-7
3 Вакуумная пропитка 25% раствором кремнезоля до плотности 1400 кг/м3, двукратная пропитка водным раствором соединений циркония с 30% концентрацией, плотность 1580 кг/м3 1800-2000 3-5
4 Вакуумная пропитка 24% раствором кремнезоля до плотности 1300 кг/м3, двукратная пропитка водным раствором соединений циркония с 25% концентрацией, плотность 1600 кг/м3, отверждение по ступенчатому режиму подъема температур до 400°C 1800-2000 14-16
5 Вакуумная пропитка 22% раствором кремнезоля до плотности 1450 кг/м3, двукратная пропитка водным раствором соединений циркония с 35% концентрацией, плотность 1570 кг/м3, отверждение по ступенчатому режиму подъема температур до 800°C 1800-2000 7-10
6 Вакуумная пропитка 25% раствором кремнезоля до плотности 1400 кг/м3, двукратная пропитка водным раствором соединений циркония с 30% концентрацией, плотность 1610 кг/м3, отверждение по ступенчатому режиму подъема температур до 550°C 1800-2000 3-5
7 Вакуумная пропитка 26% раствором кремнезоля до плотности 1500 кг/м3, двукратная пропитка водным раствором соединений циркония с 25% концентрацией, плотность 1550 кг/м3, отверждение по ступенчатому режиму подъема температур до 520°C 1500-1600 5-10
8 Вакуумная пропитка 30% раствором кремнезоля до плотности 1550 кг/м3, двукратная пропитка водным раствором соединениями циркония с концентрацией 40% до плотности 1580 кг/м3, отверждение по ступенчатому режиму подъема температур до 500°C. 1800-2000 12-15
9 Вакуумная пропитка 23% раствором кремнезоля до плотности 1380 кг/м3, двукратная пропитка водным раствором с концентрацией 40% соединения циркония, плотность 1590 кг/м3, отверждение по ступенчатому режиму подъема температур до 510°C. 1800-2000 3-5
10 Вакуумная пропитка 25% раствором кремнезоля до плотности 1300 кг/м3, двукратная пропитка водным раствором с концентрацией 25% соединения циркония, плотность 1460 кг/м3, отверждение по ступенчатому режиму подъема температур до 550°C. 1800-2000 12-15
11 Вакуумная пропитка 23% раствором кремнезоля до плотности 1400 кг/м3, двукратная пропитка водным раствором с концентрацией 30% соединения циркония, плотность 1590 кг/м3, отверждение по ступенчатому режиму подъема температур до 500°C. 1800-2000 3-5
12 Вакуумная пропитка 24% раствором кремнезоля до плотности 1440 кг/м3, двукратная пропитка водным раствором с концентрацией 35% соединения циркония, плотность 1560 кг/м3, отверждение по ступенчатому режиму подъема температур до 500°C. 1800-2000 3-5
Примечание: Δε - максимальное изменение диэлектрической проницаемости в интервале температур 20-2000°C

1. Способ получения высокотемпературного радиотехнического материала, включающий пропитку заготовок вакуумным способом из объемно-упрочненных тканых материалов из кремнеземных и кварцевых волокон водным раствором кремнезоля с концентрацией с последующей сушкой и термообработкой, отличающийся тем, что цикл «пропитки, сушки, термообработки» повторяется до достижения заготовками плотности 1400±100 кг/м3, при этом сушку проводят на воздухе и термообрабатывают по режиму:
подъем температуры до 120±50°C и выдержка 3,0±0,5 ч;
подъем температуры до 230±50°C и выдержка 3,0±0,5 ч;
подъем до температуры 500±50°C и выдержка 5,0±0,5 ч,
далее пропитку продолжают водорастворимыми соединениями циркония, при этом термообрабатывают по режиму:
подъем температуры до 150±100°C и выдержка 3,0±0,5 ч,
подъем до температуры 600±100°C и выдержка 6,0±0,5 ч, до достижения заготовками плотности 1600±100 кг/м3.

2. Способ по п.1, отличающийся тем, что в качестве пропитки водорастворимыми соединениями циркония используют раствор нитрата цирконила или хлорида цирконила с 30-55% концентрацией раствора.



 

Похожие патенты:
Изобретение относится к нанотехнологиям и предназначено для получения высокопрочной трубчатой или комбинированной нити, пленки или ленты (разница только в ширине) нанотолщины из тройной структуры бор-углерод-кремний B-C-Si (насколько мне известно, оно не имеет названия, поэтому далее будем называть его, а точнее - наноизделия из него - «старброн»).
Изобретение относится к строительству, а именно к производству огнеупорных изделий. .

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей.

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химико-металлургической промышленности, а также в авиатехнике.

Изобретение относится к области машиностроительной керамики и может быть использовано для изготовления конструкционных деталей, работающих в условиях высоких механических нагрузок.

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных установок и двигателей газо-, нефтеперекачивающих, транспортных и энергетических систем, работающих в условиях высоких термоциклических нагрузок при температурах до 1650°С на воздухе и в продуктах сгорания топлива.

Изобретение относится к области производства объемносилицированных изделий. .

Изобретение относится к изготовлению деталей из композиционного материала: волокнистого субстрата, уплотненного углеродной или керамической матрицей, которые могут быть использованы при изготовлении тормозных дисков, в частности, для авиационных тормозов.

Изобретение относится к области машиностроительной керамики, в частности к керамоматричному композиционному материалу на основе карбида кремния, упрочненного углеродными волокнами.

Изобретение относится к области машиностроительной керамики, в частности к керамоматричному композиционному материалу на основе карбида кремния, упрочненного углеродными волокнами.

Изобретение относится к области керамики и, в частности, к композиционному материалу и способу его получения. Керамический композиционный материал включает матрицу из оксида алюминия, легированного оксидом магния, и многослойные углеродные нанотрубки при следующем соотношении компонентов, об.%: оксид магния - 0,1-0,4; многослойные углеродные нанотрубки - 0,1-20; оксид алюминия - остальное. 2 н. и 4 з.п. ф-лы, 1 пр., 3 табл.

Изобретение относится к деталям из композиционного материала с керамической матрицей и может быть использовано в авиационных моторах, в особенности, в газовых турбинах или турбомашинах этих моторов. Способ выравнивания поверхности детали из композиционного материала, состоящего из волокон, уплотнённых керамической матрицей, имеющей волнистую и шероховатую поверхность, включает формирование на поверхности детали керамического покрытия. На поверхность детали наносят жидкую композицию (20), содержащую полимер - предшественник керамики и твердый жаропрочный наполнитель, проводят сшивание (40) полимера и преобразование (50) сшитого полимера в керамику путем термообработки. После термообработки керамическое покрытие пропитывают жидкой металлической композицией, обладающей термической совместимостью с материалом детали. Деталь из композиционного материала С/SiC, снабжённая керамическим покрытием, может быть пропитана композицией кремний-германий или кремний-никель. Технический результат изобретения - получение поверхности с высокими аэродинамическими характеристиками. 3 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к композиции биоразлагаемого керамического волокна для высокотемпературной теплоизоляции. Техническим результатом изобретения является повышение теплостойкости изделий. Композиция биоразлагаемого керамического волокна для высокотемпературной теплоизоляции содержит следующие компоненты в вес.%: SiO2 - 58-67; CaO - 26-34; MgO - 2-8; Al2O3 - 0-1; В2О3 - 0,2-1,1; B2O3+Na2O - 0,3-1,1; примеси, выбранные из TiO2 и Fe2O3 - меньше или равно 1. 5 н. и 3 з.п. ф-лы, 2 пр., 3 табл.
Изобретения могут быть использованы в области нанотехнологий и неорганической химии. Способ получения боридной наноплёнки или нанонити включает осаждение на корундовую нанонить или на стекловолокно из легкоплавкого стекла в вакууме несколько чередующихся слоев титана и бора, после чего полученную композицию постепенно нагревают до температуры 1500°С. По другому варианту способ получения боридной наноплёнки включает осаждение слоя борида титана нанотолщины на корундовую нанопленку из газовой фазы, содержащей галогенид титана и бор. Изобретения позволяют получить боридные наноструктуры, 4 н.п. ф-лы, 2 пр.
Изобретение относится к области нанотехнологий, в частности к производству высокопрочного и высокотермостойкого керамического композиционного материала на основе алюмокислородной керамики, структурированной в объеме наноструктурами (нанонитями) TiN, и может быть использовано в машиностроении, в изделиях авиационно-космической техники, двигателестроении, металлообрабатывающей промышленности, в наиболее важных и подверженных экстремальным термоциклическим нагрузкам узлах и деталях. Новый керамический композиционный материал включает алюмокислородную матрицу и дисперсную фазу TiN при соотношении, мас.%: Al2O3 - 84,1% и TiN - 15,9% с диаметром нанонитей TiN 5 нм и имеет высокие прочностные характеристики: предел прочности при 3-точечном изгибе 1262±20 МПа и вязкость разрушения 9 МПа/м1/2, за счет чего он может успешно использоваться в экстремальных условиях высоких термоциклических нагрузок при температурах до 1500°C на воздухе. 2 пр., 2 табл.

Изобретение относится к деталям из термоструктурного композиционного материала, имеющим по меньшей мере в одной части малую толщину, и может быть использовано в авиационной и космической областях, например в корпусах газотурбинных двигателей или диффузорах сопел. Деталь изготовлена из материала, содержащего волокнистый каркас из углеродных или керамических волокон, уплотненный матрицей, причём толщина детали составляет меньше 2 мм и даже меньше 1 мм; волокнистый каркас образован единственной толщиной многослойной ткани, сформированной из рассредоточенных нитей, имеющих весовой номер, равный, по меньшей мере, 200 текс, объемная доля волокон составляет от 25% до 45% и отношение между числом слоев многослойной ткани и толщиной детали в миллиметрах равно по меньшей мере 4. Технический результат изобретения - придание композиционному материалу желаемых механических свойств при получении детали малой толщины. 2 н. и 8 з.п. ф-лы, 3 пр., 6 ил.

Изобретение относится к производству конструктивных деталей, подвергающихся при эксплуатации воздействию высоких температур, и касается детали из композиционного материала с керамической матрицей и способа ее изготовления. Содержит волокнистый каркас, уплотненный матрицей, образованной из множества слоев из керамики с включением матричного межфазного слоя, отклоняющего трещины между двумя смежными керамическими слоями матрицы. Межфазный слой включает первую фазу из материала, способного содействовать отклонению трещины, которая достигла межфазного слоя согласно первому виду распространения в поперечном направлении через один из двух керамических слоев матрицы, смежных с межфазным слоем, таким образом, что распространение трещины продолжается согласно второму виду распространения вдоль межфазного слоя, и вторую фазу, образованную дискретными контактными участками, распределенными в межфазном слое и способными содействовать отклонению трещины, которая распространяется вдоль межфазного слоя согласно второму виду распространения, таким образом, что распространение трещины отклоняется и продолжается согласно первому виду распространения поперечно через другой керамический слой матрицы, смежный с межфазным слоем. Изобретение обеспечивает создание детали из композиционного материала с керамической матрицей, имеющей увеличенный срок службы при высоких температурах в коррозионной среде. 2 н. и 13 з.п. ф-лы, 19 ил., 2 пр.
Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака. Согласно второму варианту нитридную наноплёнку или нанонить получают выдержкой корундового волокна или пленки при температуре 800-1200оC в атмосфере азота или аммиака в присутствии восстановителя. Согласно третьему варианту нитридную наноплёнку или нанонить получают осаждением слоя бора на корундовое волокно или пленку с последующей выдержкой при температуре 1360оC в атмосфере азота или аммиака при давлении 60-70 т/см2 с получением боразона. Изобретения позволяют расширить арсенал средств получения нитридных наноплёнок или нанонитей. 3 н.п. ф-лы, 4 пр.

Изобретение относится к производству изделий из композиционных материалов с карбидно-металлической матрицей, получаемых методом объемного металлирования. Способ изготовления изделий из композиционных материалов на основе матрицы из карбидов металлов включает изготовление заготовки из пористого углеродсодержащего материала с низкой плотностью и высокой открытой пористостью и ее металлирование паро-жидкофазным методом. Введение в поры материала заготовки металла осуществляют порционно за 2 или более приема, чередуя его с порционным введением углерода путем пропитки коксообразующим связующим с последующим его отверждением и карбонизацией. Для введения ограниченного количества металла в поры углеродсодержащего материала на промежуточных стадиях металлирования размещают заготовку и тигли с металлом в замкнутом объеме реторты, нагревают в вакууме в парах металла, выдерживают при максимальной температуре карбидизации металла и охлаждают. Нагрев заготовки и изотермическую выдержку при температуре выше температуры испарения, но ниже максимальной температуры карбидизации металла проводят при перепаде температур между парами металла и металлируемой заготовкой с меньшей температурой на последней, последующий за ней нагрев и изотермическую выдержку при максимальной температуре карбидизации металла - в отсутствии перепада температур, а охлаждение - с обратным перепадом температур или в отсутствии паров металла, при этом чем меньше требуется ввести в поры материала заготовки металла, тем меньшую температуру устанавливают на заготовке и/или тем меньший перепад температур создают между заготовкой и парами металла и/или тем меньшее время задают на изотермической выдержке, и наоборот. Технический результат изобретения - повышение прочности и окислительной стойкости композиционных материалов. 2 н.п. ф-лы, 2 табл.
Изобретение относится к области композиционных материалов с керамической матрицей, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах. Изготавливают каркас из термостойких волокон, заполняют его дисперсным наполнителем и пропитывают коксообразующим связующим. В качестве дисперсного наполнителя используют тугоплавкие металлы, такие как B, Si, Ti, Zr, Hf, в капсуле из соответствующего нитрида или без таковой. Затем осуществляют формование пластиковой заготовки и ее термообработку в среде азота при температуре образования карбидов и/или карбонитридов соответствующих металлов. Полученную пористую заготовку силицируют паро-жидкофазным методом путем капиллярной конденсации паров кремния, нагревают до 1700-1850°C и выдерживают в указанном интервале температур в течение 1-3 часов. Технический результат - обеспечение возможности изготовления крупногабаритных тонкостенных изделий без применения механической обработки, а также повышение надежности их работы в окислительных средах при высоких температурах. 2 з.п. ф-лы, 13 пр., 1 табл.
Наверх