Способ определения плотности рулона из стеблей лубяных культур и устройство для его осуществления

Использование: изобретение относится к области определения плотности материалов, в частности льна, и может быть использовано в сельском хозяйстве и на льнозаводах первичной переработки льносырья для определения параметров рулонов, сформированных из стеблей лубяных культур. Сущность изобретения: измеряют силу сопротивления внедрению щупа в рулон в плоскости его диаметрального сечения в направлении от периферии к сердцевине и скорость движения щупа, сравнивают полученные результаты с эталонными значениями и по результатам сравнения определяют плотность рулона. При этом устройство снабжено каналом для измерения скорости движения щупа, содержащим соединенные последовательно датчик скорости, усилитель и преобразователь частоты в напряжение. Причем выход усилителя канала измерения силы сопротивления внедрению щупа и выход преобразователя частоты в напряжение подключены к индикатору через делитель напряжения. В результате проверки было установлено, что относительная ошибка заявляемого способа определения плотности не превышает 4,5%, что меньше ошибки измерения плотности противопоставляемым способом почти на 2%. Техническим результатом изобретения является повышение точности измерений. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к области определения плотности материалов и может быть использовано в сельском хозяйстве и на льнозаводах первичной переработки льносырья для определения параметров рулонов, сформированных из стеблей лубяных культур.

Известен способ определения плотности тела путем деления числовых значений массы тела на его объем. Однако такой способ малопроизводительный и трудоемкий при большой массе тел (200-400 кг). Кроме этого, таким способом не определить распределение плотности по объему неоднородного тела.

Существует способ определения плотности тел по скорости распространения звуковых волн, проходящих через вещество и сравнение результатов измерения с эталонными значениями (1). Указанным способом можно также определить только среднюю плотность материала (вещества) тела и отсутствует возможность измерения локальной плотности (плотности в конкретной точке тела по его объему) в телах с различной концентрацией материала по их объему, например в рулонах в направлении от сердцевины к периферии. Этот недостаток не позволяет с помощью данного способа настроить прессующую систему рулонного пресс-подборщика (например ПРП-1,6) (2) для формирования рулонов из стеблей льняной тресты повышенной влажности с равномерным распределением плотности в направлении от сердцевины к периферии, предназначенных для искусственной сушки льняной тресты в рулонах на сушильных установках с подводом теплоносителя со стороны комлевой поверхности рулона (3). Аналогично с помощью данного способа не представляется возможным настроить прессующую систему рулонного пресс-подборщика для льняной соломы в рулонах, предназначенных для промышленного приготовления (в мочильных баках) льнотресты в рулонах, когда сердцевина рулона должна быть менее плотной в сравнении с периферией. Последний момент важен для однородности вымочки соломы.

Прототипом заявляемому техническому решению является способ определении плотности материала в рулоне в плоскости его диаметрального сечения в направлении от периферии к сердцевине, по силе сопротивления внедрению в этой плоскости щупа в рулон, сравнению результатов измерения с эталонными значениями и по результатам сравнения определению плотности (4). Устройство для осуществления способа содержит последовательно соединенные датчик сопротивления, усилитель и индикатор.

Недостатком этого способа является низкая точность измерения плотности рулона, которая обусловлена значительной зависимостью результатов измерения от скорости движения щупа. Скорость движения щупа изменяется вследствие упругой деформации звеньев привода, буксования электродвигателя, возникающих при резком изменении плотности материала в рулоне из-за неоднородности подбираемой ленты стеблей (толстая, тонкая, пропуск ленты и т.п.), изменения сил трения наконечника щупа о стебли по причине изменения влажности стеблей в слоях рулона (верх подбираемой ленты менее влажный, чем низ, или наоборот).

Заявляемое изобретение направлено на устранение вышеотмеченных недостатков известного, и от его использования может быть получен следующий технический результат: повышение точности измерений. Указанный технический результат достигается за счет того, что измеряют силу сопротивления внедрению щупа в рулон в плоскости его диаметрального сечения в направлении от периферии к сердцевине и скорость движения щупа, сравнивают полученные результаты с эталонными значениями и по результатам сравнения определяют плотность рулона, устройство снабжено каналом для измерения скорости движения щупа, содержащим соединенные последовательно датчик скорости, усилитель и преобразователь частоты в напряжение, причем выход усилителя канала измерения силы сопротивления внедрению щупа и выход преобразователя частоты в напряжение подключены к индикатору через делитель напряжения.

На фигуре 1 изображено устройство для определения плотности рулона и структурная схема устройства, поясняющие сущность изобретения, на фигуре 2 - пример конкретного осуществления объекта изобретения.

Снабжение устройства каналом для измерения скорости движения щупа и делителем напряжения незначительно усложняет конструкцию в сравнении с прототипом, в то же время позволяет повысить точность измерений плотности.

Устройство для осуществления способа (фигура 1) состоит из наконечника 1 с датчиком силы 2, закрепленного в трубчатой рейке 3, приводимой в движение по направляющим 4 и 5 зубчатым колесом 6, соединенным с приводом, который для упрощения рисунка не показан. Устройство может быть стационарным и передвижным.

Канал для измерения силы сопротивления внедрению щупа в рулон образован соединенными последовательно датчиком силы (например, пьезоэлектрическим) 2, усилителем 7, делителем напряжения 8 и индикатором 9. Канал для измерения скорости движения щупа образован последовательно соединенными индуктивным датчиком частоты 10, установленным чувствительной поверхностью к зубьям рейки в плоскости вращения зубчатого колеса 6, усилителем 11 и преобразователем частоты в напряжение 12, выход которого подключен к делителю напряжения 8.

Устройство работает следующим образом. При вращении зубчатого колеса 6 трубчатая рейка 3 движется по направляющим 4 и 5. Вращение трубчатой рейки 3 в направляющих 4 исключается за счет соответствующих форм направляющих и сечения рейки (например, квадратный профиль рейки и квадратное отверстие в направляющих). Прогиб рейки 3 и выход колеса 6 из зацепления с зубьями рейки предотвращает направляющий элемент 5, который является упором и расположен напротив зубчатого колеса с противоположной стороны рейки 3. Наконечник 1 с датчиком силы 2 внедряется в рулон 13 по линии, проходящей через ось рулона в положении рулона, изображенном на фигуре 1. Упор 14 является препятствием для перекатывания или смещения рулона.

Сигнал с датчика силы 2 усиливается усилителем 7 и поступает на вход делителя напряжения 8. При взаимодействии индуктивного датчика частоты 10 с зубьями рейки 3 вырабатываются сигналы, которые усиливаются усилителем 11 и поступают на вход преобразователя частоты в напряжение 12. С выхода преобразователя 12 сигнал в виде напряжения подается на второй вход делителя напряжения 8. Усиление сигналов произведено так, что сигнал канала измерения силы сопротивления внедрению щупа всегда больше сигнала канала измерения скорости движения щупа. В делителе напряжения 8 происходит деление напряжений сигналов. Измеренное значение результатов деления отмечается индикатором 9.

На фигуре 2а приведены копии осциллограмм изменения силы F (в вольтах) сопротивления внедрению щупа в рулон по его диаметральному сечению D) (в метрах) в направлении от периферии к сердцевине при разных скоростях движения щупа: 1-0,5 м/с; 2-1,0 м/с; 3-1,5 м/с.

На фигуре 2в приведены копии осциллограмм изменения относительной величины - отношения величины силы сопротивления внедрению щупа в рулон по его сечению D в направлении от периферии к сердцевине к величине скорости движения щупа при тех же различных скоростях движении щупа.

Из приведенных зависимостей очевидна разница в показателях плотности, подтверждающей преимущественное отличие заявляемого объекта изобретения.

При сравнении заявляемого и противопоставляемого способа фактическое распределение плотности в рулоне из стеблей льняной тресты определялось послойно по мере разматывания рулона. Слои в рулоне разделялись шпагатом, закладываемым в рулон вместе с льнотрестой в процессе прессования рулона. При разматывании рулона измерялась длина окружности рулона после снятия каждого слоя стеблей. Из слоя стеблей вырезался участок слоя стеблей длиной 200 мм симметрично линии прохождения щупа. Путем взвешивания определялась масса вырезанных стеблей, а по вычисленным диаметрам и известной высоте вырезанного участка слоя проводилось вычисление вырезанного объема стеблей из каждого слоя рулона. Плотность определялась как частное от деления массы на объем. В результате проверки было установлено, что относительная ошибка заявляемого способа определения плотности не превышает 4,5%, что меньше ошибки измерения плотности противопоставляемым способом почти на 2%.

Источники информации

1. Глыбкин И.П. Автоматические плотномеры. К., 1965, с.612

2. Колесников Ю.А., Сапунков А.П. Пособие машиниста пресс-подборщика, - М.: Агропромиздат, 1985, 127 с.

3. Любарский В., Йонушасс 3., Микяленис С. Установка для сушки сырья «Лен и конопля», 1987, №5, с.37.

4. Особов В.И., Васильев Г.К, Сеноуборочные машины и комплексы. - М. Машиностроение, 1983, с.284.

1. Способ определения плотности рулона из стеблей лубяных культур, заключающийся в измерении силы сопротивления внедрению щупа в рулон в плоскости его диаметрального сечения в направлении от периферии к сердцевине, отличающийся тем, что измеряют силу сопротивления внедрению щупа в рулон в плоскости его диаметрального сечения в направлении от периферии к сердцевине и скорость движения щупа, сравнивают полученные результаты с эталонными значениями и по результатам сравнения определяют плотность рулона.

2. Устройство для осуществления способа по п.1, имеющее измерительный канал, содержащий последовательно соединенные датчик силы, усилитель и индикатор, отличающееся тем, что оно снабжено каналом для измерения скорости движения щупа, содержащим соединенные последовательно датчик скорости, усилитель и преобразователь частоты в напряжение, причем выход усилителя канала измерения силы сопротивления внедрению щупа в рулон и выход преобразователя частоты в напряжение подключены к индикатору через делитель напряжения.



 

Похожие патенты:

Изобретение относится к области инженерной геологии, в частности к определению физических свойств грунтов. .
Изобретение относится к способам тестирования устойчивости снежного покрова на лавиноопасных склонах горнолыжных комплексов с целью обеспечения безопасности проведения рекреационных мероприятий.

Изобретение относится к области инженерной геологии, в частности к определению физических свойств грунтов. .

Изобретение относится к измерительной технике и может быть использовано на замерных узлах газодобывающих и газотранспортных предприятий, при проведении исследований физических свойств газов и их смесей (в частности, топливных природных и попутных нефтяных) и в других случаях, где необходимо знание величины отступления поведения газа от идеального.

Изобретение относится к области исследований в мегабарной области давлений квазиизэнтропической сжимаемости газов, например водорода, дейтерия, гелия и т.д. .

Изобретение относится к способам определения физических характеристик лессового грунта и может быть использовано при измерении площади островов неоднородности грунта, плотности материала частиц грунта, размера и толщины слоев на разной глубине, анализе и оценке структуры грунта в геологии, климатологии, минералогии и строительстве.

Изобретение относится к измерительной технике, в частности к способу определения плотности и (или) массового расхода жидкостей (газов). .

Изобретение относится к способу детектирования собранного количества вещества в виде твердых частиц и устройству детектирования собранного количества. .

Изобретение относится к измерительной технике и может быть использовано на замерных узлах газотранспортных предприятий, узлах коммерческого учета поставляемого газа, участках первичной переработки газа и других объектах, где проводятся измерения объемного или массового расхода газа, обусловливающие необходимость измерения (вычисления) плотности газа в рабочих или стандартных условиях.

Группа изобретений относится к измерительной технике и может быть использовано для измерения плотности (в том числе локальной плотности) жидких сред и газовых сред. Способ измерения плотности заключается в полном погружении физического тела с определенными массой, объемом и магнитными свойствами в измеряемую среду и воздействии на него магнитным полем. Причем воздействие на физическое тело магнитным полем осуществляется в измеряемой среде в месте расположения тела. При этом величина и направление изменяются посредством контролируемого изменения физического параметра. Причем перед началом измерения значение этого физического параметра таково, что тело занимает положение устойчивого покоя во всем диапазоне измерения плотности, а по мере изменения вышеупомянутого физического параметра в процессе измерения, это положение покоя становится неустойчивым и тело скачкообразно переходит в новое положение устойчивого покоя при определенном значении этого физического параметра, регистрируемое в момент этого перехода. Причем однозначная функциональная зависимость в момент этого перехода между значением физического параметра и плотностью измеряемой среды позволяет определить значение плотности среды по зарегистрированному значению физического параметра. Техническим результатом изобретения является возможность измерения плотности в резервуарах по всей высоте имеющегося уровня жидкости и газов. 7 н.п. ф-лы, 2 ил.

Изобретение относится к точному приборостроению и может применяться для определения плотности и вязкости газообразных и жидких сред и может быть использовано в нефтехимической, химической и других отраслях промышленности. Датчик вибрационного плотномера содержит корпус, закрепленный в нем полый цилиндрический резонатор, омываемый с внутренней и наружной сторон и имеющий фланец с герметичной цилиндрической полостью под пьезоэлементы, отделенные от контролируемой среды и установленные в полости фланца резонатора. Круговая канавка на внутренней поверхности цилиндрического резонатора выполнена в зоне фланца. Расстояние от поверхности размещения возбуждающих и принимающих частоту пьезоэлементов до канавки равно или меньше толщины оболочки трубки резонатора. Шириной круговой проточки равна или больше толщины трубки. С наружной стороны цилиндра фланца от плоскости сопряжения торцов трубки резонатора и фланца имеется сплошная проточка. Расстояние от плоскости поверхности размещения пьезоэлементов до плоскости, формируемой сплошной проточкой на торце фланца, равно или меньше толщины оболочки трубки, а глубина равна или больше толщины оболочки цилиндра полости фланца. Техническим результатом является уменьшение механической связи фланца с трубкой резонатора, что позволяет повысить добротность резонатора и точность плотномера. 8 з.п. ф-лы, 10 ил.

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов, содержащихся в буровом растворе. Для определения весовой концентрации глинистого материала в образце пористой среды измеряют удельную активную поверхность глинистого материала и начальную удельную активную поверхность образца пористой среды. Закачивают водный раствор глинистого материала в образец, измеряют удельную активную поверхность образца пористой среды после закачки и рассчитывают весовую концентрацию nгл глинистого материала. Техническим результатом является обеспечение возможности измерения малой весовой концентрации глинистого материала, проникшего в поровое пространство в ходе прокачки глиносодержащего раствора.1 з.п.ф-лы,1 ил.

Изобретение относится к автоматизации технологического процесса флотации и может быть использовано для автоматического контроля технологических параметров процесса флотации - плотности, аэрированности пульпы и массовой концентрации твердого в пульпе. Устройство содержит измерительный буек, помещенный в успокоитель, который оснащен заслонкой в нижней его части. Измерительный буек подвешен к тензометрическому датчику силы, выход которого подключен на вход микроконтроллера. В устройство введен механизм перемещения, соединенный посредством тяги с заслонкой успокоителя. Механизм перемещения управляется микроконтроллером. Устройство работает циклически. Цикл работы начинается с измерения веса буйка при открытой нижней части успокоителя. При этом вычисляется плотность аэрированной пульпы, после чего заслонка под действием механизма перемещения закрывает нижнюю часть успокоителя, оставляя щель для выхода осаждающегося твердого. Пузырьки воздуха выходят из успокоителя и производится измерение веса буйка в деаэрированной пульпе, и вычисляется плотность деаэрированной пульпы. На основе значений плотности аэрированной и деаэрированной пульпы микроконтроллер проводит вычисление степени аэрированности пульпы - объемного количество воздуха в процентах в пульпе. Аналогично по соотвествующей формуле микроконтроллер осуществляет вычисление массовой концентрации твердого в пульпе. Информация о значениях плотности аэрированной и деаэрированной пульпы, а также степени аэрированности пульпы и массовой концентрации твердого в пульпе передается по цифровому каналу связи микроконтроллера на верхний уровень автоматизированной системы управления, а также в виде выходных аналоговых сигналов микроконтроллера на внешние приборы контроля. Управление устройством (просмотр текущих значений, настройка, ввод констант) осуществляется посредством дисплея и клавиатуры по графу в режиме «Меню». Техническим результатом является создание устройства для измерения плотности, степени аэрированности пульпы и массовой концентрации твердого в пульпе. 2 ил.

Изобретение относится к области изготовления изделий из проволочных, волокновых материалов. Предложены способы определения распределения плотности проволочного материала по объему изделия и установка. Установка для определения распределения плотности проволочного материала в объеме изделия содержит прозрачную емкость, заполненную дистиллированной водой. При этом в верхней части прозрачной емкости выполнен прилив с каналом, в котором герметично закреплена сменная мерная емкость со шкалой, протарированной в мм3 таким образом, что ось сменной мерной емкости расположена строго вертикально, а канал в приливе имеет наклон вниз. На наружной поверхности стенки прозрачной емкости по всему периметру стенки нанесена горизонтально расположенная риска, проходящая через нижнюю образующую выходного отверстия канала в стенке прозрачной емкости. Прозрачная емкость имеет четыре опоры, в которые с натягом по резьбе ввинчены винты с микрометрической резьбой. На каждый винт навинчена гайка-опора со сферической опорной поверхностью, положение которой на винте фиксировано контргайкой. При этом положение гаек-опор на винтах установлено таким образом, что прозрачная емкость установлена на плиту с горизонтальной шлифованной опорной поверхностью так, что риска на прозрачной емкости занимает строго горизонтальное положение, а зеркало водной поверхности по всему периметру риски совпадает с ней. На плите также установлен штатив с закрепленной на нем с возможностью смещения по вертикали подзорной увеличительной трубой с увеличением не менее десяти раз, на увеличительном стекле которой, обращенном к сменной мерной емкости, нанесена шкала высотой в один миллиметр, разделенный рисками на десять частей. На плиту также установлена опора с закрепленным на ней с возможностью вертикального смещения исследуемым изделием или эталоном, в основание которой ввинчены с натягом по резьбе четыре винта с микрометрической резьбой. На каждый винт навинчена гайка-опора со сферической опорной поверхностью, положение которой на винте фиксировано контргайкой, положение гаек-опор на винтах установлено таким образом, что риски на эталоне или изделии параллельны риске на прозрачной емкости, а при каждой операции, в результате которой в сменной мерной емкости изменяется объем вытесненной жидкости, подзорная увеличительная труба закрепляется по высоте в таком положении, что нижняя риска ее шкалы при взгляде в подзорную увеличительную трубу совмещается с нижней риской деления шкалы сменной мерной емкости, в котором располагается уровень вытесненной жидкости, а верхняя риска ее шкалы - с верхней риской этого деления. Техническим результатом является повышение точности определения распределения плотности проволочного материала в объеме изделия, возможность определения аномалий или дефектов в структуре проволочного материала упругогистерезисного элемента изделия без его разрушения. 2 н. и 5 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к денситометрам (плотномерам), а более конкретно к вибрационному денситометру с улучшенным вибрирующим элементом. Устройство содержит вибрирующий элемент (402). Вибрирующий элемент (402) предназначен для вибрационного денситометра (400). Вибрирующий элемент включает в себя одно или более отверстий (420). Одно или более отверстий (420) имеют определенные размеры и расположены в вибрирующем элементе (402) для увеличения разнесения частот между резонансной частотой желательной вибрационной возбуждаемой моды и резонансной частотой одной или более нежелательных вибрационных мод. Техническим результатом является повышение точности за счет разделения вибрационных мод. 2 н. и 14 з.п. ф-лы, 8 ил.

Изобретение относится к методам исследования пористой структуры разнообразных природных и искусственных пористых объектов и может быть использовано в тех областях науки и техники, где они исследуются или применяются. Сущность изобретения заключается в применении трех последовательных циклов снятия кривых вытеснения жидкости из образца в методе центробежной порометрии при трех значениях толщины образца. Первая порограмма снимается для экспериментально подбираемой толщины образца-d1, при которой после полного цикла центрифугирования остается не вытесненный из образца объем жидкости Vост. Вторая порограмма снимается после уменьшения толщины образца до значения d2=d1(V0-Vост)/ V0 (где V0 - полный объем пор). Третья порограмма снимается для толщины образца d3=d2/2. Для каждой порограммы получают дифференциальную кривую распределения радиусов пор. Техническим результатом является то, что положения максимумов всех трех дифференциальных кривых распределения радиусов пор дают более точную картину реального спектра пор исследуемого объекта. 1 табл., 2 ил.

Изобретение относится к области измерения плотности изделий с использованием рентгеновского излучения. Способ радиационного измерения плотности твердых тел путем облучения контролируемого объекта проводят потоком широкополосного рентгеновского излучения, регистрируется практически все обратнорассеянное излучение, и определение плотности осуществляется по полученным данным из спектров обратнорассеянного излучения, которое регистрируют одновременно в каждом из двух детекторов, определяют функцию распределения обратнорассеянного излучения в зависимости от энергии для каждого из детекторов, корректируют в соответствии с изменением геометрии при движении, выделяют энергетические диапазоны в спектре обратнорассеянного излучения, получают интегральные характеристики обратнорассеянного рентгеновского излучения в каждом энергетическом диапазоне, на основе которых по математическим моделям зависимости интегральных характеристик от плотности при различных энергиях излучения устанавливают плотность объекта контроля, которая описывается для каждого из каналов (детекторов). В устройстве мобильный рентгеновский плотномер, включающем в себя источник гамма-излучения в радиационной защите и детекторы, используется бесконтактный метод определения плотности, и в качестве источника используют сформированное широкополосное излучение панорамного рентгеновского генератора, а в качестве детекторов - два энергодисперсионных детектора для определения спектрального распределения обратнорассеянного излучения, в устройство дополнительно введены два датчика расстояния для учета влияния изменения геометрии в процессе измерения при движении. Технический результат - повышение быстродействия, повышение точности и производительности измерения. 2 н.п. ф-лы, 1 ил.

Устройство предназначено для измерения параметров оседания частиц в текучей среде, в частности в буровых растворах. Устройство представляет собой емкость в виде полого цилиндра, состоящего из двух соосно расположенных цилиндрических частей (1, 2), первая из которых имеет дно, а вторая герметично соединена с первой частью (1) посредством разъемного соединения. Вторая часть (2) емкости в зоне ее торца, обращенного в сторону первой части (1), содержит подвижную перегородку (8), например в виде ирисового клапана, который позволяет герметично отделить внутренний объем первой части (1) от внутреннего объема второй части (2) для определения разности плотностей нижней и верхней частей отстоявшегося в течение определенного времени бурового раствора. Технически результатом является разработка простого и надежного устройства, позволяющего получать достоверные результаты измерений параметров текучих сред вне зависимости от размеров и вида твердых частиц, содержащихся в этих текучих средах. 3 з.п. ф-лы, 3 ил.

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит миниатюрное турбулентное сужающее устройство, вход которого связан через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки, и выходом измерительной камеры индикатора давления, одна из стенок которой выполнена в виде упругой мембраны, а ее вход соединен через вентиль с линией анализируемого газа. Также анализатор содержит пневмотумблер, подключенный к выходу турбулентного сужающего устройства, шприц, входной канал которого соединен с выходным каналом камеры для сжатия анализируемого газа, а корпус снабжен штуцером, местоположение которого обусловлено возможностью образования из шприца проточной камеры при максимальном выдвижении поршня, измеритель временных интервалов с включающим и выключающим входами. При этом анализатор дополнительно содержит пьезорезистивный преобразователь силы в электрический сигнал, возникающей на упругой мембране, электронные компараторы максимального и минимального сигналов пьезорезистивного преобразователя и емкость с охлаждающей жидкостью, в которой размещена камера для сжатия анализируемого газа. Причем выход пьезорезистивного преобразователя соединен с входами компараторов, выход компаратора максимального сигнала пьезорезистивного преобразователя подключен к включающему входу измерителя временных интервалов, а выход компаратора минимального сигнала пьезорезистивного преобразователя подключен к выключающему входу этого измерителя. Техническим результатом является увеличение точности измерения плотности газа. 1 ил.
Наверх