Способ определения координат воздушных объектов при пассивной бистатической радиолокации

Изобретение предназначено для определения координат воздушных объектов (ВО) по сигналам системы радиолокационного опознавания (РЛО) при отсутствии приема сигналов радиолокационных запросчиков (РЛЗ), местоположение которых известно. Новым является обнаружение по временной структуре излучений РЛЗ системы РЛО пачек сигналов бортового ответчика (БО) с неизвестным местоположением, 1-й из которых выбирают в качестве «опорного», экстраполяция моментов приема его сигналов, выделение пачек сигналов j-го БО с известным местоположением, вычисление времени задержки распространения сигналов «РЛЗ - j-й БО - пункт приема (ПП)» и «РЛЗ - ПП» с последующим переходом к экстраполяции моментов приема сигналов РЛЗ, определение координат ВО через значения параметров двух линий положения - эллиптической и линии постоянного пеленга с позиции РЛЗ. Достигаемый технический результат - обеспечение непрерывного определения координат ВО при отсутствии приема сигналов РЛЗ и упрощение технической реализации за счет использования двух линий положения вместо трех. 2 ил.

 

Способ определения координат воздушных объектов при пассивной бистатической радиолокации относится к радиотехнике и предназначен для использования в средствах вторичной радиолокации.

Известны способы определения координат воздушных объектов (ВО) при пассивной бистатической радиолокации, в которых используются сигналы радиолокационных запросчиков (РЛЗ) и бортовых ответчиков (БО) систем радиолокационного опознавания (РЛО) Mk11/Mk12 и вторичной радиолокации (ВРЛ) ATCRBS (далее системы РЛО/ВРЛ). В данных системах передача данных о местоположении ВО не предусматривалась. Однако в последнее время в систему ВРЛ был дополнительно введен и получил широкое развитие режим адресного опознавания ВО (режим Mode S), использующий рабочие частоты систем РЛО/ВРЛ. В данном режиме все БО передают индивидуальные данные, а также координаты ВО гражданского назначения. Поэтому задача определения координат ВО военного назначения остается по-прежнему актуальной.

Согласно известным способам [«Разнесенные радиолокационные станции и системы». - В.Е. Аверьянов. Минск, Наука и техника, 1978 г., с.27-31]., «Способ определения координат объектов при пассивной бистатической радиолокации». Г.Н. Верещагина, С.В. Ефимов, В.О. Козьев, патент RU №2196342 G01S 5/00, 05.02.2001]

местоположение ВО определяют точкой пересечения двух линий положения (ЛП): эллиптической L и линии постоянного пеленга ВО - β с позиции РЛЗ, или с пункта приема (ПП) - α. Все способы реализуются при известном местоположении РЛЗ, выбираемом в качестве «опорного» (далее РЛЗ).

Согласно способу [«Разнесенные радиолокационные станции и системы». - В.Е.Аверьянов. Минск, Наука и техника, 1978 г., с.27-29] принимают радиоимпульсные сигналы БО и РЛЗ, местоположение которого известно, измеряют моменты их приема, определяют время задержки т между запросным и ответным сигналом и разность моментов приема центров пачек сигналов, формируемых БО, и поступивших в ПП. Для определения координат ВО используют значения параметров двух линий положения (ЛП): эллиптической - L и линии постоянного пеленга ВО с позиции РЛ3-β определяемого по разности моментов приема пачки сигналов БО и РЛЗ. Для определения значений τ моменты приема сигналов РЛЗ экстраполируют на период вращения его антенны.

Основным недостатком способа является отсутствие возможности определения местоположения ВО, если сигналы РЛЗ энергетически недоступны.

Из известных способов наиболее близким к заявляемому изобретению является, выбранный в качестве прототипа [«Способ определения координат объектов при пассивной бистатической радиолокации». Г.Н. Верещагина, С.В. Ефимов, В.О. Козьев, патент RU №2196342 G01S 5/00, 05.02.2001]. Способ реализуется при энергетической недоступности к сигналам РЛЗ. Однако он имеет существенные ограничения по применению:

- определяются координаты только тех ВО и тогда, когда они одновременно облучаются сигналами РЛЗ;

- для вычислений используются (вместо двух) значения трех параметров: разность эллиптических ЛП - ∆L, разность линий постоянных пеленгов с позиции РЛ3-∆β и линий постоянного пеленга с ПП - α, для измерения значения которых необходимо использовать достаточно сложный в техническом исполнении всенаправленный моноимпульсный пеленгатор.

Задачей предлагаемого способа является непрерывное определение координат ВО при отсутствии приема сигналов РЛЗ системы РЛО, а также упрощение технической реализации способа за счет использования двух ЛП - эллиптической и линии постоянного пеленга с позиций РЛЗ, местоположение которых известно.

Указанная задача достигается тем, что в известном способе, основанном на измерении моментов приема и обнаружении пачек сигналов БО с неизвестными координатами, вычислении разности моментов приема сигналов двух БО, согласно изобретению, обнаруживают пачки сигналов БО с неизвестными координатами, временная структура излучений которых соответствует временной структуре излучений РЛЗ системы РЛО, экстраполируют моменты приема сигналов i-го БО, выбранного в качестве «опорного», обнаруживают путем синхронной обработки экстраполируемых значений и моментов приема сигналов БО пачки сигналов j-го БО с известными координатами, определяют время задержки τij между сигналами i-го и j-го БО, вычисляют по известным местоположениям ПП, РЛЗ и j-го БО время задержки τj распространения сигналов по путям «РЛЗ - j-й БО - ПП» и «РЛЗ - ПП» и переходят к экстраполяции моментов приема сигналов РЛЗ путем смещения экстраполированных моментов приема сигналов «опорного» БО на величину (τjij), определяют координаты энергетически доступных n-х БО, отвечающих на запросы РЛЗ, через значения параметров эллиптической линии положения Ln и линии постоянного пеленга с позиции РЛ3-βn, по формулам

где Xn, Yn - координаты ВО в прямоугольной системе с центром в ПП и направлением оси Y на РЛЗ,

b - расстояние «РЛЗ-ПП», с - скорость распространения радиоволн, τn - время задержки между моментами приема сигналов n-го БО и экстраполированными моментами приема сигналов РЛЗ, - время приема центра пачки сигналов n-го БО, tцэз - экстраполированный момент приема центра пачки сигналов РЛЗ, Та - период следования пачек сигналов «опорного» БО.

Сравнительный анализ с прототипом и известными способами определения координат при пассивной бистатической радиолокации позволяет сделать вывод о том, что заявляемый способ отличается наличием новых операций над сигналами, обнаружением пачек сигналов БО с неизвестными координатами, временная структура излучений которых соответствует временной структуре излучений РЛЗ системы РЛО, экстраполяцией моментов приема сигналов i-го БО, выбранного в качестве «опорного», обнаружением путем синхронной обработки экстраполируемых значений и моментов приема сигналов БО пачек сигналов j-го БО с известными координатами, определением времени задержки τij между сигналами i-го и j-го БО, вычислением по известным местоположениям ПП, РЛЗ и j-го БО времени задержки τj распространения сигналов по путям «РЛЗ - j-й БО - ПП» и «РЛЗ- ПП» и переходом к экстраполяции моментов приема сигналов РЛЗ путем смещения экстраполированных моментов приема сигналов «опорного» БО на величину (τjij), определением координат энергетически доступных n-х БО, отвечающих на запросы РЛЗ, через значения параметров эллиптической линии положения Ln и линии постоянного пеленга с позиции РЛЗ-βn, по формулам (1-4).

Таким образом, изобретение соответствует критерию «Новизна».

Изобретение для специалистов не следует явным образом из уровня техники и соответствуют критерию «Изобретательский уровень».

Изобретение может использоваться в разнесенных радиолокационных станциях для определения местоположения неопознанных воздушных объектов и соответствует критерию «Промышленная применимость».

На фиг.1 представлена структурная схема устройства, реализующего предлагаемый способ определения координат воздушных объектов при пассивной бистатической радиолокации, на фиг.2 - блок-схема алгоритма обработки сигналов бортовых ответчиков систем РЛО/ВРЛ и определения координат ВО.

Согласно способу обнаруживают пачки сигналов БО с неизвестными координатами, временная структура излучений которых соответствует временной структуре излучений РЛЗ системы РЛО, из них выбирают пачки сигналов i-го БО, экстраполируют моменты приема его сигналов на интервалах времени между приемом очередных пачек, обнаруживают пачки сигналов j-го БО с известными координатами, определяют время задержки τij между сигналами i-то и j-го БО, вычисляют по известным местоположениям ПП, РЛЗ и j-го БО время задержки τj распространения сигналов по путям «РЛЗ - j-ый БО - ПП» и «РЛ3- ПП», смещают экстраполированные моменты приема сигналов «опорного» БО на величину (τjij) и экстраполируют моменты приема сигналов РЛЗ, определяют координаты энергетически доступных n-х БО.

Способ реализуют с учетом порядка функционирования систем РЛО/ВРЛ.

БО ВО с неизвестными координатами формируют сигналы радиолокационного опознавания системы РЛО в режимах «1», «2», «3/А», «С» в течение интервала времени их облучения сигналами РЛЗ по правилу "один запрос - один ответ" и излучают их в круговом секторе пространства. Поэтому в ПП они поступают сериями с периодичностью, обусловленной скоростью вращения антенны РЛЗ, а временная структура их следования определяется интервалами следования запросов. БО ВО гражданского назначения формируют ответы в системе РЛО только в режимах запроса индивидуальных номеров «3/А» и высоты полета «С», что приводит к несоответствию между временными структурами излучений РЛЗ и БО.

В режиме Mode S излучаются адресные запросы по мере необходимости, при этом ответ формирует БО, которому адресован запрос. Адресные запросы позволяют получать информацию об индивидуальных номерах всех ВО, а также координаты ВО гражданского назначения с точностью до 30 метров не менее 1 раза в 5 секунд. Поэтому координаты гражданского ВО могут быть достаточно точно (до 100 м) восстановлены в момент формирования бортовым ответчиком сигналов в режимах запроса «3/А» и «С» системы РЛО.

Совпадение временных структур излучений РЛЗ и БО, отвечающих в режимах запроса «1», «2», «3/А», «С» системы РЛО, позволяет экстраполировать вместо моментов приема сигналов РЛЗ моменты приема сигналов одного из этих БО, далее по известному местоположению БО с известными координатами, отвечающего данному РЛЗ только в режимах запроса «3/А», «С», определить моменты приема сигналов РЛЗ в этих режимах и перейти от экстраполяции моментов приема сигналов «опорного» БО к экстраполяции моментов приема сигналов РЛЗ в режимах запроса «1», «2», «3/А», «С», далее вскрыть местоположение всех ВО с неизвестными координатами.

Устройство (фиг.1), реализующее способ, осуществляет непрерывный прием сигналов БО систем РЛО/ВРЛ устройством 1-РПУ СБО, их преобразование в значения ответных кодов в режимах опознавания «1», «2», «3/А», «С» декодером ответных сигналов опознавания 2 - ДОСО и декодером ответных сигналов в режиме Mode S 3 - ДОС Md S, измерение моментов приема сигналов, прошедших через декодеры, измерителями времени 4 - ИВ СО и 5 - ИВ Md S. Значения моментов приема сигналов БО, а также выходные данные декодеров регистрируются в буферных запоминающих устройствах 6 - БЗУ СО и 7 - БЗУ Md S и с некоторым заданным интервалом времени передаются через интерфейс 8 Иф в персональный компьютер 9 ПК на дальнейшую обработку.

Процедура обработки (фиг.2) включает формирование в блоке 02 массивов данных по сигналам систем РЛО/ВРЛ<MtCd>:=<td, Cdd>, включающих моменты приема td ответных кодов Cdd в режимах запросов «1», «2», «3/А», «С» и массивов данных в режиме Mode S<MstCd>:=<tds, Cdds>, включающих моменты приема tds сообщений Cdds. Длительность интервала времени наблюдения (не менее 30 секунд) выбирают достаточной для того, чтобы антенна РЛЗ системы РЛО совершила не менее 3-х оборотов по азимуту. Путем корреляционной обработки моментов приема сигналов БО системы РЛО в режимах запроса «1», «2», «3/А», «С» и априорно известной детерминированной временной структурой излучений РЛЗ:

где ∆Tn - n-е интервалы следования сигналов РЛЗ в порядке их чередования по циклу N, N - количество интервалов следования за период вобуляции равный , обнаруживают пачки сигналов БО с интервалами следования, соответствующими временной структуре <∆Tn> (блоки 03, 04). Если априори временная структура излучений РЛЗ неизвестна, то ее определяют на этапе предварительного анализа путем автокорреляционной обработки интервалов следования ответных сигналов системы РЛО. Условием обнаружения пачки сигналов (блок 04) является выполнение неравенств:

где tpl и tpl+1 - моменты приема соседних l-х сигналов в пачке, Sto - строб обнаружения; Nsp - общее количество сигналов в пачке, N«1-C» - количество одинаковых ответных кодов в режимах опознавания «1», «2», 3/А», «С».

Далее в качестве «опорного» выбирают i-й БО с неизвестными координатами и индивидуальным номером NBi, который отвечает на каждом обороте антенны РЛЗ, т.е. количество пачек сигналов Р, содержащих ответный код NBi должно отвечать условию

Если «опорный» БО по условиям (6-9) не обнаружен, то с блока 04 без выполнения операций блока 05 переходят к блоку 06. Если «опорный» БО обнаружен, то в блоке 05 моменты приема сигналов «опорного» БО экстраполируют. Для этого по начальной пачке сигналов, начиная с первой, формируют выборку интервалов следования <∆tэl>, сумма которых кратна периоду вобуляции:

где - целая часть - коэффициент кратности, kN=k·N,

и многократным повторением выборки формируют массив <tэz>:

где tэ1 - первый экстраполируемый момент времени, совпадающий с началом пачки сигналов tp1,

2 и tэz - второй и z-й экстраполируемый момент времени, соответственно, z=q·kN+l переменная, в которой начальные значения q:=0, l:=1, а текущие значения z изменяют по правилу: l:=l+1, при l>kN устанавливают l:=1, q:=q+1,

z - последний экстраполируемый момент времени, совпадающий с моментом приема первого сигнала последующей (р+1)-й пачки.

Путем синхронной обработки массива <tэz> - и моментов приема ответных кодов массива<MtCd>вычисляют время задержки τdz=td-tэz и группируют сигналы БО по разности задержек ∆τdz в пачки сигналов по условию

где ∆τdzdzd+ν,z+w; ν и w индексы, определяющие изменения значений d и z, Stτ- строб обнаружения по задержке.

Формирование массива <tэz> осуществляют до момента выделения очередной пачки сигналов «опорного» БО, содержащей индивидуальный номер NBi и отвечающей условиям (6-8). Далее процедуру экстраполяции продолжают на интервалах следования пачек синхронно интервалам следования сигналов в обнаруженной пачке сигналов. В блоке Об принимают решение об обнаружении пачек, если выполняется условие (9), определяют моменты приема центров р-х пачек - tцip и значение интервалов их следования Taip:

вычисляют среднее значение периода вращения антенны РЛ3-Та:

где Pi - количество принятых пачек «опорного» БО за интервал времени наблюдения.

Далее в блоке 07 формируют пачки сигналов, принадлежащих j-м БО с известными координатами, путем группирования сигналов по условию (12). Пачку сигналов считают обнаруженной (блок 08), если пропущено подряд не более 3-х ответов (в режимах запроса «1», «2»), а количество одинаковых значений ответных кодов NNGj, соответствующих одному из индивидуальных номеров NGj в режиме запроса «3/А», - более 3-х, т.е. выполняются условия

где ∆Tmax - максимальное значение интервала следований сигналов РЛЗ.

В каждой из p пачек сигналов j-то БО выделяют моменты приема сигналов tpd(∈NGj) с ответным кодом NGj и определяют (блок 09):

- усредненное значение времени задержки сигналов τij между tpd(∈NGj) и соответствующим ему tэz:

- по известным местоположениям РЛЗ, ПП и ВО - время задержки распространения сигналов τj по путям «РЛЗ - j-ый БО - ПП» и «РЛ3-ПП» по формуле

где r- индекс соответствующего расстояния;

- значение смещения ∆tiсм,

где

Далее формируют последовательность <tэзz> экстраполируемых моментов приема сигналов РЛЗ в ПП:

Повторив процедуру группирования сигналов БО по задержке по условию (12) относительно моментов времени, определяемых последовательностью <tэзz>, в блоке 10 выделяют пачки сигналов n-х БО, в том числе и не отвечающих на запросы РЛЗ в режиме Mode S. Условием обнаружения n-х БО, является последовательное выполнение неравенств (6-9).

В блоке 11 по формулам (1-4) вычисляют значения параметров ЛП и координаты всех ВО, БО которых отвечают РЛЗ в режимах запроса «1», «2», «3/А», «С».

Процедуру определения координат ВО, если они не отвечают выбранному РЛЗ (блок 04), а также не обнаружены пачки сигналов i-го (блок 06) или j-го БО (блок 08), можно продолжить (блок 12), используя другой РЛЗ с детерминированной временной структурой излучений и известными координатами. Процедуру определения значений параметров ЛП и координат ВО, отвечающих вновь выбранному РЛЗ, повторяют (блоки 04-11). По завершению обработки накопленных данных определение координат продолжают с новыми накопленными данными путем экстраполяции моментов приема уже выбранного «опорного» БО (блоки 02, 04-11) или осуществляют его замену в блоке 05 на другой, выделив пачки сигналов со значением ответного кода NB≠NBi.

Таким образом, сформулированная задача непрерывного определения координат ВО при отсутствии приема сигналов РЛЗ системы РЛО, а также упрощения технической реализации способа за счет использования двух параметров ЛП - эллиптической и линии постоянного пеленга с позиций РЛЗ, местоположение которых известно, решается с помощью предлагаемого способа.

Способ определения координат воздушных объектов (ВО) при пассивной бистатической радиолокации, основанный на измерении моментов приема и обнаружении пачек сигналов бортовых ответчиков (БО) с неизвестными координатами, вычислении разности моментов приема сигналов двух БО, отличающийся тем, что обнаруживают пачки сигналов БО с неизвестными координатами, временная структура излучений которых соответствует временной структуре излучений радиолокационного запросчика (РЛЗ) системы радиолокационного опознавания (РЛО), экстраполируют моменты приема сигналов i-го БО, выбранного в качестве «опорного», обнаруживают путем синхронной обработки экстраполируемых значений и моментов приема сигналов БО пачки сигналов j-го БО с известными координатами, определяют время задержки τij между сигналами i-го и j-го БО, вычисляют по известным местоположениям пункта приема (ПП), РЛЗ и j-го БО время задержки τj распространения сигналов по путям «РЛЗ - j-й БО - ПП» и «РЛЗ-ПП» и переходят к экстраполяции моментов приема сигналов РЛЗ путем смещения экстраполированных моментов приема сигналов «опорного» БО на величину (τjij), определяют координаты энергетически доступных n-x БО, отвечающих на запросы РЛЗ, через значения параметров эллиптической линии положения Ln и линии постоянного пеленга с позиции РЛЗ-βn, по формулам

где Xn, Yn - координаты ВО в прямоугольной системе с центром в ПП и направлением оси Y на РЛЗ,
Ln=cτn, ,
b - расстояние «РЛЗ-ПП», с - скорость распространения радиоволн, τn - время задержки между моментами приема сигналов n-го БО и экстраполированными моментами приема сигналов РЛЗ, - время приема центра пачки сигналов n-го БО, tцэз - экстраполированный момент времени приема центра пачки сигналов РЛЗ, Та - период следования пачек сигналов «опорного» БО.



 

Похожие патенты:

Изобретение относится к системам отслеживания, выполненным с возможностью отслеживать продукт и/или деятельность. Технический результат заключается в уменьшении искажений и фальсификаций в системе отслеживания.

Изобретение относится к навигационному приборостроению, в частности к устройствам совместной обработки результатов измерения курса ГНСС-компасом и гирогоризонткомпасом, и может быть использовано в навигационных комплексах мобильных средств (МС).

Изобретение относится к области приборостроения и может быть использовано при организации безопасного и удобного способа складирования в автоматизированных системах обработки и хранения грузов (AS/RS).

Изобретение относится к системам спутникового контроля (СРК). .
Изобретение относится к измерительной технике, а именно к зрительной навигации в прибрежной полосе моря. .

Изобретение относится к области радиолокации и вычислительной техники. .

Изобретение относится к области навигации. .

Изобретение относится к системам определения относительного местоположения. .

Изобретение относится к области радионавигации и может быть использовано для координатной привязки объектов с сантиметровой точностью, для определения угловой ориентации объектов, а также для синхронизации измерительных комплексов с использованием сигналов спутниковых радионавигационных систем (СРНС) GPS и ГЛОНАСС.

Изобретение относится к области радиотехники, а именно к беспроводной связи, и может быть использовано в системе определения местоположения. Технический результат заключается в предоставлении информации, применимой для выполнения операций определения местоположения для обеспечения возможности определения местоположения. Для этого устройство может определять, предоставлять ли в пакете информацию, применимую для определения местоположения, и если определено, что информация определения местоположения будет предоставлена в пакете, информация заголовка в пакете может быть сконфигурирована для указания на то, что пакет содержит информацию определения местоположения, и для указания типа этой информации. Затем указанная информация может быть включена в передаваемый пакет. Если пакет является пакетом объявления, этот пакет может быть передан по каналу объявления. Затем устройство, осуществляющее поиск сигналов, может принять пакет и на основе информации заголовка в пакете определить, содержит ли пакет информацию определения местоположения. Если определено, что пакет содержит информацию определения местоположения, определение местоположения в устройстве, осуществляющем поиск сигналов, может быть сконфигурировано на основе информации заголовка, и определение местоположения может быть выполнено в устройстве, осуществляющем поиск сигналов, на основе информации определения местоположения, содержащейся в пакете. 7 н. и 10 з.п. ф-лы, 15 ил.

Изобретение относится к области определения местоположения источников радиоизлучений. Достигаемый технический результат изобретения - определение координат местоположения источника радиоизлучения известной интенсивности в пассивном режиме в условиях отсутствия взаимной временной синхронизации пунктов приема. Указанный результат достигается за счет того, что, по крайней мере, в трех взаимно удаленных пунктах приема измеряются уровни радиосигнала от источника радиоизлучения с известными энергетическими характеристиками, характеризующими величину затухания сигнала в канале распространения, затем по величине этого затухания рассчитывается расстояние от объекта излучения до каждой из приемных станций и, используя координатную информацию о местоположении приемных станций, осуществляется расчет координат объекта радиоизлучения. Устройство определения декартовых координат источника радиоизлучения включает в себя по каждому пункту приема ненаправленный антенный датчик типа полуволновой вибратор; радиоприемник с аналого-цифровым преобразователем на выходе; измерители энергии или амплитуды принятого сигнала; вычислитель расстояния до источника радиоизлучения и один объединяющий данные по пунктам приема вычислитель координат источника радиоизлучения. Координаты источника радиоизлучения рассчитываются по формулам, приведенным в тексте описания изобретения. 2 н.п. ф-лы, 2 ил.

Изобретение может быть использовано в загоризонтных радиолокаторах. Достигаемый технический результат - повышение точности измерения высот и упрощение устройства. Указанный результат достигается за счет того, что заявленное устройство содержит синхронизатор, импульсный передатчик, антенный переключатель, приемник, датчик азимута, датчик угла места, селектор по амплитуде и длительности преобразователя дальности, блок вторичной обработки, индикатор, вычитатель следующих друг за другом дальностей, дешифратор, сумматор, датчик половины ширины диаграммы по углу места и блок элементов совпадения, определенным образом соединенные между собой. 2 ил.

Изобретения могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности измерения углов крена, азимута и тангажа ЛА. Технический результат достигается тем, что учитываются меняющиеся во времени набеги фаз в аналоговых частях приемных трактов измерителя. Для этого изменяют порядок формирования элементов матрицы измерений, а именно вычисляют разности фаз между соответствующими эталонными и измеренными разностями фаз сигналов от S космических аппаратов (КА) с априорно известным местоположением, назначают в качестве опорных разностные сигналы одного из S обнаруженных КА, находят разность разности между разностными сигналами S-1 КА и соответствующими разностными сигналами опорного КА, возводят их в квадрат и суммируют по всем возможным парам антенных элементов и всем S-1 КА. Устройство определения угловой ориентации ЛА, реализующее способ, содержит M идентичных приемных каналов, где M≥4, блок формирования опорных сигналов, тактовый генератор, S корреляторов, S блоков анализа, S+1 коммутатор, блок начальной установки корреляторов, 2S блоков вычитания, два блока памяти, вычислитель-формирователь, блок управления, дешифратор, блок индикации, три входные установочные шины, радионавигатор и антенный элемент определенным образом соединенные между собой. 2 н.п. ф-лы, 13 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах с подвижными пунктами приема, устанавливаемыми, например, на летательных аппаратах. Способ включает периодический прием радиосигналов источника одновременно не менее чем в двух пространственно разнесенных подвижных пунктах приема, синхронно с этим измерение собственных координат и параметров вектора скорости движения, с последующей передачей их и принятых радиосигналов на центральный пункт и определением местоположения источника радиоизлучения. На центральном пункте в каждом из периодов приема рассчитывают доплеровские сдвиги частот и взаимные запаздывания моментов прихода электромагнитных волн из мест возможного положения источника в пункты приема с учетом их измеренных собственных координат и параметров вектора скорости, измеряют энергию принятых радиосигналов, для различных пар радиосигналов определяют среднее геометрическое энергии, измеряют значения модуля комплексных взаимных корреляционных функций в точках расчетных запаздываний и доплеровских сдвигов частот, которые вычитают из среднего геометрического энергии, затем по совокупности различных пар радиосигналов и периодов приема полученные разности усредняют и по минимуму этих усредненных значений определяют местоположение источника радиоизлучения. Достигаемый технический результат - расширение области применения при произвольном числе пунктов приема и интервалов времени движения с увеличением точности определения координат до потенциального предела. 7 ил.

Изобретение относится к вычислительной технике и может быть использовано при формировании эталонной информации (изображений) для корреляционно-экстремальных навигационных систем летательных аппаратов (ЛА). Техническим результатом является повышение эффективности планирования и подготовки полетных заданий летательных аппаратов. Устройство автоматизированного формирования эталонной информации для навигационных систем содержит: блоки памяти, сумматоры, регистры, блоки сравнения группы, коммутаторы группы, блоки элементов И/ИЛИ, дешифраторы, счетчики, блоки задержки, генератор тактовых импульсов, триггер, логический блок подготовки яркостных эталонов, включающий блок преобразования исходных картографических данных, аэрофотоснимков и космоснимков, формирователь одноканального или многоканального поля информативности, блок поиска экстремумов поля информативности, блок сопоставления экстремумов поля информативности каждого из каналов, блок расчета эталонных изображений, блок буферной памяти и связи между указанными элементами. 2 ил.

Изобретение относится к радиопеленгации и может быть использовано в комплексах радиоконтроля для определения местоположения источников излучения коротковолнового диапазона с ионосферным распространением радиоволн. Достигаемый технический результат - расширение функциональных возможностей. Указанный результат достигается тем, что включает определение высоты ионосферных слоев и критических частот, прием радиосигналов с помощью пространственно разнесенных пеленгаторных антенн и приемников, определение пеленга и дальности до источника излучения при этом, предварительно для точек возможного положения источника по дальности рассчитывают число и углы места прихода лучей, удовлетворяющих условиям отражения от ионосферных слоев с учетом их высоты, критических частот и длины волны излучения. Затем для каждого из лучей, их расчетных углов места, возможных значений пеленга рассчитывают набеги фаз сигналов в антеннах, после чего в принятых радиосигналах компенсируют радиосигналы источника с учетом расчетных набегов фаз. Скомпенсированные сигналы квадратично детектируют и усредняют по совокупности антенн, а пеленг и дальность до источника излучения определяют по минимуму результатов усреднения, взвешенных пропорционально числу лучей. 8 ил.

Изобретение относится к области навигационного приборостроения морских подвижных объектов. Достигаемый технический результат изобретения - повышение точности и помехоустойчивости системы. Указанный результат достигается тем, что заявленная система содержит бескарданный инерциальный измерительный модуль (БИИМ) с измерительным блоком на инерциальных датчиках (микромеханических гироскопах, акселерометрах низкой точности) и магнитометрах, а также приемную аппаратуру спутниковой навигационной системы (ПА СНС) с фазовыми измерениями и разнесенными на соответствующей базе антеннами при выработке курса объекта. При этом в измерительный блок БИИМ дополнительно включают волоконно-оптический гироскоп навигационного класса точности с измерительной осью, ортогональной плоскости палубы, причем БИИМ, кроме параметров ориентации (курс и углы качки), осуществляет дополнительно выработку составляющих вектора линейной скорости и координат места объекта. В вычислительный модуль системы дополнительно поступают данные от судового лага для формирования совместно с данными от блока магнитометров соответствующих разностных измерений и их обработки с целью реализации автономного режима работы системы; при этом в вычислительном модуле системы дополнительно осуществляют оценку погрешностей БИИМ по составляющим вектора линейной скорости, а также оценку дрейфов микромеханических гироскопов и волоконно-оптических гироскопов (ВОГ) и их подачу по обратной связи в БИИМ для коррекции.8 ил.

Способ предназначен для определения оценок местоположения объектов на дорожной сети (ДС). Достигаемый технический результат - обеспечение возможности однозначного определения подвижного объекта, привязанного к ДС. Сущность изобретения состоит в следующем. Измеряют угол прихода электромагнитной волны (пеленг) αизм(t) от объекта из одного измерительного пункта (ИП), положение которого известно, при этом сигналы, излучаемые объектом, содержат его опознавательный код. Одновременно с излучением сигнала на объекте измеряют скорость νизм его перемещения вдоль элемента дорожной сети (ЭДС). Сигнал, пропорциональный измеренной скорости, кодируют и полученный код передают по радиоканалу передачи данных на ИП, на котором после приема и декодирования получают значение измеренной скорости. Через интервал времени длительностью Δt повторно измеряют пеленг αизм(t+Δt), идентифицируя его по опознавательному коду объекта. Определяют длину пройденного пути Δe=Δtνизм за время Δt. По измеренному пеленгу αизм(t) и параметрическим моделям пеленга αi(e),, заданным в функции натурального параметра, для каждого ЭДС определяют значения натурального параметра , , соответствующие точкам пересечения линии положения для измеренного пеленга αизм(t) и ЭДС. Для каждого из этих элементов определяют возможные значения пеленгов , , соответствующие перемещению объекта на расстояние Δe, и из условия минимального рассогласования между ними и повторно измеренным пеленгом αизм(t+Δt) определяют номер i* ЭДС, на котором находится объект. Определяют координаты местоположения объекта как координаты точки пересечения линии положения, соответствующей измеренному пеленгу (αизм(t) или αизм(t+Δt)) и i*-го ЭДС. 4 ил.

Изобретение относится к гидроакустическим системам навигации подводных аппаратов относительно судна обеспечения и может быть использовано для определения координат буксируемого подводного аппарата (БПА), осуществляющего гидролокацию рельефа дна. Достигаемый технический результат изобретения - уменьшение погрешности определения координат буксируемого подводного аппарата с одновременным снижением трудозатрат при выполнении подводных исследовательских работ. Указанный результат достигается за счет того, что система навигации буксируемого подводного аппарата содержит установленные на буксирующем судне GPS приемник, систему управления, многолучевой эхолот (МЛЭ), набортный блок гидролокатора, антенну подводной навигации и установленные на БПА гидролокатор бокового обзора (ГБО), управляющее устройство и транспондер подводной навигации, при этом путем фазовой пеленгации определяются координаты БПА относительно места расположения антенны GPS приемника на буксирующем судне, затем система управления производит корректировку координат БПА путем кросскорреляционной обработки изображений рельефа дна, полученных с помощью ГБО и МЛЭ, скорректированные координаты БПА пересчитываются в географические координаты. 5 ил.
Наверх