Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат элементов земной поверхности при формировании трехмерного изображения поверхности в зоне видимости РЛС. Сущность заявленного способа заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд сигналов отражения в элементах разрешения дальности на доплеровских частотах одновременно в четырех измерительных каналах, способ отличается тем, что для каждой четверки амплитуд соответствующих элементов изображений, полученных на одной и той же частоте, моноимпульсным методом измеряют угловые координаты соответствующего элемента поверхности и пересчитывают их в прямоугольные координаты антенной системы.

 

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению [1]) на базе четырехканальной доплеровской радиолокационной станции (РЛС) с четырехэлементной антенной решеткой, традиционно применяемой на практике [2].

Измерение координат элементов земной поверхности необходимо для формирования трехмерного изображения участка земной поверхности в зоне видимости РЛС, определяемой диаграммой направленности антенны (ДНА). Наличие такого изображения позволяет повысить безопасность маловысотных полетов над сложным рельефом местности, а также увеличить вероятность распознавания пространственно-протяженных объектов, расположенных на земной поверхности.

Известен способ измерения угловых координат одиночных воздушных объектов в зоне видимости моноимпульсной РЛС с суммарным и двумя разностными каналами, основанный на пеленгации объектов с помощью моноимпульсного метода [2, с.95-105]. При этом формируется пеленгационная характеристика (пеленг), линейно зависящая от отклонения объекта по угловым координатам относительно равносигнального направления, а дальность измеряется по времени задержки отраженного сигнала. Однако данный способ не работает при наблюдении участка земной поверхности, состоящего из множества элементов (объектов) отражения.

Известен способ получения трехмерного изображения поверхности по данным бортовой импульсно-доплеровской РЛС маловысотного полета [3]. Однако точность определения угловых координат элементов отражения в таком способе низка из-за пространственной протяженности элементов разрешения доплеровской частоты.

Известен также способ формирования трехмерного изображения поверхности с высотными объектами по данным бортовой импульсно-доплеровской РЛС [4], в котором предложено совместно с селекцией траекторного сигнала по доплеровской частоте применять моноимпульсный метод измерения угловых координат. Однако в нем не указано, как именно должен осуществляться моноимпульсный метод в сочетании с доплеровской фильтрацией, в частности не определено число каналов фильтрации.

Наиболее близкими по технической сущности являются способ измерения угловых координат нескольких объектов (воздушных, наземных и морских) в многоканальных доплеровских РЛС [5], а также способ повышения разрешающей способности РЛС по углу при переднебоковом обзоре [6]. Применительно к измерению координат элементов земной поверхности способ [5] заключается в следующем.

1. При данном положении антенны, соответствующем переднебоковому обзору бортовой РЛС, последовательность комплексных траекторных сигналов S ˙ ( t ) , принятая на заданном промежутке времени синтезирования одновременно в Q измерительных каналах как S ˙ q ( t ) , q=1, 2, …, Q, селектируются в i-х элементах разрешения дальности по задержке времени прихода отраженного сигнала. В результате из S ˙ q ( t ) , выделяют i-e составляющие S ˙ q ( i , t ) , i=1, 2, …, m, по числу элементов дальности m.

2. В каждом i-м элементе дальности со значением Ri временную последовательность S ˙ q ( i , t ) подвергают быстрому преобразованию Фурье и тем самым селектируют сигнал по доплеровской частоте fj в каждом q-м канале. В результате из S ˙ q ( i , t ) выделяют j-e составляющие S ˙ q ( i , j ) , j=1, 2…, n, в q-x каналах, q=1, 2, …, Q, где n - число доплеровских частот. Данные операции выполняют одновременно (параллельно) в Q каналах.

3. Полученные матрицы элементов S ˙ q ( i , j ) представляют собой комплексные двумерные (в координатах дальность - доплеровская частота) радиолокационные изображения участка земной поверхности по ширине ДНА, отличающиеся q-ми фазами (по времени задержки отраженного сигнала при приеме в q-x пространственно разнесенных элементах антенны).

4. Так как доплеровской частоте fj соответствует линия окружности Lj в пространстве, на которой может располагаться отражающий элемент поверхности с неизвестными угловыми координатами φ и θ, то вначале принимают решение о наличии такого элемента: амплитуда сигнала U q ( i , j ) = | S ˙ q ( i , j ) | должна превысить порог обнаружения во всех q-x каналах, а затем находят оценки угловых координат элемента отражения.

5. Оценивание угловых координат φ и θ осуществляют методом решения системы линейных уравнений относительно неизвестных комплексных амплитуд отраженного сигнала, распределенных вдоль k-x элементов дискретизации линии Lj, k=1, 2, …, N, где N - число элементов дискретизации, при этом выполняют NQ операций умножения измерений S ˙ q ( i , j ) , q=1, 2, …, Q, на заранее вычисленные комплексные весовые коэффициенты w ˙ q k , q=1, 2, …, Q, k=1, 2, …, N, и складывают результаты умножения. Число уравнений зависит от числа измерительных каналов Q, которое должно быть больше числа элементов дискретизации N.

6. Тот k-й элемент дискретизации, амплитуда которого превышает порог обнаружения и имеет максимальное значение, принимают за элемент отражения. Угловые координаты выбранного элемента дискретизации представляют оценки угловых координат φij и θij отражающего элемента поверхности в i-м элементе дальности со значением Ri на j-й доплеровской частоте. В результате находят пространственные координаты (дальность и угловые координаты) i, j-й точки (элемента) поверхности в антенной системе координат.

7. Операции пп.5 и 6 выполняют независимо (параллельно) для всех значений i, j (i=1, 2, …, m, j=1, 2, …, n) и получают множество точек с известными пространственными координатами, а именно трехмерное изображение контролируемого участка земной поверхности в зоне видимости РЛС.

Способ [6] подобен способу [5], но отличается от [5] тем, что предложен для наблюдения только земной поверхности.

Способ-прототип [5] обладает следующими недостатками.

1. Он рассчитан на применение в многоканальных РЛС, например РЛС с фазированной антенной решеткой, в которых число каналов Q велико и превышает число элементов дискретизации N в методе оценивания угловых координат, т.е. составляет десятки. Для четырехканальной суммарно-разностной РЛС (Q=4) такой способ оказывается не применимым по точности измерения угловых координат, так как для решения системы уравнений необходимо, чтобы число измерений (число уравнений) было больше числа неизвестных амплитуд, распределенных по элементам дискретизации. Таким же недостатком обладает и способ [6].

2. Оценки угловых координат берутся на линии Lj доплеровской частоты fj, уравнение которой зависит от fj. Следовательно, точность оценок зависит от траекторией нестабильности носителя РЛС и приближенного характера аналитической зависимости Lj и fj.

3. Применение многоэлементных антенных решеток менее экономично по сравнению с традиционными четырехэлементными антеннами.

Технический результат направлен на измерение координат элементов земной поверхности при формировании трехмерного изображения поверхности в зоне видимости РЛС с устранением указанных недостатков.

Технический результат предлагаемого технического решения достигается тем, что способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской РЛС заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд S ˙ q ( i , j ) сигналов отражения в i-x элементах разрешения дальности (i=1, 2, …, m, где m - число элементов дальности) на j-х доплеровских частотах (j=1, 2, …, n, где n - число доплеровских частот) одновременно в четырех измерительных каналах (q=1, 2, 3, 4), определении тех j-х частот, на которых амплитуда U q ( i , j ) = | S ˙ q ( i , j ) | сигнала S ˙ q ( i , j ) превышает порог обнаружения, и последующей обработке совокупности полученных измерений S ˙ q ( i , j ) , отличающийся тем, что для каждой i, j-й четверки полученных измерений S ˙ q = S ˙ q ( i , j ) , q=1, 2, 3, 4, вычисляются комплексный суммарный S ˙ Σ и комплексные разностные сигналы S ˙ ϕ , S ˙ θ по формулам

S ˙ Σ = S ˙ 1 + S ˙ 2 + S ˙ 3 + S ˙ 4 , S ˙ ϕ = S ˙ 2 + S ˙ 3 S ˙ 1 S ˙ 4 , S ˙ θ = S ˙ 3 + S ˙ 4 S ˙ 1 S ˙ 2 ,

затем выделяют действительную часть суммарного сигнала Re { S ˙ Σ } , мнимые части разностных сигналов Im { S ˙ ϕ } , Im { S ˙ θ } и составляют отношения Im { S ˙ ϕ } / Re { S ˙ Σ } = tan ( μ ϕ ) , Im { S ˙ θ } / Re { S ˙ Σ } = tan ( μ θ ) ,

имеющие смысл пеленгационных характеристик с известным коэффициентом µ, на линейной части которых вычисляют оценки угловых координат φ и θ по формулам:

ϕ i j = ( 1 / μ ) Im { S ˙ ϕ } / Re { S ˙ Σ } , θ i j = ( 1 / μ ) Im { S ˙ θ } / Re { S ˙ Σ } ,

указанные операции выполняют независимо (параллельно) для всех значений i, j и тем самым определяют угловые координаты φij, θij всех i, j-х элементов поверхности в зоне видимости РЛС, которые совместно с измерениями дальности Ri дают трехмерное изображение земной поверхности в виде совокупности точек с координатами xijijRi, yijijR, zi=Ri в антенной прямоугольной системе.

Способ осуществляют следующим образом.

1. При данном положении антенны, соответствующем переднебоковому обзору бортовой РЛС, последовательность комплексных траекторных сигналов S ˙ ( t ) , принятию на заданном промежутке времени синтезирования одновременно в Q измерительных каналах, как S ˙ q ( t ) , q=1, 2, …, Q, селектируют в i-x элементах разрешения дальности по задержке времени прихода отраженного сигнала. В результате из S ˙ q ( t ) выделяют i-e составляющие S ˙ q ( i , t ) , i=1, 2, …, m, по числу элементов дальности m.

2. В каждом i-м элементе дальности со значением Ri временную последовательность S ˙ q ( i , t ) подвергают быстрому преобразованию Фурье и тем самым селектируют сигнал по доплеровской частоте fj в каждом q-м канале. В результате из S ˙ q ( i , t ) выделяют j-е составляющие S ˙ q ( i , j ) , j=1, 2…, n, в q-x каналах, q=1, 2, …, Q, где n - число доплеровских частот. Данные операции выполняют одновременно (параллельно) в Q каналах.

3. Полученные матрицы элементов S ˙ q ( i , j ) представляют собой комплексные двумерные (в координатах дальность - доплеровская частота) радиолокационные изображения участка земной поверхности по ширине ДНА, отличающиеся q-ми фазами (по времени задержки отраженного сигнала при приеме в q-x пространственно разнесенных элементах антенны).

4. Так как доплеровской частоте fj соответствует линия окружности Lj в пространстве, на которой может располагаться отражающий элемент поверхности с неизвестными угловыми координатами φ и θ, то вначале принимают решение о наличии такого элемента: амплитуда сигнала U q ( i , j ) = | S ˙ q ( i , j ) | должна превысить порог обнаружения во всех q-x каналах (а также порог отношения сигнал-шум для приема сигнала по главному лепестку ДНА), а затем находят оценки угловых координат элемента отражения.

5. Оценивание угловых координат φ и θ осуществляют моноимпульсным методом в антенной системе координат. А именно для каждой i, j-й четверки измерений S ˙ q = S ˙ q ( i , j ) , q=1, 2, 3, 4, вычисляют комплексный суммарный S ˙ Σ и комплексные разностные сигналы S ˙ ϕ и S ˙ θ по формулам

S ˙ Σ = S ˙ 1 + S ˙ 2 + S ˙ 3 + S ˙ 4 , S ˙ ϕ = S ˙ 2 + S ˙ 3 S ˙ 1 S ˙ 4 , S ˙ θ = S ˙ 3 + S ˙ 4 S ˙ 1 S ˙ 2 .

6. Выделяют действительную часть суммарного сигнала Re { S ˙ Σ } и мнимые части разностных сигналов Im { S ˙ ϕ } , Im { S ˙ θ } . Составляют отношения

Im { S ˙ ϕ } / Re { S ˙ Σ } = tan ( μ ϕ ) , Im { S ˙ θ } / Re { S ˙ Σ } = tan ( μ θ ) , µ=4πd/λ,

имеющие смысл пеленгационных характеристик, где 2d - расстояние между центрами приемных элементов антенны, λ - длина волны.

На линейной части пеленгационных характеристик (для узкой круговой ДНА) вычисляют оценки угловых координат φ и θ по формулам

ϕ i j = ( 1 / μ ) Im { S ˙ ϕ } / Re { S ˙ Σ } , θ i j = ( 1 / μ ) Im { S ˙ θ } / Re { S ˙ Σ } .

7. Операции пп.5 и 6 выполняют независимо (параллельно) для всех значений i, j. Тем самым определяют угловые координаты φij, θij всех j, j-x элементов поверхности в зоне видимости РЛС, которые совместно с измерениями дальности Ri дают трехмерное изображение земной поверхности в виде совокупности точек в антенной прямоугольной системе с координатами xijijRi, yijijR, zi=Ri.

Анализ вычислительных затрат говорит о возможности реализации данного способа на современной элементной базе в реальном масштабе времени с распараллеливанием операций. Вычислительные затраты в части пп.1-4 совпадают с вычислительными затратами прототипа в силу идентичности операций. Число элементарных операций при оценивании угловых координат (пп.5 и 6) в предложенном способе в несколько раз меньше числа элементарных операций у прототипа.

Положительное отличие предложенного способа от известных способов [5] и [6] заключается в следующем.

1. Возможность измерения угловых координат отражающих элементов поверхности при малом числе (Q=4) измерительных каналов РЛС.

2. Независимость операций оценивания угловых координат от траекторией нестабильности и ошибок аппроксимации зависимости Lj и fj.

3. Большая экономичность.

Расчетная часть

Рассматривается антенна в виде 4-элементной плоской решетки (Q=4) с круговой ДНА (ширина ДНА на уровне 0,5 мощности Δδθ=Δ составляет 1°-3°). Центры приемных элементов антенны расположены в точках M1(d,d,0), M2(-d,d,0), M3(-d,-d,0), M4(d,-d,0) в антенной прямоугольной системе координат oa, xa, ya, za. Наблюдение земной поверхности ведется в угловых антенных координатах: φx, θy - углы между осью oaza и геометрическими проекциями вектора o a M (луча отражения от точки M на земной поверхности) на горизонтальную плоскость oa, xa, za и вертикальную плоскость oa, ya, za.

После прохождения тракта первичной обработки, включая фазовое детектирование, низкочастотную фильтрацию и быстрое преобразование Фурье, параллельно в q-x каналах получаются комплексные сигналы S ˙ q ( i , j ) , q=1, 2, 3, 4, в i-x элементах дальности (i=1, 2, …, m) на j-х доплеровских частотах (j=1, 2, …, n).

Частоты fj соответствуют углу αj отклонения луча отражения относительно вектора ν путевой скорости движения носителя РЛС, например, для режима "доплеровского обужения" [1]: fj≈(2ν/λ)cosαj, причем cosαj≈νxφ+νyθ+νz, где νx, νy, νz - координаты орта ν 0 вектора ν . Поэтому выбор частот согласован с угловыми координатами φ, θ зоны видимости РЛС по ширине ее ДНА. Ошибки аппроксимации зависимости fj и φ, θ не влияют на точность оценивания угловых координат φ, θ.

Модель сигналов S ˙ q ( i , j ) , q=1, 2, 3, 4, в антенных угловых координатах φ, θ без индексов i, j имеет следующий вид:

S ˙ 1 = U ( ϕ , θ ) G ˙ ( ϕ , θ ) exp { i μ ( ϕ + θ ) } + P ˙ 1 ,                       ( 1 )

S ˙ 2 = U ( ϕ , θ ) G ˙ ( ϕ , θ ) exp { i μ ( ϕ + θ ) } + P ˙ 2 ,

S ˙ 3 = U ( ϕ , θ ) G ˙ ( ϕ , θ ) exp { i μ ( ϕ θ ) } + P ˙ 3 ,

S ˙ 4 = U ( ϕ , θ ) G ˙ ( ϕ , θ ) exp { i μ ( ϕ θ ) } + P ˙ 4 ,

G ˙ ( ϕ , θ ) = exp { k ( ϕ 2 + θ 2 ) / Δ 2 } exp { i ξ } , µ=(4π/λ)d,

где U(φ, θ) - амплитуда сигнала отражения в направлении φ, θ - луча; G ˙ ( ϕ , θ ) - нормированная комплексная ДНА; k - коэффициент (например, k=2,78 [1]); ξ - случайная составляющая фазы отраженного сигнала (фаза переотражения), равномерно распределенная на [0,2π]; P ˙ q - комплексный гауссовский белый шум с нулевым средним.

Суммарный и разностные сигналы образуются из (1) следующим образом:

S ˙ Σ = S ˙ 1 + S ˙ 2 + S ˙ 3 + S ˙ 4 , S ˙ ϕ = S ˙ 2 + S ˙ 3 S ˙ 1 S ˙ 4 , S ˙ θ = S ˙ 3 + S ˙ 4 S ˙ 1 S ˙ 2 .                         ( 2 )

Пренебрегая действием шумов p . q (при сложении в (2) их уровень снижается) и случайной составляющей ξ, запишем действительные и мнимые части (2):

Re { S ˙ Σ } = 4 U 0 cos ( μ ϕ ) cos ( μ θ ) , Im { S ˙ ϕ } = 4 U 0 sin ( μ ϕ ) cos ( μ θ ) ,

Im { S ˙ θ } = 4 U 0 cos ( μ ϕ ) sin ( μ θ ) .

Получаем следующие пеленгационные характеристики для малых углов φ, θ:

Im { S ˙ ϕ } / Re { S ˙ Σ } = tan ( μ ϕ ) μ ϕ ,                          ( 3 )

Im { S ˙ θ } / Re { S ˙ Σ } = tan ( μ θ ) μ θ .

Из (3) следуют оценки угловых координат:

ϕ = ( 1 / μ ) Im { S ˙ ϕ } / Re { S ˙ Σ } , θ = ( 1 / μ ) Im { S ˙ θ } / Re { S ˙ Σ } .

В антенной прямоугольной системе oa, xa, ya, za координаты точки отражения с учетом малости углов φx и θy определяем следующим образом:

x=φR, y=θR, z=R.

На множестве значений i=1, 2, …, m, j=1, 2, …, n, имеем совокупность координат xij, yij, zi точек отражения, которые представляют трехмерное изображение поверхности в зоне видимости РЛС (по ширине ДНА).

Литература

1. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С. Кондратенкова. - М.: Радиотехника, 2005. 368 с.

2. Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: Радио и связь, 1984. 312 с.

3. Патент RU 2299448 C2.

4. Патент RU 2334250 C1.

5. Патент RU 2373551 C1.

6. Патент RU 2416809 C1.

Способ измерения координат элементов земной поверхности в бортовой четырехканальной доплеровской РЛС заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд S ˙ q ( i , t ) сигналов отражения в i-х элементах разрешения дальности (i=1,2,…,m, где m - число элементов дальности) на j-х доплеровских частотах (j=1,2,…,n, где n - число доплеровских частот) одновременно в четырех измерительных каналах (q=1, 2, 3, 4), определении тех j-х частот, на которых амплитуда U q ( i , j ) = | S ˙ q ( i , j ) | сигнала S ˙ q ( i , j ) превышает порог обнаружения, и последующей обработке совокупности полученных измерений S ˙ q ( i , j ) , отличающийся тем, что для каждой i, j-й четверки полученных измерений S ˙ q = S ˙ q ( i , j ) , q=1, 2, 3, 4, вычисляют комплексный суммарный S ˙ Σ и комплексные разностные сигналы S ˙ ϕ , S ˙ θ по формулам
S ˙ Σ = S ˙ 1 + S ˙ 2 + S ˙ 3 + S ˙ 4 , S ˙ ϕ = S ˙ 2 + S ˙ 3 S ˙ 1 S ˙ 4 , S ˙ θ = S ˙ 3 + S ˙ 4 S ˙ 1 S ˙ 2 ,
затем выделяют действительную часть суммарного сигнала Re { S ˙ Σ } , мнимые части разностных сигналов Im { S ˙ ϕ } , Im { S ˙ θ } и составляют отношения Im { S ˙ ϕ } / Re { S ˙ Σ } = tan ( μ ϕ ) , Im { S ˙ θ } / Re { S ˙ Σ } = tan ( μ θ ) ,
имеющие смысл пеленгационных характеристик с известным коэффициентом µ, на линейной части которых вычисляют оценки угловых координат φ и θ по формулам
ϕ i j = ( 1 / μ ) Im { S ˙ ϕ } / Re { S ˙ Σ } , θ i j = ( 1 / μ ) Im { S ˙ θ } / Re { S ˙ Σ } ,
указанные операции выполняют независимо (параллельно) для всех значений i, j и тем самым определяют угловые координаты φij, θij всех i, j-x элементов поверхности в зоне видимости РЛС, которые совместно с измерениями дальности Ri дают трехмерное изображение земной поверхности в виде совокупности точек с координатами xijijRi, yijijR, zi=Ri в антенной прямоугольной системе.



 

Похожие патенты:

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - получение повышенного разрешения за счет обработки сигнала.

Изобретение относится к бортовым радиолокационным станциям (БРЛС) летательных аппаратов, применяющим синтезирование апертуры антенны, и может использоваться в гражданской и военной авиации.

Изобретение относится к радиолокационным системам отображения данных, а именно к системам и способам трехмерной визуализации яркостной радиолокационной карты местности, и может применяться в охранных радиолокационных системах.

Изобретение относится к радиолокационной технике, в частности к бортовым радиолокационным станциям (РЛС) воздушных судов, применяющим метод синтезирования апертуры антенны.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях для улучшения обнаружения радиолокационных сигналов на фоне пассивных помех.

Заявляемые изобретения могут быть использованы в навигационных, пеленгационных, локационных средствах для определения местоположения источников радиоизлучений (ИРИ) с летно-подъемного средства (ЛПС), в частности беспилотного летательного аппарата (БЛА).

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости.

Изобретение относится к области локации и может быть использовано в радиолокации, в акустической локации, в гидролокации, в оптической локации, включая лазерную локацию, для обнаружения различных объектов, измерения их координат и параметров движения, а также для контроля состояния водной среды, земной и водной поверхности, воздушного пространства.

Изобретение относится к области сельского хозяйства, а именно к технологиям точного земледелия. .

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки. Достигаемый технический результат - формирование трехмерного изображения объектов отражения в зоне обзора с применением экономичной двухэтапной процедуры повышения разрешающей способности антенной решетки по угловым координатам. Указанный результат достигается за счет того, что способ формирования трехмерного изображения земной поверхности и воздушной обстановки с помощью антенной решетки заключается в последовательном сканировании зоны обзора со смещением луча антенны на ширину диаграммы направленности и формировании при каждом положении луча трехмерного изображения объектов отражения за счет двухэтапной обработки матрицы комплексных измерений, принятых в каналах антенной решетки, позволяющей оценить амплитуды поля отражения в угловых элементах дискретизации зоны видимости антенны во всех элементах разрешения дальности и получить пространственные координаты всех отражающих элементов в зоне обзора. 1 ил.
Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение надежности их обнаружения при наличии мешающих факторов. Указанный результат достигается за счет того, что исследуемый объект освещается плоскополяризованной радиоволной и для каждой элементарной площадки на поверхности объекта исследования проводятся измерения, при которых угол поворота плоскости поляризации падающей волны к оси X принимает значения φ=180°·i/n, где i=0,…, n-1, n - число измерений. Если на рассмотренном участке расположена неоднородность линейной формы, то параметры отраженной волны зависят от угла φ, что позволяет обнаружить наличие неоднородности в области, соответствующей данной площадке. Способ может быть реализован аппаратурой, в состав которой входит генератор линейно поляризованного СВЧ излучения, поляризационная отражающая решетка, антенный блок с системой сканирования, приемник СВЧ излучения, аналого-цифровой преобразователь, блок управления и обработки результатов измерений. 2 ил.

Изобретение относится к радиолокации и может использоваться для определения состояния морской поверхности, а также для решения задач экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Достигаемый технический результат - обеспечение экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Указанный результат достигается за счет того, что информационно-аналитическая система содержит антенный пост, расположенный на берегу и соединенный по цифровым коммуникационным каналам с программно-аналитическим центром (ПАЦ), выполняющим цифровую обработку, при этом антенный пост выполнен в виде навигационной радиолокационной станции (НРЛС) с возможностью работы в двух режимах: в режиме импульсной модуляции с помощью магнетронного или твердотельного передатчика, в зависимости от дальности наблюдаемой зоны, и режиме фазоманипулированной модуляции с помощью твердотельного передатчика, при этом НРЛС выполнена с возможностью осуществления непрерывного кругового или секторного обзора надводной обстановки, автоматического захвата и сопровождения обнаруженных целей, выходы «первичной локационной информации» и входы «управления» НРЛС являются портами цифровых коммуникационных каналов, программно-аналитический центр соединен с диспетчерским пунктом и потребителями локационной информации. 14 з.п. ф-лы, 2 ил.

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах. Достигаемый технический результат - уменьшение влияния помех, возникающих из-за интерференции отраженных объектом волн, и увеличение отношения сигнал-шум. Указанный результат достигается за счет того, что зондируемый объект освещается электромагнитным излучением, в котором плоскость колебаний электрической компоненты периодически поворачивается на девяносто градусов. При взаимодействии с объектом освещающее излучение рассеивается и частично деполяризуется из-за причин, связанных со структурной неоднородностью, расположенной в объекте, и особенностью ее ориентации по отношению к полю. Из деполяризованного излучения последовательно выделяются компоненты, поляризованные ортогонально по отношению к поляризации освещающего объект излучения. Эти компоненты преобразуются в электрические сигналы, между которыми определяется разность. Ее величина является индикатором наличия или отсутствия неоднородности в объекте. 2 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Достигаемый технический результат - стабилизация положения зоны картографирования по курсу летательного аппарата. Способ картографирования земной поверхности бортовой радиолокационной станцией основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании покадрового радиолокационного изображения поверхности Земли, причем перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата, а граница, с которой начинает формироваться каждый последующий кадр, меняется на противоположную. Способ может быть реализован радиолокационной станцией, состоящей из бортовой цифровой вычислительной машины, блока управления лучом, антенны, передатчика, приемника, блока формирования радиолокационного изображения земной поверхности, индикатора. 4 ил.

Группа изобретений относится к области радиовидения и может быть использована при проектировании радиотехнических систем. Достигаемый технический результат - снижение уровня помех на выходе отдельного канала формирования радиоголограммы без качественного увеличения его стоимости. Указанный результат достигается за счет разноса частот электромагнитной волны W1, которой облучают объект, и электромагнитной волны W2, которой облучают пространственную плоскость или некоторую криволинейную поверхность, на величину Δf, формирования радиоголограммы объекта в виде амплитудно-фазового распределения сигнала биений с разностной частотой Δf амплитуды суммы отраженной от объекта электромагнитной волны W3 и электромагнитной волны W2 по области регистрации радиоголограммы, зафиксированного относительно сигнала с частотой f0=Δf. При этом на выходе отдельного канала регистрации радиоголограммы отсутствуют фликкер-шум и постоянная составляющая, обусловленная мощностью электромагнитной волны W2, что позволяет повысить чувствительность регистрирующей матрицы без качественного увеличения ее стоимости. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области радиолокации и может быть использовано для мониторинга протяженных сред и объектов. Достигаемый технический результат - повышение скорости мониторинга протяженных сред и объектов, а также уменьшение габаритов фокусирующей системы. Способ основан на излучении зондирующих сигналов и последующем приеме отраженных сигналов с помощью зонной пластинки, сфокусированной на точку объекта, положение которой в продольном направлении зависит от частоты, при этом для излучения зондирующих сигналов используют передающую антенну, размещенную на оси системы в пределах непрозрачной для радиоволн первой зоны Френеля осесимметричной зонной пластинки; ширина луча передающей антенны соответствует угловому сектору зоны мониторинга, а ширина спектра излучаемого ею сигнала соответствует глубине этой зоны, причем для одновременного приема сигналов, отраженных от точек протяженного объекта, расположенных на одинаковой дальности, применяют матрицу приемных элементов, помещенную на фокальной поверхности осесимметричной зонной пластинки, после чего используют принятые элементами матрицы приемных элементов сигналы определенной частоты для построения картины сцены, соответствующей конкретному по дальности сечению. 5 ил., 1 табл.

Изобретение относится к формированию изображения сверхвысокого разрешения. Достигаемый технический результат - получение увеличенного разрешения. Указанный результат достигается за счет того, что радар сверхвысокого разрешения использует генератор импульсного сигнала, распространяющий пакеты импульсов радиочастотной энергии. Один импульс каждого пакета представляет собой служебный импульс, а остальные импульсы распространяются к объекту. Решетчатое секционное распознающее устройство собирает импульсы, отраженные от объекта. Кроме того, служебные импульсы распространяются через виртуальную линзу. Виртуальное сканирующее распознающее устройство распознает виртуальное служебное электрическое поле. Процессор рассчитывает виртуальное служебное электрическое поле, присутствующее на сканирующем распознающем устройстве. Кроме того, схема совпадений рассчитывает кросс-временную корреляционную функцию электрических полей отраженных импульсов, собирающихся посредством решетчатого секционного распознающего устройства и виртуального служебного электрического поля. Схема совпадений использует результаты кросс-временной корреляционной функции для создания пикселей изображения объекта. 4 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью на базе доплеровской радиолокационной станции (РЛС) с четырехэлементной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в зоне видимости РЛС в виде совокупности пространственных координат отражающих элементов поверхности с повышенной точностью определения координат и расширением зоны видимости РЛС. Способ формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской РЛС заключается в определении пространственных координат отражающих элементов поверхности, расположенных в элементах разрешения дальности и доплеровской частоты, и основан на совместном применении селекции по доплеровской частоте и фазового метода измерения координат. 4 табл.

Настоящее изобретение относится к области обеспечения безопасности, а именно к сканирующему устройству формирования топографического изображения в миллиметровом диапазоне волн для досмотра людей. Устройство содержит первый трансивер (40) миллиметрового диапазона с антенной решеткой (41) для передачи и приема первого сигнала миллиметрового диапазона, второй трансивер (40′) миллиметрового диапазона с антенной решеткой (41′) для передачи и приема второго сигнала миллиметрового диапазона, который выполнен с возможностью перемещения в направлении, противоположном направлению движения первого трансивера миллиметрового диапазона, соединительный элемент (26, 27) для соединения между собой первого трансивера (40) и второго трансивера (40′) и приводное устройство (50), приводящее в движение один из двух трансиверов миллиметрового диапазона. Первый трансивер (40) и второй трансивер (40') перемещаются в противоположных направлениях. Достигается высокое качество построения изображения при упрощении конструкции устройства. 18 з.п. ф-лы, 9 ил.
Наверх