Разностно-энергетический способ определения координат местоположения источников радиоизлучения



Разностно-энергетический способ определения координат местоположения источников радиоизлучения
Разностно-энергетический способ определения координат местоположения источников радиоизлучения

 


Владельцы патента RU 2505835:

Екимов Олег Борисович (RU)
Антипин Борис Маврович (RU)
Логинов Юрий Иванович (RU)
Портнаго Людмила Борисовна (RU)
Гриценко Андрей Аркадьевич (RU)

Изобретение предназначено для определения местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - повышение точности определения координат местоположения ИРИ. Способ основан на использовании измерений на радиоконтрольных постах значений уровней сигналов (УС) на каждой из выбранных частот и обратно пропорциональной зависимости отношений расстояний от поста до ИРИ и соответствующих им УС, на которых усредняют полученные значения и вычисляют текущую дисперсию УС на каждой из выбранных частот до тех пор, пока текущая дисперсия не станет больше предыдущей, затем усредненные значения УС передают на базовый пост, где получают их отношения и составляют три уравнения, каждое из которых описывает окружность с центрами местоположения постов и радиусами обратно пропорциональными УС и является линией положения, а также определитель Кэли-Менгера, по которому и отношениям усредненных значений УС определяют расстояние от ИРИ до постов, а по двум любым парам составленных уравнений определяют текущее среднее значение широты и долготы местоположения ИРИ как координаты точки пересечения радикальных осей окружностей, то есть как координаты радикального центра линий положения. Текущее среднее значение широты и долготы местоположения ИРИ определяют до тех пор, пока разность двух смежных значений текущих сумм дисперсий широты и долготы местоположения ИРИ не изменит свой знак, после чего усредненные значения координат местоположения ИРИ фиксируют как окончательные. 1 ил.

 

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения (ИРИ), сведения о которых отсутствуют в базе данных государственной радиочастотной службы. Изобретение может быть использовано при поиске местоположения несанкционированных средств радиосвязи, как возможных источников помех связи.

Известны способы определения координат ИРИ, в которых используются пассивные пеленгаторы в количестве не менее трех, центр тяжести области пересечения выявленных азимутов которых на фронт прихода волны принимается за оценку местоположения. Основными принципами работы таких пеленгаторов являются амплитудные, фазовые и интерферометрические [1, 2]. К их недостаткам следует отнести высокую степень сложности антенных систем, коммутационных устройств и наличие многоканальных радиоприемников, а также необходимость в быстродействующих системах обработки информации.

Наличие в федеральных округах государственной радиочастотной службы взаимосвязанных через центральный пункт разветвленной сети радиоконтрольных постов, оборудованных средствами приема радиосигналов, измерения и обработки их параметров, позволяет дополнить их функции и задачами определения местоположения тех ИРИ, сведения о которых отсутствуют в базе данных, не прибегая к использованию сложных и дорогостоящих пеленгаторов. Известен способ [3], заключающийся в приеме сигналов источников радиоизлучений в полосе частот ΔF перемещающимся в пространстве измерителем. При перемещении измерителя измеряют уровни сигналов в N (N≥4) точках, последовательно вычисляют N-1 отношений уровней сигнала, по вычисленным отношениям строят N-1 круговых линий положения и определяют координаты источников радиоизлучения как точку пересечения N-1 круговых линий положения. Для повышения достоверности определения местоположения используют статистику. Основные недостатки прототипа:

1. Необходимость измерения уровней сигналов в N≥4 точках, требующая больших временных затрат на перемещение мобильного радиоконтрольного поста или больших материальных затрат для стационарного варианта радиоконтрольных постов.

2. Наличие сингулярности круговых линий положения (окружностей Аполлония) при близких значениях уровней сигналов в точках их измерения, приводящее к большой погрешности определения координат местоположения ИРИ.

3. Низкая вероятность определения координат местоположения кратковременно излучающих ИРИ, работающих на одной и той же несущей частоте, например, радиоэлектронные средства связи (РЭС) производственно-технологического назначения с симплексным режимом работы, так как за время перемещения в новую точку измерения может прекратить работу один и начать работу на этой же частоте другой источник радиоизлучения и, естественно, с другими координатами местоположения, отличающимися от предыдущих;

4. Большая неопределенность, и даже принципиальная невозможность определения координат местоположения мобильных ИРИ, так как за время перемещения измерителя в новую точку для измерения уровня сигналов мобильный ИРИ может существенно изменить свое местоположение;

5. Низкое быстродействие и высокая трудоемкость получения статистики, обусловленные большими временными затратами на перемещение мобильного измерителя между точками измерения (не менее, чем в четырех точках пространства) для получения данных об уровнях сигналов;

Из других известных способов наиболее близким аналогом предлагаемого способа по технической сущности является способ [4], в котором используется не менее 4-х стационарных радиоконтрольных постов. К недостаткам этого способа, выбранного за прототип, следует отнести:

1. Большое количество постов N≥4, удорожающее реализацию способа, но не повышающее точности определения координат.

2. Наличие сингулярности круговых линий положения (окружностей Аполлония Пергского) при близких значениях уровней сигналов в точках их измерения, приводящее к большой погрешности определения координат местоположения ИРИ.

Целью настоящего изобретения является разработка способа определения координат местоположения ИРИ, включая мобильные ИРИ или радиоэлектронные средства связи производственно-технологического назначения с симплексным кратковременным режимом работы, в котором устранены недостатки прототипа. Эта цель достигается с помощью признаков, указанных в формуле изобретения, общих с прототипом: способ, основанный на измерении уровней сигналов радиоизлучений в нескольких точках пространства радиоприемными устройствами радиоконтрольных постов, расположенными не на одной прямой, один из которых, принятый за базовый, соединен с остальными радиоприемными устройствами линиями связи и отличительных признаков: что для измерения уровней сигналов радиоизлучений используют три стационарных радиоконтрольных поста, на базовом посту на основании вычисленных отношений измеренных уровней сигналов составляют три уравнения окружностей положения с центрами, соответствующими координатам расположения постов, и определитель Кэли-Менгера, выражающий взаимосвязь квадратов расстояний между постами, а также квадратов относительных расстояний от постов до источника, по которому определяют действительное расстояния от постов до источника, а затем по двум любым, из трех возможных, парам уравнений окружностей определяют текущее среднее значение широты и долготы местоположения источника радиоизлучения, как координаты точки пересечения радикальных осей, то есть как координаты радикального центра окружностей положения. При этом последние операции повторяют до тех пор, пока разность двух смежных значений текущих сумм СКО широты и долготы местоположения источника радиоизлучения не изменит свой знак, после чего усредненные значения координат местоположения источника излучения фиксируют как окончательные.

На фиг.1 представлены: схема расположения 3-х стационарных постов радиоконтроля с координатами по широте ха, хв, хс, и долготе ya, yв, yс, ; E - неизвестное местоположение ИРИ; ra, rb, rc, - неизвестное расстояние от постов до ИРИ, а также построения, поясняющие расчет координат ИРИ, как координат точки пересечения радикальных осей окружностей.

Для осуществления способа использована детерминистская модель со следующими допущениями:

1. Используем уравнения распространения сигналов в свободном пространстве [1].

2. Параметры и характеристики приемников радиоконтрольных постов идентичны, а их изменения, а также изменения параметров и характеристик наблюдаемых ИРИ и условий распространения сигналов на интервале измерений отсутствуют.

3. Радиоконтрольных посты (приемные антенны) и ИРИ находятся в одной плоскости (объем четырехвершинной фигуры, см. фиг.1, равен нулю, V=0), а диаграммы направленности их антенн в горизонтальной плоскости круговые.

В основу способа положен известный вывод о том, что потери в мощности сигнала при его распространении в свободном пространстве от передатчика к приемнику пропорциональны квадрату расстояния между приемником и передатчиком. На этом основании измеряют уровни сигналов Ua, Ub и Uc на входе приемников стационарных радиоконтрольных постов и по парному их отношению определяют отношение расстояний от ИРИ до соответствующих постов. Это отношение для постов A и B, а также B и C имеет вид:

Uc/Ua=ra/rc=nac

Uc/Ub=rb/rc=nbc

Запишем квадраты расстояний ra, rb, rc, от постов A, B, и C до наблюдаемого ИРИ через их географические координаты в виде окружностей положения:

,

,

где Ua, Ub, Uc, - уровни сигналов на входе приемников постов A, B и C.

Преобразуем квадраты радиусов через введенные отношения уровней сигналов в виде: и . Получили относительные квадраты расстояний - радиусов и , выраженные через . Коэффициенты и с принятыми допущениями зависят только от взаимного расположения пунктов A, B и C и наблюдаемого ИРИ. Координаты местоположения ИРИ определяют из любых двух пар уравнений окружностей положения (1)-(3), предварительно определив квадрат неизвестного расстояния на основании допущения 3 (V=0).

Для его определения составим и раскроем определитель Кэли-Менгера, который в соответствии с /5, 6/ и фиг.1 будет иметь вид:

.

Преобразуем выражение определителя с учетом введенных отношений расстояний-радиусов и получим биквадратное уравнение относительно неизвестного расстояния rc

,

где

,

,

.

Решение уравнения (4) дает: .

Координаты ИРИ определяют как координаты точки пересечения радикальных осей любых двух из трех возможных пар окружностей (1)-(3). Запишем уравнения радикальных осей всех трех пар окружностей, как разности соответствующих уравнений окружностей (1)-(2), (1)-(3) и (2)-(3):

,

,

.

Для первой, например, пары радикальных осей окружностей положения координаты ИРИ определяют из соотношений:

, , где A1=2(xb-xa), A2=2(xc-xa), B1=2(yb-ya), B2=2(yc-ya)

,

Для повышения точности определения координат местоположения по уравнениям (1)-(3) используют статистическую обработку по нескольким массивам усредненных результатов измерений уровней сигналов. Последовательная обработка наборов усредненных на постах массивов результатов измерений уровней сигналов и получение текущих средних значений и среднеквадратических отклонений (СКО) координат местоположения ИРИ осуществляется автоматически на базовом радиоконтрольном посту. При этом сравниваются значения СКО на текущем и предыдущем шаге расчета координат. Как только на текущем шаге значение СКО превысит его предыдущее значение, статистическую обработку прекращают и фиксируют среднее значение координат и их СКО как окончательные. При количестве радиоконтрольных постов N≥3 используются все сочетания из N по 3 и полученные результаты усредняются. Способ может использоваться и при наличии одного мобильного радиоконтрольного поста. Измерения выполняются при этом не менее чем в 3-х точках с фиксацией координат точек измерения. Таким образом, предложенный способ позволяет устранить недостатки прототипа, а именно:

1. Определять координаты местоположение любых источников ИРИ, включая мобильные ИРИ или радиоэлектронные средства связи производственно-технологического назначения с симплексным кратковременным режимом работы, лишь тремя радиоконтрольными постами.

2. Исключить сингулярность линий положения (окружностей Аполлония), заменяя их окружностями, описывающими распространение радиоволн в свободном пространстве, повышая тем самым точность определения координат.

Все это указывает на наличие новизны предложенного способа. Кроме того, отсутствие принципиальных ограничений по быстродействию, низкая стоимость внедрения способа, не требующего дополнительных аппаратных затрат для его реализации на существующих радиконтрольных постах Радиочастотной службы Российской Федерации, прозрачность алгоритма определения местоположения ИРИ, свидетельствует о высокой технико-экономической эффективности предложенного способа.

Источники информации

1. Справочник по радиоконтролю. Международный союз электросвязи. - Женева: Бюро радиосвязи. 2002. - 585 с.

2. Корнеев И.В., Ленцман В.Л. и др. Теория и практика государственного регулирования использования радиочастот и РЭС гражданского применения. Сборник материалов курсов повышения квалификации специалистов радиочастотных центров федеральных округов. Книга 2. - СПб.: СПбГУТ. 2003.

3. Патент RU №2306579, опубл. 20.09.2007 г.

4. Патент RU №2430385, опубл. 27.09.2011 г.

5. Кулаков Ю.И. Теория физических структур. М., 2004 г., 954 с.

6. Владимиров Ю.С. Пространство-время: явные и скрытые размерности. Изд. 2-е, перераб. и доп. - М.: Книжный дом «ЛИБРОКОМ», 2010, 208 с.

Энергетическо-дальномерный способ определения координат местоположения источников радиоизлучения, основанный на измерении и усреднении уровней, а также вычислении текущей дисперсии уровней сигналов радиоизлучений на назначенных частотах в нескольких точках пространства радиоприемными устройствами стационарных постов радиоконтроля, расположенных не на одной прямой, один из которых, принятый за базовый, соединен линиями связи с остальными постами и вычисляет текущее среднее значение широты и долготы местоположения источника радиоизлучения, как координаты точки пересечения радикальных осей двух пар окружностей положения, отличающийся тем, что для измерения уровней сигналов радиоизлучений используют три стационарных радиоконтрольных поста, усредненные значения уровней сигналов двух из которых передают на базовый пост, где получают отношение этих уровней и на их основе составляют три уравнения окружностей с центрами, соответствующими координатам расположения постов, и радиусом обратно пропорциональным усредненным значениям уровней сигналов, а затем, на основе полученных квадратов отношений и вычисленных квадратов расстояний между радиоконтрольными постами, составляют определитель Кэли-Менгера, по которому определяют действительные расстояния от постов до источника радиоизлучения, и по двум любым, из трех возможных, парам уравнений окружностей положения определяют текущее среднее значение широты и долготы местоположения источника радиоизлучения.



 

Похожие патенты:

Способ обнаружения радиоизлучения в ближней зоне источника предназначен для выявления факта скрытой установки источников радиоизлучения в пределах охраняемой территории с помощью обнаружителя, работающего в статическом режиме.

Изобретение относится к области радиотехники и касается акустооптического интерферометра. Акустооптический интерферометр состоит из антенной решетки, источника когерентного излучения, коллиматора, акустооптического модулятора с четырьмя пьезопреобразователями, фурье-линзы, матричного фотоприемника и цифрового процессора.

Изобретение относится к области космической радионавигации и может быть использовано для повышения помехоустойчивости интегрированной системы ориентации и навигации (ИСОН) объекта.

Использование: изобретение относится к области звуколокации и радиолокации и может быть использовано для решения научных и прикладных задач, в частности для обнаружения подводных объектов.

Изобретение относится к области авиационно-космического приборостроения и может найти применение в системах спутниковой навигации и геодезии. .

Изобретение относится к области радионавигации с использованием радиоволн и может быть использовано в транспортной навигации для определения местоположения объекта в условиях высоких широт и при наличии полярных сияний.

Изобретение относится к радиотехнике и может быть использовано в системах, предназначенных для контроля воздушного, надводного и наземного пространства и основанных на технологии скрытного обнаружения и слежения за подвижными объектами с использованием прямых и рассеянных подвижными объектами сигналов, излучаемых множеством неконтролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к устройству контроля за местонахождением лиц в системах туннелей. .

Изобретение относится к области радиолокационного приборостроения и может быть использовано при построении различных радиолокационных или аналогичных систем, предназначенных для навигации летательных аппаратов (ЛА) путем определения местоположения и управления движением ЛА.

Изобретение относится к области радиотехники, а именно к устройствам связи, и может быть использовано для определения местоположения устройства связи. .

Использование: изобретение относится к области горно-экологического мониторинга земной поверхности в зонах геодинамического риска и горно-геологического обоснования застройки месторождений полезных ископаемых. Сущность: в способе обнаружения зон геодинамического риска на основе данных радиолокационного зондирования земной поверхности, путем использования многовременных архивных и планируемых радиолокационных изображений среднего и высокого пространственного разрешения, выполняют интерферометрическую обработку точечных амплитудно-фазовых измерений радиолокационного, отраженного от стабильных отражающих объектов на земной поверхности, анализируют скорости смещений и временные ряды смещений, полученные по результатам обработки, и определяют зоны наибольших просадок при геодинамическом мониторинге зданий, сооружений и разрабатываемых месторождений полезных ископаемых. Способ позволяет увеличить среднюю точность скоростей смещений за счет исключения точек с высокой погрешностью; выделить группы объектов, движущихся однонаправленно и передающих общее движение участка земной поверхности. Технический результат: повышение точности расчета смещений и определения группы объектов, движущихся однонаправленно. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области ближней локации. Достигаемый технический результат - повышение точности фиксации дальности до распределенного или слабоконтрастного точечного объекта, а также обеспечение высокой помехоустойчивости за пределами рабочей дальности и инвариантности работы автономной информационной системы (АИС) по отношению к типу цели. Указанный результат достигается наличием новых относительно прототипа элементов: генератора шума, сигнал которого складывается с пилообразным модулирующим сигналом, и устройства предельной регрессионной обработки в качестве анализатора, которое повышает точность фиксации дальности, а также обеспечивает отсечку функции чувствительности за пределами рабочей дальности и инвариантность работы АИС по отношению к типу цели. 4 ил.

Изобретение может быть использовано при построении различных радиолокационных или аналогичных систем, предназначенных для определения местоположения летательного аппарата (ЛА). Достигаемый технический результат изобретения - повышение точности навигации ЛА. Способ навигации ЛА заключается в использовании эталонной карты местности; выборе мерного участка местности, находящегося в пределах эталонной карты; составлении первой текущей карты мерного участка и, через равные промежутки времени, второй и третьей текущих карт мерного участка путем измерений наклонных дальностей с помощью многолучевого режима измерения при помощи радиоволн; определении разности результатов многолучевых измерений по первой, второй и третьей текущим картам; сравнении первой текущей и эталонной карт, второй текущей и эталонной карт, третьей текущей и эталонной карт в пределах первого, второго и третьего квадратов неопределенностей соответственно, причем размеры второго и третьего квадратов неопределенности значительно меньше размеров первого квадрата неопределенности; определении координат (плановых координат и высоты) первого, второго и третьего местоположений ЛА в плановых координатах эталонной карты; сравнении координат первого, второго и третьего местоположений ЛА; определении направления, скорости и ускорения движения ЛА; вычислении сигнала коррекции траектории движения и управлении движением ЛА. 3 ил.

Изобретение относится к способам обработки радиолокационных изображений (РЛИ). Достигаемый технический результат - повышение быстродействия обработки РЛИ. Сущность изобретения состоит в следующем. При зондировании участка земной поверхности с помощью радиолокатора с синтезированной апертурой (РСА), установленного на носителе в виде ЛА, получают отраженный сигнал от земной поверхности, одновременно с получением сигнала определяют с помощью навигационной системы ЛА пространственное положение фазовых центров антенн (ФЦА) и запоминают его. Полученный сигнал на входе РСА представляют в виде суммы радиоизображений объекта, фона и шума наблюдения. При этом фон, на котором расположен объект в совокупности с шумами наблюдения, рассматривают как некоторый эквивалентный шум. Для совместного различения и оценки параметров (координат) используют байесовский метод, предполагающий совместную оптимизацию этих двух операций. В соответствии с байесовским правилом оптимальности необходимо минимизировать апостериорный риск по двум параметрам: оценке дискретного параметра неопределенности i - определить объект, и оценке параметров (координат) объекта, где i - тип объекта. Совместная минимизация риска может быть выполнена в два этапа: сначала по условной оценке параметров (координат) объекта при фиксированном значении i, а затем по всем i. Определение параметров (координат) образа объектов в данном алгоритме предшествует различению самих объектов, однако байесовская оценка формируется после определения i-го объекта. Условную оценку координат объекта получают по методике, приведенной с использованием эталонных моделей объектов, формируемых предварительно. Для различения объектов необходимо выполнить минимизацию апостериорного риска по всем возможным i-типам объектов. При этом алгоритм различения сводится к сравнению усредненных отношений правдоподобия с набором пороговых значений, которые формируются предварительно для всех типов объектов. 1 ил.

Изобретение относится к области маркшейдерско-геодезического мониторинга и может быть использовано для обеспечения безопасности разработки месторождений нефти и газа. Согласно заявленному решению на исследуемой территории проводят геодезические измерения и определяют смещения Ngeod геодезических реперов на север U i n , восток U i e и по вертикали U i v (i=1, 2,…, Ngeod). За тот же интервал времени определяют смещения Nsat устойчиво отражающих площадок в направлении на спутник U j L O S (j=1, 2,…, Nsat) с помощью радарной спутниковой интерферометрии. После чего осуществляют разбивку разрабатываемого месторождения на K элементарных объемов. Рассчитывают смещения в точке j-й устойчиво отражающей площадки в направлении на спутник V j , k L O S , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме, и смещения в точке i-го геодезического репера соответственно на север, восток и по вертикали V i , k n , V i , k e и V i , k v , которые возникают в результате увеличения давления на единицу в k-м элементарном объеме. Определяют в каждом объеме изменения давления ΔPk. После чего определяют три компоненты вектора смещений земной поверхности. Технический результат - повышение точности определения смещений земной поверхности. 4 ил.

Изобретение относится к области определения местоположения пользователя в беспроводной сети. Технический результат заключается в реализации назначения изобретения. Для этого в беспроводной сети с множеством точек доступа определяют потерю в канале между пользовательским устройством и одной из множества точек доступа и потерю в канале между каждой из множества точек доступа. Затем вычисляют корреляционное значение, по меньшей мере, для одной из множества точек доступа. При этом корреляционное значение для точки доступа является показателем корреляции между потерей в канале между пользовательским устройством и, по меньшей мере, одной из множества точек доступа и потерей в канале между точкой доступа и каждой из множества точек доступа. Далее оценивают местоположение пользовательского устройства из известного местоположения, по меньшей мере, одной точки доступа и корреляционного значения, по меньшей мере, для одной точки доступа. 2 н. и 12 з.п. ф-лы, 1 табл., 5 ил.

Изобретение относится к области авиации и может быть использовано для поиска чёрного ящика после катастрофы самолета. Чёрный ящик (2) с сигнализацией содержит блок (5) генераторов звука и электромагнитных волн, блок (6) электропитания, рычаг-переключатель (7), камеру 8 сжатого воздуха, резиновую камеру (9), парашют (11), гибкую антенну (12), нишу (13), звукоизлучатель (14), кабель-трос (15), разъем (16), штепсель, розетку, строп, ручку крана и трубы воздухопровода. Предусмотрен приемник GPS-сигналов и пункт контроля. Приемник GPS-сигналов содержит приемопередающую антенну, дуплексер, удвоитель фазы, первый и второй узкополосные фильтры, делитель фазы на два, фазовый детектор и вычислительный блок. Генератор электромагнитных волн содержит формирователь модулирующего кода, линию задержки, генератор псевдослучайной последовательности, сумматор, фазовый манипулятор и усилитель мощности. Пункт контроля содержит приемную антенну, усилитель высокой частоты, блок поиска, гетеродин, смеситель, усилитель промежуточной частоты, обнаружитель сигналов, первый и второй анализаторы спектра, удвоитель фазы, блок сравнения, пороговый блок, линию задержки, ключ, делитель фазы на два, узкополосный фильтр, фазовый детектор и блок регистрации. Изобретение направлено на повышение оперативности поиска. 8 ил.

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении точности и надежности позиционирования внутри зданий, допускающего размещение внутри помещений большого количества позиционирующих передающих устройств, не требующего серьезных изменений спутниковых навигационных приемников или иных компонентов, содержащихся в мобильных устройствах, таких как, например, смартфон, а также в недопущении помех существующим навигационным приемникам. Для этого используют стационарные маяки, состоящие из нескольких передатчиков и одного приемника, служащего для синхронизации передатчиков. Содержащиеся в маяке передатчики и приемник синхронизируются единым тактовым генератором, а их положение фиксируется при помощи радиопрозрачного корпуса маяка. В качестве навигационных шумоподобных сигналов используют ГЛОНАСС-подобный сигнал, начало М-последовательности которого для разных сигналов, передаваемых на одной и той же несущей частоте, сдвигают по задержке на разную величину. Перед расчетом позиции в память мобильного терминала загружают информацию об ожидаемом сдвиге М-последовательности и другую информацию. В мобильном терминале сопровождают сигналы передатчиков, определяют углы излучения сигналов, передаваемых передатчиками, настроенными на одну и ту же несущую частоту, а также псевдодальности до всех передатчиков, и рассчитывают позицию. 2 н. и 17 з.п. ф-лы, 7 ил.

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для управления движением летательных аппаратов. Технический результат изобретения - повышение точности навигации летательных аппаратов путем анализа параметров отраженных импульсов, полученных при многолучевых измерениях над плоской поверхностью, и определения результирующего вектора угловых колебаний летательных аппаратов, характеризующего суммарный угол отклонения по тангажу и по крену летательных аппаратов для управления их движением. Технический результат достигается тем, что способ повышения точности навигации летательных аппаратов заключается в многолучевых измерениях интегральных параметров отраженных сигналов при помощи радиоволн, излучаемых в виде лучей, и определении результирующего вектора угловых колебаний летательных аппаратов, характеризующего угловые колебания летательных аппаратов по крену и по тангажу на основе анализа интегральных параметров отраженных сигналов. Анализ интегральных параметров отраженных импульсов многолучевых измерений основан на сравнении интегральных параметров отраженных импульсов по боковым лучам многолучевых измерений над плоским участком поверхности местности. Лучи многолучевых измерений расположены в двух ортогональных плоскостях, одна из которых совпадает с направлением движения летательного аппарата, другая плоскость лучей перпендикулярна направлению движения летательного аппарата. Результирующий вектор угловых колебаний летательного аппарата в связанной системе координат летательного аппарата определяют последовательно через равные промежутки времени для выявления изменений угловых колебаний по тангажу и по крену летательного аппарата при его движении. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области навигации движущихся объектов и может быть использовано при построении различных систем локации, предназначенных для определения местоположения движущихся объектов (ДО), управления их движением и обеспечения навигации ДО. Технический результат состоит в обеспечении возможностей определения высоты движения ДО. Для этого выбирают на эталонной карте мерный участок с реперным объектом (РО), плановые координаты и пространственные параметры которого известны с наибольшей точностью. Получают первую текущую карту РО при движении ДО над мерным участком, которую преобразуют в цифровое изображение текущей карты РО. Распознают РО, определяют его местоположение и пространственные параметры. Сравнивают эталонную и первую текущую карты РО путем их совмещения. Определяют первое местоположение ДО в плановых координатах эталонной карты. Определяют второе местоположение ДО в плановых координатах эталонной карты. Определяют высоту движущегося объекта над эталонной картой путем определения взаимного смещения за время Δt первого и второго местоположений движущегося объекта в пикселах цифрового изображения текущей карты реперного объекта в направлении движения движущегося объекта. Для этого используют базу данных, установленную на движущемся объекте. Вычисляют сигнал коррекции местоположения ДО, который используют для управления движением ДО путем коррекции его местоположения для обеспечения навигации. 10 ил.
Наверх