"чёрный ящик" с сигнализацией



чёрный ящик с сигнализацией
чёрный ящик с сигнализацией
чёрный ящик с сигнализацией
чёрный ящик с сигнализацией
чёрный ящик с сигнализацией
чёрный ящик с сигнализацией
чёрный ящик с сигнализацией
чёрный ящик с сигнализацией

 


Владельцы патента RU 2531779:

Заренков Вячеслав Адамович (RU)
Дикарев Виктор Иванович (RU)
Заренков Дмитрий Вячеславович (RU)
Койнаш Борис Васильевич (RU)

Изобретение относится к области авиации и может быть использовано для поиска чёрного ящика после катастрофы самолета. Чёрный ящик (2) с сигнализацией содержит блок (5) генераторов звука и электромагнитных волн, блок (6) электропитания, рычаг-переключатель (7), камеру 8 сжатого воздуха, резиновую камеру (9), парашют (11), гибкую антенну (12), нишу (13), звукоизлучатель (14), кабель-трос (15), разъем (16), штепсель, розетку, строп, ручку крана и трубы воздухопровода. Предусмотрен приемник GPS-сигналов и пункт контроля. Приемник GPS-сигналов содержит приемопередающую антенну, дуплексер, удвоитель фазы, первый и второй узкополосные фильтры, делитель фазы на два, фазовый детектор и вычислительный блок. Генератор электромагнитных волн содержит формирователь модулирующего кода, линию задержки, генератор псевдослучайной последовательности, сумматор, фазовый манипулятор и усилитель мощности. Пункт контроля содержит приемную антенну, усилитель высокой частоты, блок поиска, гетеродин, смеситель, усилитель промежуточной частоты, обнаружитель сигналов, первый и второй анализаторы спектра, удвоитель фазы, блок сравнения, пороговый блок, линию задержки, ключ, делитель фазы на два, узкополосный фильтр, фазовый детектор и блок регистрации. Изобретение направлено на повышение оперативности поиска. 8 ил.

 

Предлагаемое устройство относятся к области авиации и может быть использовано для поиска «черного ящика» во время катастрофы самолета.

Во время катастрофы вместе с самолетом падает на землю и «черный ящик» и при ударе о землю у него выходят из строя составные части, которые затем с большим трудом восстанавливаются. А если катастрофа самолета произошла над морем, тогда «черный ящик» вместе с самолетом падает в море, который без соответствующей сигнализации в нем невозможно отыскать в глубине моря.

Такое произошло при катастрофе самолета А-330 над морем. Поиск «черного ящика» осуществлялся на ощупь, так как он не издавал никаких сигналов для поиска. И по этой причине поиск не увенчался успехом.

Для исключения совместного падения «черного ящика» с самолетом во время его катастрофы разработано техническое решение, в котором при катастрофе самолета «черный ящик» отделяется от него и спускается на парашюте на землю или поверхность моря. Такой способ спуска «черного ящика» на парашюте имеет тот недостаток, что «черный ящик» во время катастрофы самолета сбрасывается сразу с раскрытым парашютом из самолета, независимо от высоты его полета. В таком случае при продувании ветра «черный ящик» с парашютом будет отнесен на значительное расстояние от места катастрофы, особенно при максимальной высоте полета самолета, а это значительно увеличивает время поиска «черного ящика».

Известны системы и устройства для поиска «черных ящиков» во время катастрофы самолетов (патенты РФ №№2097279, 2113380, 2198116, 2415781, патенты США №№3520503, 6009356; патент Германии №1984801; патент Франции №1564139 и другие).

Из известных систем и устройств наиболее близким к предлагаемому устройству является «Черный ящик с сигнализацией» (патент РФ №2415781, В64D 1/60, 2009), который и выбран в качестве базового объекта.

Известный «черный ящик» с сигнализацией в случае катастрофы самолета выбрасывается с парашютом, излучая при этом электромагнитные волны и звуковые сигналы. «Черный ящик содержит резиновую камеру, которая при раскрытии парашюта наполняется воздухом, поступающим из камеры сжатого воздуха. Достигается возможность быстрого нахождения «черного ящика» а также уменьшается вероятность его сильного повреждения.

Однако известный «черный ящик» в случае катастрофы самолета выбрасывается с парашютом и излучает только сигналы бедствия, которые не позволяют узнать данные самолета и место его катастрофы, что увеличивает время поиска «черного ящика».

Технической задачей изобретения является повышение оперативности поиска «черного ящика» путем излучения сложных сигналов с фазовой манипуляцией, отображающих идентификационные данные самолета, потерпевшего катастрофу, и место его катастрофы.

Поставленная задача решается тем, что «черный ящик» с сигнализацией, который, в соответствии с ближайшим аналогом, в случае катастрофы самолета выбрасывается с парашютом из отсека и приземляется или приводняется на морской поверхности, излучая при этом электромагнитные волны и звуковые сигналы, «черный ящик» помещен в отсеке хвостовой части самолета и выбрасывается автоматически, при этом во время раскрыва парашюта открывается кран и через трубки воздухопровода из камеры сжатого воздуха поступает воздух в резиновую камеру, которая надувается и превращается в амортизатор - подушку, излучаемые «черным ящиком» электромагнитные волны и звуковые сигналы также излучаются на глубине, отличается от ближайшего аналога тем, что он снабжен приемником GPS-сигналов и пунктом контроля, причем приемник GPS-сигналов выполнен в виде последовательно включенных дуплексера, вход-выход которого связан приемопередающей антенной, удвоителя фазы, первого узкополосного фильтра, делителя фазы на два, второго узкополосного фильтра, фазового детектора, второй вход которого соединен с выходом дуплексера и вычислительного блока, генератор электромагнитных волн выполнен в виде последовательно подключенных к выходу вычислительного блока формирователя модулирующего кода, линии задержки, сумматора, второй выход которого соединен с выходом генератора псевдослучайной последовательности, фазового манипулятора, второй вход которого соединен с выходом первого узкополосного фильтра, и усилителя мощности, выход которого соединен с вторым входом дуплексера, пункт контроля выполнен в виде последовательно включенных приемной антенны, усилителя высокой частоты, смесителя, второй вход которого через гетеродин соединен с выходом блока поиска, усилителя промежуточной частоты, удвоителя фазы, второго анализатора спектра, блока сравнения, второй вход которого через первый анализатор спектра соединен с выходом усилителя промежуточной частоты, порогового блока, второй вход которого через линию задержки соединен с его выходом, ключа, второй вход которого соединен с выходом усилителя промежуточной частоты, фазового детектора и блока регистрации, к выходу удвоителя фазы последовательно подключены делитель фазы на два и узкополосный фильтр, выход которого соединен с вторым входом фазового детектора.

На фиг.1 показан самолет со смонтированным в нем отсеком 3. На фиг.2 приведен «черный ящик» 2 со своими составными частями, в который входит блок 5 генераторов звука и электромагнитных волн, блок 6 питания, рычаг-переключатель 7, камера 8 сжатого воздуха, резиновая камера 9, типа тора, парашют 11, гибкая антенна 12, ниша 13, звукоизлучатель 14, кабель-трос 15, разъем 16. На фиг.3 - «черный ящик» с раскрытым парашютом 11. На фиг.4 - принципиально-структурная схема для выброса «черного ящика» из отсека 3 самолета 1. На фиг.5 - розетка со штепселем. На фиг.6 - резиновая камера. На фиг.7 - схема формирователя сигнала тревоги. На фиг.8 - схема пункта контроля.

Для управления «черным ящиком» применяются следующие элементы и детали: двигатель 17 самолета, датчик 18 звука, электрический усилитель 19 сигнала; электрические реле 20 и 21, запал 22, включатель 23 электрического тока, блок 24 электропитания, электропровода 25, 26 и 27. Все провода 35, идущие к хвостовой части самолета 1, соединены через разъем 16 с «черным ящиком»2, помещенным в отсеке 3 и при выходе «черного ящика» из отсека 3 штепсель 28 разъединяется от розетки 29, находящейся в отсеке 3.

Приемник 38 GPS-сигналов выполнен в виде последовательно включенных дуплексера 39, вход-выход которого связан с приемопередающей антенной 12, удвоителя 40 фазы, первого узкополосного фильтра 41, делителя 42 фазы на два, второго узкополосного фильтра 43, фазового детектора 44, второй вход которого соединен с выходом дуплексера 39 и вычислительного блока 45, генератор 5 электромагнитных волн выполнен в виде последовательно подключенных к выходу вычислительного блока 45, формирователя 46 модуляционного кода, линии 47 задержки, сумматора 49, второй вход которого соединен с выходом генератора 48 псевдослучайной последовательности, фазового манипулятора 50, второй вход которого соединен с выходом первого узкополосного фильтра 41, и усилителя 51 мощности, выход которого соединен с входом дуплексера 39.

Пункт контроля выполнен в виде последовательно включенных приемной антенны 52, усилителя 53 высокой частоты, смесителя 56, второй вход которого через гетеродин 55 соединен с выходом блока 54 поиска, усилителя 57 промежуточной частоты, удвоителя 60 фазы, второго анализатора 61 спектра, блока 62 сравнения, второй вход которого через первый анализатор 59 соединен с выходом усилителя 57 промежуточной частоты, порогового блока 63, второй вход которого через линию 64 задержки соединен с его выходом, ключа 65, второй вход которого соединен с выходом усилителя 57 промежуточной частоты, фазового детектора 68 и блока 69 регистрации. К выходу удвоителя 60 фазы последовательно подключены делитель 66 фазы на два и узкополосный фильтр 67, выход которого соединен с вторым входом фазового детектора 68. Анализаторы спектра 59 и 61, удвоитель 60 фазы, блок 62 сравнения, пороговый блок 63 и линия 64 задержки образуют обнаружитель (селектор) 58 ФМн-сигналов.

«Черный ящик» с сигнализацией работает следующим образом.

Для взлета самолета 1 экипаж - летчик, находящийся в кабине 4, включает выключатель 23 и электрический ток начинает проходить от блока 24 электропитания по проводу 25 на двигатель 17 самолета, двигатель 17 начинает работать и от его созданного шума в датчике 18 звука, закрепленном на двигателе 17, возникает переменный электрический ток, который после усиления и преобразования в постоянный ток поступает на обмотки реле 20 и 21. Реле срабатывают в разное время, реле 20 срабатывает раньше и своим контактом 20' размыкает цепь запала 22, после этого, спустя некоторое время, срабатывает реле 21 и своим контактом 21' подготавливает цепь запала 22. Разомкнутая цепь запала 22 контактом 20' будет удерживаться до тех пор, пока работает двигатель 17 и реле 20 будет находиться под электрическим током.

После посадки самолета двигатель 17 перестает работать при выключении выключателя 23 и в этом случае все устройства «черного ящика» переходят в исходное положение.

При катастрофе самолета его двигатель 17 перестает работать и вслед за этим прекращается шум двигателя и в датчике 18 звука не будет больше возникать электрический ток, реле 20 обесточивается и своим контактом 20' замкнет цепь запала 22 (ввиду того, что реле 21 замедленного действия, поэтому его контакты 21' остаются замкнутыми), он срабатывает от электрического тока, поступившего от блока 24 через контакты включателя 23, и выбрасывает «черный ящик» из отсека 3 со своими составными частями и прорывает целлофановую пленку 34, которой закрыт вход отсека 3, предотвращающую от попадания каких-либо предметов извне в отсек.

В это время рычаг-переключатель 7, закрепленный на блоке 6 электропитания «черного ящика», освобождается от отсека 3 и переключает «черный ящик» с блока 24 электропитания на блок 6 электропитания «черного ящика» 2. Выброшенный из отсека 3 «черный ящик» продолжает падать вниз с выпушенным из ниши 13 звукоизлучателем 14, удерживающимся кабель-тросом 15 за «черный ящик» и выполняющим дополнительную роль гайдропа.

Когда «черный ящик» достигнет определенной высоты от земли или от поверхности моря, парашют 11 автоматически раскрывается, антенна 12 принимает вертикальное положение и включаются приемник GPS-сигналов 38 и генератор 5 электромагнитных волн.

При раскрытии парашюта 11 срабатывает строп 30, закрепленный на ручке 31 крана 32, и при дергании за ручку стропой во время раскрытия парашюта 11 кран 32 открывается и через трубки воздухопровода 33 из камеры сжатого воздуха 8 воздух будет поступать в резиновую камеру 9. Камера надувается и превращается в амортизатор - подушку при приземлении «черного ящика» на землю, а при приводнении его на море резиновая камера послужит как поплавок для «черного ящика» и будет удерживать его на плаву.

Когда звукоизлучатель 14 оказывается в водной среде, его электрическая цепь подключается по кабель-тросу 45 к генератору звука, находящемуся в блоке 5, через контакты 36, разделенные между собой куском 37 сахара, вмонтированным на самом звукоизлучателе 14. Спустя некоторое время сахар 37 растворяется в морской воде и благодаря этому замыкаются контакты 36, звукоизлучатель 14 окажется подключенным по кабель-тросу 15 к блоку 5 генератора звука и начинает излучать в глубине моря прерывистые звуковые сигналы частотой 1000 Гц, наилучшим образом воспринимающейся слуховым органом человека.

В такой обстановке поиск «черного ящика» осуществляется как по электромагнитным волнам при помощи радиопеленгатора, так и гидрофонами-пеленгаторами, действующими в морских глубинах. Данный «черный ящик» по устройству автономный и его можно применять на любом самолете для его функционирования.

Когда «черный ящик» выбрасывается из отсека 3 самолета, то рычагом-переключателем 7 включается его блок 6 электропитания. При этом сложный сигнал с фазовой манипуляцией (ФМн)

uc(t)=Uccos[ωct+φr(t)+φc], 0≤t≤Tc,

где Uc, ωc, φc, Tc - амплитуда, несущая частота, начальная фаза и длительность сигнала;

φл(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), причем φк(t)=const при kτЭ<t<(k+1)τЭ и может изменяться скачком при t=kτЭ, т.е. на границах между элементарными посылками (k=1,2,…,N-1);

τЭ, N - длительностью и количество элементарных посылок, из которых составлен сигнал длительностью Tc(TcЭN, для системы GPS N=1023), излучаемый спутником системы GPS, принимается приемопередающей антенной 12 (фиг.7) и через дуплексер 39 поступает на вход делителя 42 фазы на два, в качестве которого может быть использован перемножитель, на два входа которого поступает один и тот же сигнал uc(t).

На выходе удвоителя 40 фазы образуется гармоническое колебание

u1(t)=U1cos(2ωct+2φc), 0≤t≤Tc,

где U 1 = 1 2 U c 2 .

Так как 2φk(t)={0,2π}, то в указанном колебании фазовая манипуляция уже отсутствует. Гармоническое колебание u1(t) выделяется первым узкополосным фильтром 41 и поступает на первый вход фазового манипулятора 50 и на вход делителя 42 фазы на два. На выходе последнего образуется гармоническое колебание

u2(t)=U2cos(ωct+φc), 0≤t≤Tc,

которое выделяется узкополосным фильтром 43, используется в качестве опорного напряжения и поступает на второй (опорный) вход фазового детектора 44, на первый (информационный) вход которого подается принимаемый ФМн-сигнал uc(t) с выхода дуплексера 39. В результате синхронного детектирования на выходе фазового детектора 44 образуется низкочастотное напряжение

uн(t)=Uнcosφk(t), 0≤t≤Tc,

где U н = 1 2 U c U 2 ,

пропорциональное модулирующему коду M(t). Это напряжение поступает на вход вычислительного блока 45, где на основании информации от других спутников системы GPS определяются координаты (долгота и широта) «черного ящика», которые формируются в виде модулирующего кода M1(t) в формирователе 46 модулирующего кода. Модулирующий код M1(t) поступает через линию задержки 47 на первый вход сумматора 49, на второй вход которого подается модулирующий код M2(t) с выхода генератора 48 псевдослучайной последовательности. На выходе сумматора 49 образуется суммарный код

M(t)=M1(t)+M2(t).

Причем время задержки τЗ линии 47 задержки выбирается равным длительности T1 модулирующего кода M1(t) (τЗ=T1).

Модулирующий код M2(t) является идентификационным номером «черного ящика» и содержит всю необходимую информацию о самолете, потерпевшем катастрофу.

Суммарный модулирующий код M(t) поступает на второй вход фазового манипулятора 50, на выходе которого формируется сложный ФМн-сигнал

u3(t)=U3cos[2ωct+φk2(t)+2φc], 0≤t≤Tc,

где φk2(t)={0,π} - манипулируемая составляющая фазы, отображающая закон манипуляции в соответствии с суммарным модулирующим кодом M(t).

Данный сигнал после усиления в усилителе 51 мощности поступает в приемопередающую антенну 12, излучается ею в эфир, улавливается приемной антенной 52 пункта контроля и поступает через усилитель 53 высокой частоты на первый вход смесителя 56, на второй вход которого с выхода гетеродина 55 подается напряжение

uГ(t)=UГcos(ωсt+πγt2c), 0≤t≤Tc,

где UГ, ωГ, φГ, Тс - амплитуда, начальная частота, начальная фаза и период повторения напряжения гетеродина;

γ = Д f Т П - скорость перестройки частоты гетеродина, скорость просмотра заданного диапазона частот Дf.

Следует отметить, что просмотр заданного диапазона частот Дf осуществляется с помощью блока 54 поиска, который периодически с периодом ТП перестраивает частоту гетеродина 55. В качестве блока 54 поиска может быть использован генератор пилообразного напряжения.

На выходе смесителя 56 образуются напряжения комбинационных частот. Усилителем 57 выделяется напряжение промежуточной (разностной) частоты

uпр(t)=Uпрcos[ωпрt+φk2(t)-πγt2пр], 0≤t≤Тс,

где U п р = 1 2 U 3 U Г ,

ωпр=2ωсГ - промежуточная (разностная) частота;

φпр=2φсГ,

которое поступает на вход обнаружителя (селектора) 58 ФМн-сигналов, состоящего из первого 59 и второго 61 анализаторов спектра, удвоителя 60 фазы, блока 62 сравнения, порогового блока 63 и линии 64 задержки. На выходе удвоителя 60 фазы образуется напряжение

u4(t)=U4cos(2ωght-2πγt2+2φпр), 0≤t≤Тс,

где U 4 = 1 2 U п р 2 .

Так как 2φk2(t)={0,2π}, то в указанном напряжение фазовая манипуляция уже отсутствует.

Ширина спектра Δfc ФМн-сигнала на промежуточной частоте ωпрuпр(t) определяется длительностью τЭ элементарных посылок Δfc=1/τЭ. Тогда как ширина спектра Δf2 второй гармоники ФМн-сигнала на промежуточной частоте определяется длительностью Тс сигнала Δf2=1/Тс.

Следовательно, при удвоении фазы ФМн-сигнала его ширина спектра сворачивается в N раз (Δfc/Δf2=N). Это обстоятельство позволяет обнаружить (отселектировать) ФМн-сигналы даже тогда, когда его мощность на входе приемника меньше мощности шумов и помех.

Ширина спектра Δfc сигнала и его второй гармоники Δf2 измеряются анализаторами спектра 59 и 61. Измеренные значения Δfc и Δf2 сравнивают в блоке 62 сравнения. На выходе последнего образуется напряжение только если Δfc>>Δf2. Это напряжение превышает пороговое напряжение в пороговом блоке 63. При превышении порогового уровня Uпор в пороговом блоке 63 формируется постоянное напряжение, которое поступает на вход линии 64 задержки и на управляющий вход блока 54 поиска и ключа 65, открывая его. В исходном состоянии ключ 65 всегда закрыт.

Блок 54 поиска выключается на время, определяемое временем задержки τЗ1 линии задержки 64. Это время выбирается таким, чтобы можно было проанализировать параметры обнаруженного ФМн-сигнала. При прекращении перестройки частоты гетеродина 55 усилителем 57 промежуточной частоты выделится следующее напряжение:

uпр=(t)=Uпрcos[ωпрt+φk2(t)+φпр], 0≤t≤Тс.

На выходе удвоителя 60 фазы в этом случае образуется следующее гармоническое напряжение

u5(t)=U4cos(2ωпрt+2φпр), 0≤t≤Тс,

которое поступает на вход делителя 67 фазы на два. На выходе последнего образуется гармоническое напряжение

u6(t)=U6cos(φпрt+φпр), 0≤t≤Tc,

которое выделяется узкополосным фильтром 67, используется в качестве опорного напряжения и поступает на второй (опорный) вход фазового детектора 68. Напряжение uпр1(t) с выхода усилителя 57 промежуточной частоты через открытый ключ 65 подается на первый (информационный) вход фазового детектора 68. В результате синхронного детектирования на выходе фазового детектора 68 образуется низкочастотное напряжение

uH1(t)=UH1cosφk2(t),

где U H 1 = 1 2 U п р U 6 ,

пропорциональное суммарному модулирующему коду M(t), которое фиксируется блоком 69 регистрации.

По истечении времени τЗ1 напряжение с выхода порогового блока 63 через линию 64 задержки поступает на вход сброса порогового блока 63 и сбрасывает его содержимое на нулевое значение. Ключ 65 закрывается, а блок 54 поиска включается. При обнаружении следующего ФМн-сигнала другого «черного ящика» работа пункта контроля происходит так же, как это описано выше. Заданный диапазон частот Дf отводится для поиска ФМн-сигналов бедствия «черных ящиков» самолетов, потерпевших катастрофу.

Таким образом, предлагаемое устройство по сравнению с базовым объектом обеспечивает повышение оперативности поиска «черного ящика». Это достигается излучением сложных сигналов с фазовой манипуляцией, отображающих идентификационные данные самолета, потерпевшего катастрофу и место его катастрофы.

Сложные ФМн-сигналы обладают высокой энергетической и структурной скрытностью. Энергетическая скрытность сложных ФМн-сигналов обусловлена их высокой сжимаемостью во времени или по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный ФМн-сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия ФМн-сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов и помех.

Структурная скрытность сложных ФМн-сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменений значений параметров, что затрудняет оптимальную или квазиоптимальную обработку сложных ФМн-сигналов априорно неизвестной структуры с целью повышения чувствительности приема.

Сложные ФМн-сигналы открывают большие возможности в технике передачи сигналов бедствия «черными ящиками» самолетов, потерпевших катастрофу. Они позволяют применять на пункте контроля структурную селекцию. Это значит, что появляется возможность разделять сигналы, действующие в одной и той же полосе частот и в одни и те же промежутки времени.

Чёрный ящик с сигнализацией, который в случае катастрофы самолета выбрасывается с парашютом из отсека и приземляется или приводняется на морской поверхности, излучая при этом электромагнитные волны и звуковые сигналы, черный ящик помещен в отсеке хвостовой части самолета и выбрасывается автоматически, при этом во время раскрытия парашюта открывается кран и через трубки воздухопровода из камеры сжатый воздух поступает в резиновую камеру, которая надувается и превращается в амортизатор-подушку, излучаемые черным ящиком электромагнитные волны и звуковые сигналы также излучаются на глубине, отличающийся тем, что он снабжен приемником GPS-сигналов и пунктом контроля, причем приемник GPS-сигналов имеет последовательно включенные дуплексер, выход которого связан с приемопередающей антенной, удвоитель фазы, первый узкополосный фильтр, делитель фазы на два, второй узкополосный фильтр, фазовый детектор, второй вход которого соединен с выходом дуплексера, и вычислительный блок, генератор электромагнитных волн выполнен в виде последовательно подключенных к выходу вычислительного блока формирователя модулирующего кода, линии задержки, сумматора, второй вход которого соединен с выходом генератора псевдослучайной последовательности, фазовым манипулятором, второй вход которого соединен с выходом первого узкополосного фильтра, и усилителем мощности, выход которого соединен со вторым входом дуплексера, пункт контроля выполнен в виде последовательно включенных приемной антенны, усилителя высокой частоты, смесителя, второй вход которого через гетеродин соединен с выходом блока поиска, усилителя промежуточной частоты, удвоителя фазы, второго анализатора спектра, блока сравнения, второй вход которого через первый анализатор спектра соединен с выходом усилителя промежуточной частоты, порогового блока, второй вход которого через линию задержки соединен с его выходом, ключа, второй вход которого соединен с выходом усилителя промежуточной частоты, фазового детектора и блока регистрации, к выходу удвоителя фазы последовательно подключены делитель фазы на два и узкополосный фильтр, выход которого соединен со вторым входом фазового детектора.



 

Похожие патенты:

Изобретение относится к области систем радиосвязи, а именно к мобильному тегу локальной системы представления данных идентификации грузов. Техническим результатом является обеспечение возможности отслеживания мобильного тега для того, чтобы обеспечить контроль условий безопасности во время движения объекта.

Устройство относится к многофункциональной системе мониторинга стационарных и подвижных объектов. Техническим результатом является расширение арсенала средств для мониторинга стационарных и подвижных объектов.

Изобретение относится к средствам обеспечения безопасности, защиты и спасения человека в условиях движения на крупных автомагистралях и на железнодорожных переездах.

Изобретение относится к способам дистанционного охранного мониторинга местности и может быть использовано в случаях применения средств обнаружения с протяженной обрывной линейной частью, для сигнализационного прикрытия четырехсторонних перекрестков дорог.

Изобретение относится в целом к области видеонаблюдения и более конкретно к способу управления системой мониторинга леса. Технический результат заключается в повышении надежности обнаружения (вероятности обнаружения), уменьшении вероятности ложного срабатывания, или ложного обнаружения объекта, уменьшении времени, необходимого на обнаружение, на осмотр и анализ информации о территории.

Изобретение относится к устройствам автоматизированной идентификации и контроля состояния объектов (контейнеров) с опасными веществами (химическими, радиоактивными), находящимися на долговременном хранении в условиях стационарных хранилищ.

Изобретение относится к системам сбора, приемо-передачи, контроля и обработки данных для охранно-пожарной сигнализации с возможностью автоматизированного управления.

Изобретение относится к области определения местоположения пользователя в беспроводной сети. Технический результат заключается в реализации назначения изобретения.

Изобретение относится к области маркшейдерско-геодезического мониторинга и может быть использовано для обеспечения безопасности разработки месторождений нефти и газа.

Изобретение относится к способам обработки радиолокационных изображений (РЛИ). Достигаемый технический результат - повышение быстродействия обработки РЛИ.

Изобретение может быть использовано при построении различных радиолокационных или аналогичных систем, предназначенных для определения местоположения летательного аппарата (ЛА).

Изобретение относится к области ближней локации. Достигаемый технический результат - повышение точности фиксации дальности до распределенного или слабоконтрастного точечного объекта, а также обеспечение высокой помехоустойчивости за пределами рабочей дальности и инвариантности работы автономной информационной системы (АИС) по отношению к типу цели.

Использование: изобретение относится к области горно-экологического мониторинга земной поверхности в зонах геодинамического риска и горно-геологического обоснования застройки месторождений полезных ископаемых.

Изобретение предназначено для определения местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - повышение точности определения координат местоположения ИРИ.

Способ обнаружения радиоизлучения в ближней зоне источника предназначен для выявления факта скрытой установки источников радиоизлучения в пределах охраняемой территории с помощью обнаружителя, работающего в статическом режиме.

Изобретение относится к области радиотехники и касается акустооптического интерферометра. Акустооптический интерферометр состоит из антенной решетки, источника когерентного излучения, коллиматора, акустооптического модулятора с четырьмя пьезопреобразователями, фурье-линзы, матричного фотоприемника и цифрового процессора.

Изобретение относится к области космической радионавигации и может быть использовано для повышения помехоустойчивости интегрированной системы ориентации и навигации (ИСОН) объекта.

Изобретение относится к средствам и способам обозначения места нахождения (падения, вынужденной посадки) потерпевшего бедствие воздушного судна, его экипажа и пассажиров, нуждающихся в экстренной помощи, обеспечивающим сокращение сроков их поиска и своевременное оказание необходимой помощи.
Наверх