Люминесцентный способ определения тербия


 


Владельцы патента RU 2506569:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова (RU)

Изобретение относится к области аналитической химии, а именно к способу люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее соединение с органическим реагентом. В качестве реагента используют 1,2-диоксибензол-3,5-дисульфокислоту (ДБСК) и в раствор люминесцирующего комплексного соединения тербия с ДБСК добавляют этилендиаминтетрауксусную кислоту (ЭДТА) в соотношении Тb:ДБСК:ЭДТА=1:1:1 при рН=12,0-13,0. Изобретение позволяет повысить чувствительность, селективность и точность анализа. 1 пр.

 

Изобретение относится к области аналитической химии - к способам люминесцентного определения тербия, и может быть использовано для определения следовых количеств тербия при анализе смеси оксидов редкоземельных элементов, природных вод.

Известны способы люминесцентного определения тербия в комплексе с органическими реагентами - с налидисовой (1-этил-7-метил-4-ОН-1,8-нафтизидин-3-карбоновой) кислотой, с L,α-метил-β-(3,4-диоксифенил) аланином, в комплексах с производными пирозалона [Н.С.Полуэктов, Л.И.Кононенко, Н.П.Ефрюшина, С.В.Бельтюкова. Спектрофотометрические и люминесцентные методы определения лантанидов. - Киев: Наукова думка, 1989. - С.120].

Наиболее близким по технической сущности и достигаемому результату является способ люминесцентного определения тербия с применением 1,2-диокси-3,5-дисульфокислоты [Полуэктов Н.С., Алакаева Л.А., Тищенко М.А. Журн. Аналит. Химии. - 1970. - Т.25. - №12. - С.235].

Недостатком этого способа определения тербия является тушение люминесценции тербия в присутствии РЗЭ с недостроенной 4f-оболочкой, недостаточная чувствительность, селективность и устойчивость во времени стояния и облучения.

Задачей изобретения является определение тербия на фоне смеси других РЗЭ, отсутствие влияния других РЗЭ с недостроенной 4f-оболочкой, снижение предела обнаружения, повышение устойчивости люминесцентного определения тербия во времени стояния и облучения.

Результат достигается тем, что в качестве комплексообразователя используют органический реагент (R) - 1,2-диоксибензол-3,5-дисульфокислота (ДБСК) и в раствор люминесцирующего комплексного соединения тербия с ДБСК приливают раствор этилендиаминтетрауксусной кислоты (ЭДТА) в соотношении Тb:ДБСК:ЭДТА=1:1:1, затем 10%-ным раствором КОН создают рН=(12-13)±0,1.

Получаемое соединение тербия с органическим реагентом ДБСК в присутствии ЭДТА при облучении ультрафиолетовым светом ртутной лампы СВД-120А дает интенсивную люминесценцию зеленого цвета, устойчивую во времени стояния при λTb=546 нм.

Раствор комплекса тербия с ДБСК в присутствии ЭДТА способствует повышению селективности аналитических определений за счет присоединения одной молекулы ЭДТА. В растворах комплексов отсутствует влияние посторонних элементов на люминесцирующий ион, что связано с нахождением в молекуле комплекса всего одного иона металла и отсутствием полимеризации. Указанное влияние ЭДТА на комплекс тербия способствует повышению чувствительности, воспроизводимости и позволяет проводить определение тербия по калибровочному графику и методом сравнения со стандартными образцами.

Пример. Определение тербия в смеси оксидов РЗЭ и природных водах.

Для приготовления растворов хлоридов лантанидов их оксиды предварительно прокаливают в течение одного часа в муфельной печи при температуре 650-700°С и охлаждали в эксикаторе. Навеску оксидов лантанидов, по расчетам концентрации 1·10-2 М, обрабатывают соляной кислотой и Н2O2, а затем раствор выпаривают. Сухой остаток растворяют в дистиллированной воде. Растворы с меньшей концентрацией РЗЭ готовят соответствующим разбавлением. Концентрацию стандартного раствора хлорида тербия контролируют комплексонометрическим методом. Титрование проводят в присутствии уротропина, в качестве индикатора используется арсеназо I. При определении содержания ионов тербия в смеси оксидов РЗЭ на рабочих приборах ширина щели подбирается небольшой и одинаковой при работе со стандартными образцами и анализируемыми растворами.

Раствор ДБСК концентрации 10-5 М готовят соответствующим разбавлением более концентрированного водного раствора.

Раствор ЭДТА концентрации 10-5 М готовят растворением ее натриевой соли в дистиллированной воде. Соответствующим разбавлением готовят раствор меньшей концентрации. Кислотность среды создают 10%-ным раствором КОН до рН=(12-13)±0,1. Измерение рН растворов проводят с помощью универсального иономера ЭВ-74 со стеклянными электродами, прокалиброванными по стандартным буферным растворам. Для определения тербия в оксидах РЗЭ применяли калибровочный график и метод добавок.

Люминесценцию возбуждают ультрафиолетовым светом ртутной лампы СВД-120А, находящейся в осветителе ОИ-18А, снабженном кварцевым конденсором и светофильтром УФС-1,2. Для регистрации спектров люминесценции использовалась люминесцентная установка, снабженная спектрометром ДФС-24 с самописцем КСП-4. Интенсивность люминесценции комплексов регистрировали при λ=546 нм. По величине пиков люминесценции растворов пробы и пробы с добавками рассчитывали содержание тербия в анализируемом образце. Приемником служил фотоумножитель ФЭУ-79.

Предложенный способ позволяет определять тербий в смеси оксидов РЗЭ, природных водах с пределом обнаружения n·10-11 г/мл, минуя методы концентрирования. По сравнению с известным методом в нем отсутствует влияние других РЗЭ на интенсивность люминесценции тербия в комплексе с ДБСК и ЭДТА при определении его в различных объектах (λ=546 нм; рН=(12,0-13,0)±0,1; состав Тb:ДБСК:ДЭСК=1:1:1, при CTB=2·10-5 М, СДБСКЭДТK=5·10-5; tст=1,5 часа; растворы комплексов устойчивы в течение tобл.=10 мин).

Люминесцентный способ определения тербия, включающий перевод его в люминесцирующее соединение с органическим реагентом, отличающийся тем, что в качестве органического реагента используют 1,2-диоксибензол-3,5-дисульфокислоту и в люминесцирующее комплексное соединение приливают этилендиаминтетрауксусную кислоту, при следующем соотношении компонентов:
Tb:ДБСК:ЭДТА=1:1:1 при рН=12,0-13,0.



 

Похожие патенты:

Изобретение относится к способу измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали. Способ характеризуется тем, что включает следующие стадии: стадия 1: выбирают два растворимых в воде химических вещества, которые содержат элементы P, Ca, Ti, Ba или Sr и не вступают в реакцию с жидкостью для нанесения не содержащего хром покрытия; стадия 2: добавляют два растворимых в воде химических вещества, выбранные на стадии 1, в жидкость для нанесения не содержащего хром покрытия и перемешивают их до гомогенности, после чего изготавливают эталонный образец пленки покрытия; стадия 3: используют излучение, испускаемое прибором определения в автономном режиме толщины пленки, для возбуждения двух растворимых в воде химических веществ для получения характеристических спектров двух растворимых в воде химических веществ и, тем самым, определения толщины пленки покрытия эталонного образца; толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает интенсивным характеристическим спектром, принимают за фактическую толщину пленки, в то время как толщину пленки покрытия, определенную при использовании растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, принимают за измеренную толщину пленки, разницу между фактической толщиной пленки и измеренной толщиной пленки принимают за величину коррекции толщины; многократно проводят операции получения величин коррекции толщины, соответствующие измеренным толщинам пленки, в результате аппроксимации величин коррекции толщины и измеренной толщины пленки получают выражение корреляционной функции между измеренной толщиной пленки и величиной коррекции толщины; стадия 4: добавляют в жидкость для нанесения не содержащего хром покрытия растворимого в воде химического вещества, которое обладает слабым характеристическим спектром, и используют излучение, испускаемое прибором определения в режиме реального времени толщины пленки покрытия, для возбуждения вещества и для получения, таким образом, измеренной толщины пленки, после чего используют выражение корреляционной функции для получения величины коррекции толщины, и, в заключение, исходя из измеренной толщины пленки и величины коррекции толщины получают фактическую толщину пленки покрытия.

Изобретение относится к технологии производства изделий, в которых в той или иной степени используется сшитый полиэтилен, который может быть использован при производстве электрических кабелей, труб для газоводоснабжения и др.

Изобретение относится к измерительному устройству для определения по меньшей мере одного параметра пробы крови, с проточной измерительной ячейкой (1), в которой размещен по меньшей мере один люминесцентно-оптический сенсорный элемент (ST, SO, SG), приводимый в контакт с пробой крови, с по меньшей мере одним источником (4) света для возбуждения люминесцентно-оптического сенсорного элемента и по меньшей мере одним фотодетектором (6) для приема излученного люминесцентно-оптическим сенсорным элементом люминесцентного излучения.

Изобретение относится к области оптоэлектронной техники, микро- и наноэлектроники и может быть использовано для определения профиля распределения концентрации носителей заряда в полупроводниковой квантово-размерной структуре.

Изобретение относится к технологии водообработки и анализу состава природных и сточных вод, конкретно к устройствам, которые можно использовать для контроля содержания растворенных и диспергированных в сточных водах примесей.

Изобретение относится к устройствам для бесконтактного неразрушающего исследования электрофизических характеристик материалов, в частности, к устройствам исследования их люминесцентных свойств.

Изобретение относится к медицине, а именно к спектроскопическому способу определения в реальном времени скорости абляции в сердечной ткани in-vivo. .

Изобретение относится к измерительной технике, позволяет проводить измерение бриллюэновского сдвига частоты в зависимости от координат по длине волоконно-оптического чувствительного элемента.

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО3)3·6Н2O или Се(СН3СОО)3·Н2O, получение спиртового раствора стабилизатора золя органического N-содержащего соединения: N,N-диметилоктиламина, тетраэтиламмоний гидроксида или моноэтаноламина с концентрацией 0,45-3,30М, 0,37М и 0,016М, получение золя в водно-органической системе соединением составленных растворов, упаривание водно-органической системы, формирование геля и термообработка геля в интервале температур 95-500°С по ступенчатому графику, причем в качестве стабилизатора золя используют одно из следующих низкомолекулярных органических N-содержащих соединений (N): N,N-диметилоктиламин, тетраэтиламмоний гидроксид, моноэтаноламин в виде спиртового раствора при мольном отношении N/металл, равном 1-20.

Изобретение относится к технологии получения новых соединений с высокими значениями магнитосопротивления и может быть использовано в химической промышленности, микроэлектронике, для создания магниторезистивных датчиков в криогенной и космической магнитометрии.

Изобретение может быть использовано в химической промышленности. Способ переработки фосфогипса включает стадийное агитационное сернокислотное выщелачивание редкоземельных металлов (РЗМ) и фосфора с подачей серной кислоты на головную стадию, использование полученного раствора выщелачивания головной стадии на последующих стадиях выщелачивания, выделение нерастворимого остатка из пульпы хвостовой стадии и его водную промывку, переработку раствора выщелачивания хвостовой стадии с получением маточного раствора, использование маточного и промывного растворов в обороте для выщелачивания.

Изобретение может быть использовано в микроэлектронике. Для получения сложного оксида иттрия, бария и меди YBa2Cu3O7-δ из водного раствора, содержащего нитраты иттрия, бария и меди, проводят совместную сорбцию иттрия, бария, меди в заданном мольном соотношении Y:Ba:Cu=1:2:3 на стадии сорбции из указанного раствора на карбоксильном катионите КБ-4п-2.

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью.

Изобретение относится к области переработки отходов, в частности золошлаковых отходов ТЭЦ. Золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент в количестве 10-25 кг на тонну золы.
Изобретение относится к области неорганической химии, а именно к получению порошков, которые могут применяться в лазерной технике и оптическом приборостроении. Способ получения порошков фторсульфидов редкоземельных элементов (РЗЭ) включает приготовление шихты и последующую ее термическую обработку.
Изобретение относится к неорганической химии и касается способа получения комплексного хлорида скандия и щелочного металла. Металлический скандий смешивают с дихлоридом свинца и солью щелочного металла.

Изобретение относится к области неорганической химии, а именно к способу получения порошков твердых растворов оксисульфидов редкоземельных элементов, для изготовления керамических изделий, люминофоров и лазерных материалов.

Изобретение относится к неорганическим красителям, а именно к неорганическим пигментам, в частности, к составам для окрашивания на основе молибдата кальция, допированного редкоземельным элементом церием с окраской от оранжево-желтого до желтого цвета, которые могут быть использованы в лакокрасочной промышленности, производстве пластмасс, керамики, строительных материалов.

Изобретения могут быть использованы в области охраны окружающей среды. Способ получения катализатора включает введение неблагородного металла в виде гидроксида аммония или аммиачного комплекса, или в виде органического аминового комплекса, или в виде гидроксидного соединения в активный в окислительно-восстановительных реакциях кубический флюоритный CeZrOx материал при основных условиях. Катализатор окисления включает первичный каталитический активный металл из группы благородных металлов, нанесенный на носитель, а также вторичный каталитический активный компонент, который получен путем ионного обмена между поверхностью кубического флюоритного CeZrOx материала и раствором неблагородного металла и необязательно цеолита. Полученные катализаторы используют в каталитическом устройстве, располагая один из них на субстрате, вокруг которого расположен корпус. Полученные катализаторы также используют в способе обработки выхлопных газов, пропуская выхлопные газы над ними. Изобретения позволяют получить катализаторы для дизельных двигателей, обладающие устойчивостью к гидротермальной обработке и к действию ядов в условиях системы выпуска отработавших газов дизельного двигателя, а также достигнуть высокой степени превращения загрязнителей при более низких температурах. 6 н. и 20 з.п. ф-лы, 20 ил., 4 пр.
Наверх