Система топливного элемента



Система топливного элемента
Система топливного элемента

 


Владельцы патента RU 2510549:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный морской технический университет" (RU)

Изобретение относится к системам топливных элементов, использующих в качестве топливного газа водород. Техническим результатом заявляемого изобретения является обеспечение регулирования расходных характеристик системы циркуляции реагента в зависимости от требуемого для работы топливного элемента количества реагента.

Устройство содержит топливный элемент, использующий газообразный реагент, систему хранения реагента и систему его подачи в топливный элемент, в состав которой входит система циркуляции реагента, включающая блок струйных аппаратов, регуляторы сечения, запорные клапана, причем блок струйных аппаратов содержит по крайней мере два струйных аппарата с разными проходными сечениями и расходными характеристиками, которые соединены параллельно таким образом, что имеют общий напорный коллектор, общую приемную камеру и общий выходной коллектор, при этом перед напорным коллектором установлены электромагнитный запорный клапан, резервный электромагнитный запорный клапан и регулятор сечения, соединенные кабелями с электрическим контроллером. Также при необходимости перед соплами струйных аппаратов могут быть установлены регуляторы сечения, соединенные кабелями с электрическим контроллером. 1 з.п.ф-лы, 2 ил.

 

Изобретение относится к системам топливных элементов, использующим в качестве топливного газа водород.

Известна система топливного элемента по патенту РФ №2364991, H01M 8/04, 2009, содержащая средство хранения, в котором хранится жидкий водород, топливный элемент, который использует газообразный водород в качестве топливного газа, средство подачи топлива, которое подает газообразный водород к аноду топливного элемента, систему циркуляции водорода и средство подачи газа выкипания, которое подает газ выкипания, образовавшийся в средстве хранения, в систему циркуляции водорода. При этом средство, осуществляющее циркуляцию водорода, является водородным насосом, а контроллер количества циркулирующего водорода регулирует частоту вращения насоса, когда средство определения устанавливает, что газ выкипания подается в систему циркуляции водорода.

Основной недостаток известной схемы заключается в дополнительных затратах энергии, потребляемой циркуляционным водородным насосом, что в особенности сказывается на малых нагрузках топливного элемента.

Наиболее близким к заявляемому техническому решению является изобретение по патенту США №7550219, 2009. Данная система включает в себя топливный элемент, систему хранения водорода и его подачи к топливному элементу, а также систему циркуляции водорода, в состав которой входят как минимум три струйных аппарата (эжекторных насоса) с разными расходными характеристиками, объединенных в единый корпус (блок), обеспечивающий работу только одного из струйных аппаратов или отключение всех трех аппаратов. При этом в систему циркуляции может быть включен параллельно первому блоку еще как минимум один корпус (блок), объединяющий как минимум три струйных аппарата с характеристиками, отличными от аппаратов, располагаемых в первом корпусе.

К недостаткам прототипа можно отнести технологичную сложность конструкции, а также снижение ее надежности и ресурса службы, вызванные изменением со временем характеристик уплотнительных элементов, обеспечивающих герметизацию одного струйного аппарата от другого, особенно с учетом повышенной текучести водорода. Кроме того, конструктивное оформление блока струйных аппаратов, заявляемое в прототипе, подразумевает, что все они имеют одну длину, что приводит к снижению КПД аппаратов, имеющих большие сечения.

Заявляемое изобретение решает задачу повышения технологичности и надежности системы циркуляции газообразного реагента (водорода или кислорода), уменьшения ее габаритов, а также позволяет обеспечить регулировку количества подаваемого реагента в зависимости от текущей нагрузки на топливный элемент и текущего значения давления в системе циркуляции реагента.

Одна из проблем, встающих перед разработчиком системы подачи реагента в топливный элемент, заключается в обеспечении регулировки количества подаваемого реагента в зависимости от текущей нагрузки на топливный элемент.

При этом рециркуляция неизбежно сопровождается дополнительными потерями энергии. Поэтому оптимизация системы рециркуляции (контура циркуляции) приобретает важное значение с точки зрения КПД электрохимического генератора.

Техническим результатом заявляемого изобретения является обеспечение регулирования расходных характеристик системы циркуляции реагента в зависимости от требуемого для работы топливного элемента количества реагента.

Технический результат достигается тем, что система топливного элемента содержит топливный элемент, использующий газообразный реагент, систему хранения реагента и систему его подачи в топливный элемент, в состав которой входит система циркуляции реагента, включающая блок струйных аппаратов, регуляторы сечения, запорные клапана, причем блок струйных аппаратов содержит по крайней мере два струйных аппарата с разными проходными сечениями и расходными характеристиками, которые соединены в нем параллельно таким образом, что имеют общий напорный коллектор, общую приемную камеру и общий выходной коллектор, при этом перед напорным коллектором установлены электромагнитный запорный клапан, резервный электромагнитный запорный клапан и регулятор сечения, соединенные кабелями с электрическим контроллером. Также при необходимости перед соплами струйных аппаратов могут быть установлены регуляторы сечения, соединенные кабелями с электрическим контроллером.

Предлагаемое изобретение поясняется следующими чертежами:

- на фиг.1 показана принципиальная схема предлагаемой системы топливного элемента с блоком из трех струйных аппаратов;

- на фиг.2 показан продольный разрез блока струйных аппаратов.

На фиг.1 приведена принципиальная схема предлагаемого изобретения. Топливный элемент 1 соединен с системой хранения реагента 2 посредством системы подачи реагента 3 и входящего в ее состав контура циркуляции 4. На входе в контур циркуляции установлены по крайней мере один запорный электромагнитный клапан 5, по крайней мере один резервный запорный клапан 6, а также регулятор сечения 7, соединенные кабелями с электрическим контроллером 8. В состав контура циркуляции входит блок 9 струйных аппаратов, включающий соединенные параллельно как минимум три струйных аппарата 10. При этом струйные аппараты 10 имеют общий напорный коллектор 11, общую приемную камеру 12 и общий выходной коллектор 13. За напорным коллектором 11 установлены регуляторы сечения 14, соединенные кабелями с электрическим контроллером 8.

На фиг.2 изображен продольный разрез блока 9 струйных аппаратов по осям симметрии двух из них. К напорному коллектору 11 присоединены трубопроводы, в которых установлены регуляторы сечения 14, при этом к трубопроводам подсоединены сопла 15 струйных аппаратов 10, выходящие в приемную камеру 12. Между приемной камерой 12 и выходным коллектором 13 расположены и герметизированы путем сжатия тела 16 струйных аппаратов 10. При этом каждый струйный аппарат 10 имеет свои расходные характеристики, определяемые геометрическими характеристиками конфузора 17, цилиндрической части 18 и диффузора 19.

Система топливного элемента работает следующим образом.

Топливный элемент 1 использует для работы реагент, находящийся в системе хранения 2. Реагент из системы хранения 2 поступает в систему подачи 3, из нее - в контур циркуляции 4, а далее - в топливный элемент 1. При этом на входе в контур циркуляции 4 установлен запорный электромагнитный клапан 5, в случае отказа которого в работу вводится резервный запорный клапан 6. Получив реагент для работы, топливный элемент 1 создает на выходе ЭДС холостого хода. В дальнейшем, при увеличении нагрузки на топливный элемент 1, количество потребляемого реагента возрастает. При этом необходимо обеспечить постоянство давления реагента в контуре циркуляции 4 на входе в топливный элемент 1, учитывая неравномерность нагрузки на него.

Эту задачу решает, с одной стороны, электрический контроллер 8, который регулирует открытие и изменение проходного сечения регулятора сечения 7 в зависимости от текущей нагрузки на топливный элемент 1, которая влияет на текущее значение давления реагента на входе в топливный элемент 1. Установки контроллера 8 производятся вручную оператором или по команде компьютерного вычислителя.

С другой стороны, количество подаваемого к топливному элементу реагента регулируется за счет работы струйных аппаратов 10, обеспечивающих циркуляцию реагента. Реагент, поступивший в топливный элемент 1, расходуется не полностью, и после прохождения топливного элемента 1 поступает в контур циркуляции 4, откуда подается в приемную камеру 12 блока 9 струйных аппаратов 10. Реагент, нагнетаемый через сопла 15 струйных аппаратов 10, смешивается внутри конфузора 17 с реагентом, поступившим в приемную камеру 12 и, проходя через цилиндрическую часть 18 и диффузор 19, поступает в топливный элемент 1.

Малый расход реагента обеспечивается за счет работы струйного аппарата 10, имеющего минимальное проходное сечение и рассчитанного на запуск при малом давлении в напорном коллекторе 11. Остальные струйные аппараты при этом работают на малых нагрузках. По мере увеличения нагрузки на топливный элемент требуется обеспечить больший расход реагента, для чего электрический контроллер 8 увеличивает проходное сечение регулятора сечения 7, повышая давление реагента в напорном коллекторе 11. При увеличении давления происходит запуск второго струйного аппарата 10, имеющего большую по сравнению с первым аппаратом расходную характеристику. Аналогично при дальнейшем увеличении давления в напорном коллекторе 11 запускается третий струйный аппарат 10, и последующие струйные аппараты 10, при условии их наличия. Также работа струйных аппаратов 10 может регулироваться с помощью электрического контроллера 8, изменяющего проходные сечения регуляторов сечения 14.

При этом важно то, что параллельное расположение нескольких струйных аппаратов 10 в блоке 9 позволяет существенно сократить максимальную их длину, которая для одного аппарата, способного обеспечить такой же расход реагента, может превышать указанную длину в десять и более раз. Таким образом, решается задача уменьшения габаритов системы топливного элемента, что играет существенную роль при проектировании морской и подводной техники.

Наличие в системе топливного элемента резервного клапана 6 повышает надежность работы системы, что также особенно важно при ее использовании в качестве источника электроэнергии для морских необитаемых и обитаемых подводных аппаратов.

Таким образом, в зависимости от потребностей нагрузки возможно оперативное и эффективное управление подачей в топливный элемент реагента сравнительно простыми известными техническими элементами автоматики, что определяет высокую технологичность заявляемого устройства и его реализацию.

1. Система топливного элемента, содержащая топливный элемент, использующий газообразный реагент, систему хранения реагента и систему его подачи в топливный элемент, в состав которой входит система циркуляции реагента, включающая в себя регуляторы сечения, запорные клапана и струйные аппараты, отличающаяся тем, что система циркуляции реагента содержит блок струйных аппаратов, включающий по крайней мере два струйных аппарата с разными проходными сечениями и расходными характеристиками, соединенных параллельно таким образом, что аппараты имеют общий напорный коллектор, общую приемную камеру и общий выходной коллектор, при этом перед напорным коллектором установлены электромагнитный запорный клапан, резервный электромагнитный запорный клапан и регулятор сечения, соединенные кабелями с электрическим контроллером.

2. Система по п.1, отличающаяся тем, что перед соплами струйных аппаратов установлены регуляторы сечения, соединенные кабелями с электрическим контроллером.



 

Похожие патенты:

Топливный элемент и батарея топливных элементов относятся к области химических источников тока с прямым преобразованием химической энергии окисления водорода кислородом воздуха в электрическую энергию.

Изобретение относится к энергетике и может использоваться в автономных, резервных, мобильных аэродромных и авиационных энергоустановках. .

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ) и может быть использовано при производстве и эксплуатации указанных энергоустановок.

Изобретение относится к топливным элементам, в частности к эксплуатации топливного элемента при определенных температурах. .

Изобретение относится к покрытым золотой оболочкой частицам, применимым в качестве электрокатализаторов для топливных элементов. .
Изобретение относится к области электрохимии, в частности к разделу прямого преобразования химической энергии в электрическую, и может быть использовано в производстве сепараторов для топливных элементов со щелочным электролитом (ТЭЩЭ).

Изобретение относится к способу соединения разнородных материалов, имеющих различную пластичность, композиту разнородных материалов и электрохимическому устройству.

Изобретение относится к наноразмерному катализатору прямого электроокисления боргидридов щелочных металлов. .

Изобретение относится к новому катоду со стабильным потенциалом для электровосстановления кислорода воздуха в боргидридных топливных элементах. .

Изобретение относится к новому электролиту для топливного элемента прямого электроокисления боргидрилов щелочного металла и может быть использовано в автономных источниках водорода, для питания водородно-воздушных топливных элементов, а также в топливных элементах прямого окисления растворенного топлива.

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные друг с другом через резервуар сбора воды и пневматически сообщающиеся с баллонами хранения водорода и кислорода, последний из которых соединен с системой обеспечения жизнедеятельности космического аппарата пневмомагистралью с запорным элементом, металло-водородный аккумулятор, имеющий штуцер для водорода, через который он соединен с баллоном хранения водорода пневмомагистралью с запорным элементом. Способ эксплуатации указанной системы включает осуществление замкнутого цикла реакций разложения воды током на водород и кислород, стехиометрическое соединение этих газов с получением электричества и воды с отбором из этого цикла кислорода, избыток водорода используют в качестве реагента в металло-водородном аккумуляторе, который предварительно заряжают, удаляя из него образующийся при этом водород. Технический результат - сохранение энергоемкости утилизация избыточного водорода, повышение безопасности системы. 2 н.п. ф-лы, 1 ил.

Заявленное изобретение относится к твердым окисным топливным элементам (ТЭ), полученным в соответствии со способом, в котором имеют место стадии: - нанесения слоя топливного электрода: слоя электролита, содержащего стабилизированный цирконий, на слой топливного электрода для получения системы из основы топливного электрода и электролита; - спекания системы из основы топливного электрода и электролита друг с другом для получения полуэлемента; - нанесения на слой электролита предварительно спеченного полуэлемента одного или более слоев кислородного электрода, причем, по меньшей мере, один из слоев содержит композит из лантан-стронций-манганита и стабилизированного циркония для получения полного твердого окисного элемента; - спекания одного или более слоев кислородного электрода с предварительно спеченным полуэлементом; а также пропитки марганцем одного или более слоев кислородного электрода полного твердого окисного элемента для получения пропитанного марганцем ТЭ. Предложена также батарея, содержащая один или более твердых окисных элементов, выполненных в соответствии с предложенным способом. Повышение срока службы указанного ТЭ является техническим результатом заявленного изобретения. 2 н. и 11 з.п. ф-лы, 7 ил., 20 пр.

Изобретение относится к области электротехники, в частности к энергоустановкам для совместной выработки электроэнергии и теплоты, использующим углеводородное топливо и предназначенным для локальных потребителей. Установка содержит подсистему автотермической переработки топлива с нейтрализацией оксида углерода, подсистему выработки электроэнергии с контуром термостабилизации и батареей топливных элементов, подсистему воздухоснабжения, подсистему водоснабжения с емкостью для регенерированной воды, подсистему нейтрализации выхлопных газов и средства подготовки к запуску. Узлы смешивания, подогрева и реформинга реагентов в топливном процессоре выполнены в виде раздельных независимых блоков, контур термостабилизации выполнен изолированным от системы регенерации воды, увлажнитель воздуха включен в поток выходного воздушного потока, а подсистема подготовки к пуску снабжена дополнительными каналами подведения топлива и воздуха к подсистеме утилизации выхлопных газов, коммутируемыми трехходовыми клапанами. Установка оснащена системой автоматического управления. Повышение экономичности расхода топлива и надежности энергоустановки за счет повышения автономности подсистем и минимизации перекрестных связей между узлами является техническим результатом изобретения. 2 ил.

Изобретение относится к источникам энергии, в частности к воздушно-алюминиевым топливным батареям. Техническим результатом изобретения является повышение удельной мощности топливной батареи за счет уменьшения ее габаритных размеров. Указанный технический результат достигается тем, что электроды выполнены в виде упруго связанного между собой набора пластин, образуя плоскую пружину сжатия, которая, разжимаясь от пускового механизма, сжимает и нарушает герметичность эластичной емкости с электролитом, который, вытекая из емкости, заполняет межэлектродное пространство, при этом эластичная емкость с электролитом прокалывается установленными внутри нее штырями, в процессе активизации входящими в отверстия, выполненные в электродах, а штыри выполнены в виде перфорированных трубок. Способ активизации топливной батареи позволяет повысить удельную мощность топливной батареи в результате уменьшения ее габаритных размеров за счет того, что до активизации батареи эластичная емкость с электролитом занимает рабочий объем батареи, который освобожден от электродов путем их сжатия. 2 з.п. ф-лы,3 ил.

Настоящее изобретение относится к газогенератору для конверсии топлива в обедненный кислородом газ и/или обогащенный водородом газ, который может быть использован в любом процессе, требующем обедненного кислородом газа и/или обогащенного водородом газа, предпочтительно, используют его для генерирования защитного газа или восстановительного газа для запуска, выключения или аварийного отключения твердооксидного топливного элемента (SOFC) или твердооксидного элемента электролиза (SOEC). Настоящее изобретение предлагает способ конверсии топлив в обедненный кислородом газ и/или обогащенный водородом газ, который предусматривает каталитическое сжигание топлива в первой каталитической горелке, сжигание дымового газа во второй каталитической горелке, а также снижение количества кислорода и моноокиси углерода. Изобретение позволяет увеличивать работоспособность твердооксидных топливных элементов и обеспечить безопасность их работы. 3 н. и 10 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к подводной лодке, содержащей устройство для производства электроэнергии. Технический результат - повышение компактности с одновременной оптимизацией КПД. Устройство для производства электроэнергии включает в себя топливный элемент, средства подачи газообразного кислорода газа, средства подачи углеводородного топлива и средства отвода отработавших газов, отличающееся тем, что топливный элемент является элементом с внутренним риформингом, работающим при высокой температуре и высоком давлении (P), причем рабочее давление больше или равно давлению погружения (P0) подводной лодки, тем, что средства подачи газообразного кислорода и средства подачи углеводородного топлива способны доставлять газообразный кислород и углеводородное топливо при давлении, согласующимся с рабочим давлением, и тем, что средства отвода отработавших газов способны отводить отработавшие газы наружу из погруженной подводной лодки. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к способу снижения проницаемости мембраны по отношению к ионам ванадия. Способ включает введение катионного поверхностно-активного вещества, по меньшей мере, в часть поверхности мембраны и внутреннюю часть мембраны инкубацией мембраны в водный или водно-солевой раствор, содержащий катионное поверхностно-активное вещество или смесь катионных поверхностно-активных веществ. Также предложена ванадиевая редокс-батарея (варианты). Изобретение позволяет значительно снизить проницаемость катионообменных мембран по отношению к ионам ванадия, в особенности к Нафиону, для применения модифицированных мембран в ванадиевых редокс-батареях. 3 н. и 18 з.п. ф-лы, 2 табл., 19 пр.

Изобретение относится к электроду для топливного элемента, который содержит углеродные нанотрубки; катализатор для топливного элемента, нанесенный на углеродные нанотрубки; и иономер, обеспеченный так, чтобы покрывать углеродные нанотрубки и катализатор для топливного элемента, причем, если длина углеродных нанотрубок обозначена как La [мкм], а шаг между центрами углеродных нанотрубок обозначен как Ра [нм], то длина La и шаг Ра между центрами удовлетворяют двум выражениям, приведенным ниже: 30≤La≤240; и 0,351×La+75≤Ра≤250. Повышение выходной мощности топливного элемента за счет увеличения числа мест на углеродных нанотрубках для нанесения металлического катализатора на единицу площади является техническим результатом изобретения. 6 н. и 7 з.п. ф-лы, 1 табл., 17 ил.
Наверх