Тензометрический динамометр

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике). Задачей, на решение которой направлено изобретение, является повышение потребительских качеств динамометра за счет обеспечения максимально возможного проходного сечения его внутреннего канала, используемого для размещения коммуникаций. Это достигается тем, что в динамометре, содержащем симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней упругих балок, и выполнены с лысками напротив соответствующих пар упругих балок, связанных с кольцами промежуточного основания со стороны, противоположной соединенному с соответствующей парой упругих балок кольцевому основанию, и тензопреобразователи, размещенные на гранях упругих балок и упругих пластин, жесткие кольца промежуточного основания размещены напротив поперечных подрезов противолежащих продольных упругих балок, а на поверхности лысок этих колец выполнены поперечные выступы с профилем поверхности по форме подрезов соответствующих продольных упругих балок, отделенные от поверхности указанных подрезов зазором, величина которого выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке. 10 ил.

 

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике).

Известен тензометрический динамометр (см. авт. свид. СССР №1397756, кл. G01L 5/16, 1986 г.), содержащий два жестких опорных основания, последовательно соединенных через промежуточное основание двумя взаимно перпендикулярными парами параллельных между собой и симметричных относительно продольной оси упругих балок, и тензопреобразователи, размещенные на гранях промежуточного основания и напротив поперечных подрезов, выполненных на внутренней поверхности упругих балок, причем промежуточное основание размещено между обеими парами балок и соединено с ним со стороны, противоположной связанному с соответствующей парой опорному основанию.

Недостатками конструкции являются сложность монтажа измерительных схем с тензопреобразователями на гранях промежуточного основания и отсутствие внутреннего продольного канала, необходимого (например, при использовании в робототехнических системах) для размещения в его полости различных коммуникаций (кабелей, трубопроводов) и механизмов.

Известен тензометрический динамометр (см. авт. свид. СССР №1613886, кл. G01L 5/16, G01L 1/22, 1988 г.), содержащий симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней упругих балок, и выполнены с лысками напротив соответствующих пар балок, связанных с дополнительными кольцами со стороны, противоположной соединенному с соответствующей парой балок кольцевому основанию, и тензопреобразователи, размещенные на гранях балок и упругих пластин.

Динамометр обеспечивает измерение пяти компонент нагрузки, удобен для монтажа измерительных схем с тензопреобразователями и имеет внутренний продольный канал.

Рассмотренное последним техническое решение является наиболее близким аналогом к заявленному предложению и выбрано в качестве прототипа.

Недостатком конструкции этого динамометра при заданных внешних габаритных размерах является ограничение размера его внутреннего канала шириной дополнительных жестких колец промежуточного основания в месте расположения лысок, обеспечивающей необходимую жесткость и точность работы динамометра. Это снижает потребительские качества динамометра.

Задачей, на решение которой направлено заявленное изобретение, является повышение потребительских качеств динамометра.

Технический результат, который обеспечивается изобретением, заключается в обеспечении максимально возможного проходного сечения внутреннего канала, используемого для размещения коммуникаций, при сохранении необходимой жесткости конструкции и внешних габаритных размеров динамометра.

Этот технический результат достигается тем, что в известном техническом решении, выбранном в качестве прототипа и содержащем симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней упругих балок, и выполнены с лысками напротив соответствующих пар балок, связанных с кольцами промежуточного основания со стороны, противоположной соединенному с соответствующей парой балок кольцевому основанию, и тензопреобразователи, размещенные на гранях балок и упругих пластин, жесткие кольца промежуточного основания размещены напротив поперечных подрезов противолежащих продольных упругих балок, а на поверхности лысок указанных колец промежуточного основания выполнены поперечные выступы с профилем поверхности по форме подрезов соответствующих продольных упругих балок, отделенные от поверхности указанных подрезов зазором, величина которого выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке.

Сущность изобретения заключается в том, что выполнение дополнительных поперечных колец промежуточного основания с выступами, входящими в поперечные подрезы продольных упругих балок, обеспечивает возможность реализации замкнутой жесткой компоновки промежуточного основания и продольных упругих элементов динамометра при максимально возможном проходном сечении внутреннего канала в кольцах опорных и промежуточного оснований (отверстие внутреннего канала может быть выполнено почти до касания внутренней поверхности продольных упругих балок, при этом лыски колец промежуточного основания прорезаются отверстием канала и без поперечных выступов, расположенных в пространстве внутри поперечных подрезов противолежащих продольных упругих балок, кольца промежуточного основания распадаются на полукольца, нарушая целостность и жесткость конструкции). Это позволяет улучшить потребительские качества динамометра за счет расширения возможности размещения в полости его внутреннего канала различных коммуникаций и механизмов при сохранении необходимой жесткости конструкции без изменения ее габаритов. При этом работоспособность динамометра с таким большим каналом обеспечивается выполнением величины зазора между поверхностями подрезов упругих балок и выступов, превышающей величину деформации продольных упругих балок и упругих пластин при максимальной измеряемой нагрузке.

На фиг.1 показан общий вид предлагаемого динамометра; на фиг.2 - вид справа на фиг.1; на фиг.3 - вид сверху на фиг.1; на фиг.4 - разрез А-А на фиг.2; на фиг.5 - разрез В-В на фиг.2; на фиг.6-10 - электрические схемы соединения тензопреобразователей.

Динамометр содержит симметричные относительно продольной оси два жестких кольцевых основания 1 и 2, пару продольных, разнесенных в вертикальной плоскости упругих балок 3 с тензопреобразователями R1-R4 для измерения нормальной поперечной силы Y, пару продольных, разнесенных в горизонтальной плоскости упругих балок 4 с тензопреобразователями R5-R8 для измерения боковой поперечной силы Z и четыре продольные упругие пластины 5, крестообразно расположенные в поперечном сечении вдоль боковых граней упругих балок, с тензопреобразователями R17-R24 для измерения крутящего момента Мк. На внутренних поверхностях упругих балок 3 и 4 напротив тензопреобразователей R1-R4 и R5-R8 выполнены поперечные цилиндрические подрезы 6, служащие для повышения чувствительности и избирательности динамометра к поперечным силам. На боковых гранях упругих балок 3 размещены тензопреобразователи R9-R12 для измерения изгибающего момента в горизонтальной плоскости My, а на боковых гранях упругих балок 4 - тензопреобразователи R13-R16 для измерения изгибающего момента в вертикальной плоскости Mz. Тензопреобразователи R1-R4, R5-R8, R9-R12, R13-R16, R17-R24 соединены в мостовые измерительные схемы в соответствии с фиг.6-10. Концы продольных упругих пластин 5 соединены дополнительными жесткими поперечными кольцами 7 и 8, образуя структуру промежуточного основания динамометра типа «беличье колесо». Кольца 7 и 8 выполнены с лысками 9 и 10 для соответствующего размещения балок 3 и 4. Концы пары продольных упругих балок 3 соединены с жестким кольцевым основанием 1 и с дополнительным жестким поперечным кольцом 8, расположенным около основания 2, соответственно концы пары продольных упругих балок 4 соединены с жестким кольцевым основанием 2 и с дополнительным жестким поперечным кольцом 7, расположенным около основания 1.

Кольца 7 и 8 промежуточного основания размещены напротив поперечных подрезов 6 соответствующих противолежащих продольных упругих балок 3 и 4, а на поверхности лысок 9 и 10 указанных колец промежуточного основания выполнены поперечные жесткие выступы 11 с профилем поверхности по форме подрезов 6 соответствующих продольных упругих балок 3 и 4, отделенные от поверхности указанных подрезов зазором 12. Величина зазора выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке.

Таким образом, корпус динамометра имеет осесимметричную трубчатую конструкцию с жесткими 1, 2, 7, 8, 11 и упругими 3, 4, 5 элементами, при этом диаметр внутреннего канала ограничен практически только расстоянием между парами балок 3 и 4 (фиг.3 и 4). Силовая схема динамометра представляет собой последовательное соединение кольцевого основания 1 с кольцевым основанием 2 через пару балок 3, промежуточное основание с жесткими 7, 8, 11 и упругими 5 элементами и пару балок 4, при этом упругие элементы соответственно ориентированы по отношению к компонентам измеряемой нагрузки. Размещение упругих пластин 5 в пространстве между парами упругих балок 3 и 4 обеспечивает компактность и жесткость конструкции динамометра и его хорошие метрологические качества.

Работа динамометра осуществляется следующим образом.

Внешняя нагрузка прикладывается к кольцевому основанию 2. Компоненты внешней нагрузки создают поперечное (Y и Z), изгибающее (My и Mz) и крутящее (Мк) нагружения динамометра. При этом поперечная сила Y вызывает плоскопараллельное смещение кольцевого основания 2 и дополнительных жестких колец 7 и 8 в вертикальной плоскости относительно кольцевого основания 1 (фиг.2). Это приводит к изгибу балок 3 и соответствующему сжатию-растяжению тензопреобразователей R1-R4, а в измерительной диагонали моста (фиг.6) появляется электрический сигнал, пропорциональный поперечной силе Y. Подрезы 6 обеспечивают независимость показаний этого компонента динамометра от точки приложения силы.

Аналогично поперечная сила Z вызывает плоскопараллельное смещение кольцевого основания 2 и дополнительных жестких колец 7 и 8 в горизонтальной плоскости относительно кольцевого основания 1 (фиг.3), изгиб упругих балок 4, соответствующее сжатие-растяжение тензопреобразователей R5-R8 и появление электрического сигнала в измерительной диагонали моста (фиг.7), пропорционального поперечной силе Z.

Изгибающий момент My, действующий в горизонтальной плоскости, вызывает изгиб упругих балок 3, соответствующее сжатие-растяжение тензопреобразователей R9-R12 и появление электрического сигнала в измерительной диагонали моста (фиг.8), пропорционального величине изгибающего момента My.

Аналогично изгибающий момент Mz, действующий в вертикальной плоскости, вызывает изгиб упругих балок 4, соответствующее сжатие-растяжение тензопреобразователей R13-R16 и появление электрического сигнала в измерительной диагонали моста (фиг.9), пропорционального величине изгибающего момента Mz.

Крутящий момент Мк вызывает плоскопараллельный поворот дополнительных жестких поперечных колец 7 и 8 одно относительно другого, косой изгиб упругих пластин 5, соответствующее сжатие-растяжение тензопреобразователей R17-R24 и появление электрического сигнала в измерительной диагонали моста (фиг.10), пропорционального величине крутящего момента Мк. Симметрия конструкции обеспечивает слабую зависимость показаний этого компонента динамометра от действия изгибающих моментов и поперечных сил.

Тензометрический динамометр, содержащий симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней балок, и выполнены с лысками напротив соответствующих пар балок, связанных с дополнительными кольцами со стороны, противоположной соединенному с соответствующей парой балок кольцевому основанию, и тензопреобразователи, размещенные на гранях балок и упругих пластин, отличающийся тем, что в нем жесткие кольца промежуточного основания размещены напротив поперечных подрезов противолежащих продольных упругих балок, а на поверхности лысок указанных колец промежуточного основания выполнены жесткие поперечные выступы с профилем поверхности по форме подрезов соответствующих продольных упругих балок, отделенные от поверхности указанных подрезов зазором, величина которого выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке.



 

Похожие патенты:

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия колеса с рельсом. .

Изобретение относится к области машиностроения, в частности к испытаниям смазочно-охлаждающих технологических сред, используемых при резании металлов. .

Изобретение относится к области контроля и регистрации, измерения, обработки и хранения данных, а именно контроля состояния гибких соединений, используемых в различных сферах промышленности и отраслях народного хозяйства.

Изобретение относится к области обработки материалов резанием и может быть использовано для измерения составляющих силы резания. .

Изобретение относится к медицинской технике, а именно к устройствам для измерения усилий и/или моментов. .

Изобретение относится к устройству и способу определения вектора силы и может быть использовано в тактильном датчике для руки робота. .

Изобретение относится к способу и устройству определения вектора силы. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения боковой составляющей силы тяги жидкостных ракетных двигателей малой тяги.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой.

Изобретение может быть использовано для измерения малых давлений с повышенной чувствительностью и точностью. Тензорезисторный преобразователь силы содержит упругий элемент, выполненный за одно целое с опорном кольцом.

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера. .

Изобретение относится к области измерительной техники и может быть использовано для измерения усилий в подъемных устройствах. .

Изобретение относится к области машиностроения и транспорта. .

Изобретение относится к области измерительной техники, а именно к многоканальным измерительным устройствам для измерения сил и моментов, действующих на модель летательных аппаратов в аэродинамической трубе.

Изобретение относится к контрольно-измерительной технике, в частности, для измерения деформаций в различных конструкциях посредством поляризационно-оптических преобразователей и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия колеса с рельсом. .

Изобретение относится к силоизмерительной технике и может быть использовано при изготовлении весоизмерительных приборов. .

Изобретение относится к области измерительной техники, в частности к тензорезисторным преобразователям силы, и может быть использовано в разработке и изготовлении датчиков для измерения диапазонов малых давлений.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике. Устройство работает следующим образом. В двуплечих рычагах делаются отверстия таким образом, чтобы центры отверстий и оси вращения лежали в одной плоскости. Аналогично выполняются ответные отверстия в основании. Систему тяг в «расслабленном» состоянии устанавливают на основание. В совмещенные отверстия на двуплечих рычагах вставляют технологические штыри. После чего одну из тяг при помощи талрепа натягивают до необходимого состояния. Натяжение одной тяги приводит к перекосу системы и зажатию одного из технологических штырей в отверстии. Далее при помощи талрепа начинаем натягивать вторую тягу до полного освобождения штыря от зажима («перекоса»), образовавшегося при натяжении первой тяги. Освобождение другого технологического штыря из отверстия будет свидетельствовать о том, что отверстия в двуплечих рычагах полностью совместились. Далее, на полностью собранную тягу устанавливают предварительно оттарированный съемный элемент с закрепленными на нем тензодатчиками, предварительно закрепляя его с помощью зажимов. Вращая талреп, поднатягивают тягу до момента появления сигналов с тензодатчиков, выбирают провис тяги. После чего полностью ослабляют зажимы и вновь закрепляют съемный элемент уже с усилием, предотвращающим проскальзывание поджатых друг к другу тяги и съемного элемента. С этого момента съемный элемент и тяга работают на растяжение совместно как единый элемент тяги. Таким образом, изменяя площадь поперечного сечения съемного элемента, не меняя при этом геометрических размеров самой тяги, можно изменить степень деформации и измеряемое усилие, а также равномерно распределить управляющий момент на тяге, и тем самым максимально совместить диапазон измерений с рабочим диапазоном используемых тензодатчиков, что автоматически повышает точность измерения и снижает трудоемкость изготовления и контроля. 6 ил.

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники. Задачей, на решение которой направлено изобретение, является повышение потребительских качеств динамометра за счет обеспечения максимально возможного проходного сечения его внутреннего канала, используемого для размещения коммуникаций. Это достигается тем, что в динамометре, содержащем симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней упругих балок, и выполнены с лысками напротив соответствующих пар упругих балок, связанных с кольцами промежуточного основания со стороны, противоположной соединенному с соответствующей парой упругих балок кольцевому основанию, и тензопреобразователи, размещенные на гранях упругих балок и упругих пластин, жесткие кольца промежуточного основания размещены напротив поперечных подрезов противолежащих продольных упругих балок, а на поверхности лысок этих колец выполнены поперечные выступы с профилем поверхности по форме подрезов соответствующих продольных упругих балок, отделенные от поверхности указанных подрезов зазором, величина которого выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке. 10 ил.

Наверх