Способ радиолокации объектов в слабопроводящих средах



Способ радиолокации объектов в слабопроводящих средах
Способ радиолокации объектов в слабопроводящих средах
Способ радиолокации объектов в слабопроводящих средах

 


Владельцы патента RU 2513671:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" (RU)

Использование: изобретение относится к области техники, занимающейся подповерхностной радиолокацией объектов. Сущность изобретения заключается в зондировании среды сверхнизкочастотными гармоническими электромагнитными колебаниями. При этом производят периодическое переключение антенны с генератора на приемник таким образом, что в моменты подключения генератора приемник отключен, а в моменты отключения генератора антенна соединена с приемником. Частота генератора равна единицам, десяткам, сотням или тысячам Гц. Частота коммутации в десять и более раз превышает частоту генератора и кратна ей. Периодическое включение, отключение генератора и приемника приводит к излучению разрывных колебаний и приему отраженных от зондируемого объекта колебаний в моменты времени, когда нет излучения. Принятый сигнал отфильтровывается на частоте генератора и восстанавливается его гармоническая часть, далее сравнивается по фазе с исходным сигналом генератора. Разность фаз содержит информацию о расстоянии до объекта. Технический результат: обеспечение глубины зондирования в сотни и тысячи метров, возможность применения одной антенны для излучения и приема зондирующих сигналов. 1 з.п. ф-лы, 1 табл., 2 ил.

 

Изобретение относится к области техники, занимающейся подповерхностной радиолокацией объектов.

Известен способ (аналог), реализованный в унифицированном генераторно-измерительном комплексе крайне низких и сверхнизких частот для геофизических исследований [Патент РФ 2188439 C2 G01V 3/12, опубл. 2002 г.]. Способ-аналог заключается в возбуждении зондирующего синусоидального сверхнизкочастотного (СНЧ) электромагнитного колебания, приеме и обработке отраженных колебаний и отображении результата. В известном способе применяется «n» генераторов синусоидального СНЧ тока, подключенных к единому задающему генератору, нагруженных на протяженные, низко расположенные, горизонтально ориентированные передающие антенны с заземлителями на концах. В измерительном комплексе содержатся «n» электрических и магнитных каналов приема, в состав которых входят электрическая и магнитная приемные антенны соответственно и модули обработки сигналов.

Реализованный в устройстве способ имеет ряд недостатков:

- необходимость использования дополнительного оборудования регистрации отраженных электромагнитных колебаний, невозможность использования одной антенны для излучения и приема зондирующих колебаний;

- требуется размещение «n» передающих антенн над почвой с различными электрическими параметрами, что не всегда выполнимо.

Известен также способ электромагнитного зондирования земной коры с использованием нормированных источников поля [Патент РФ 2093863, МКИ 6 G01V 3/12, опубл. 1997 г.]. Способ-прототип заключается в возбуждении зондирующего синусоидального СНЧ электромагнитного колебания, приеме и обработке отраженных колебаний и отображении результата. Диапазон рабочих частот - единицы, десятки или сотни Гц. Способ-прототип реализован в устройстве, содержащем два генератора синусоидального тока, которые нагружены на протяженные, низко расположенные, горизонтально ориентированные и заземленные на концах антенны. Возможна работа в двух режимах: в первом - излучение осуществляется одним из радиопередающих модулей (соответственно - одним генератором и одной антенной), в другом - двумя радиопередающими модулями. Регистрация излучения, создаваемого СНЧ-радиоустановкой, осуществляется с помощью измерительного комплекса «БОРОК» ОИФЗ РАН. Такой комплекс представляет собой совокупность датчиков геофизических величин, измерительных усилителей и аналоговых фильтров, системы регистрации и службы времени. По сравнению со способом-аналогом массогабаритные показатели устройства и потребляемая мощность меньше в n раз, что связано с использованием в способе-аналоге «n» генераторов синусоидального тока.

Недостатками способа-прототипа являются:

- необходимость использования дополнительного оборудования регистрации отраженных колебаний, невозможность использования одной антенны для излучения и приема зондирующих колебаний.

Техническим результатом настоящего изобретения является разработка способа радиолокации подповерхностных объектов, обеспечивающего возможность исследования объектов на большой глубине (сотни и тысячи метров) электромагнитными колебаниями, излучаемыми и принимаемыми одной антенной.

Указанный технический результат достигается тем, что в способе радиолокации объектов в слабопроводящих средах, по которому зондируют среду сверхнизкочастотными электромагнитными колебаниями с последующим приемом и обработкой отраженных от объекта колебаний, согласно заявляемому изобретению, периодически переключают антенну с генератора на приемник таким образом, что в моменты подключения генератора приемник отключен, а в моменты отключения генератора антенна соединена с приемником, полученными таким образом сверхнизкочастотными электромагнитными колебаниями осуществляют зондирование, а прием ведут в моменты отсутствия сигнала генератора на антенне, принятый сигнал восстанавливают по форме до гармонического фильтрацией на частоте генератора и сравнивают по фазе с сигналом генератора и по разности фаз Δφ производят вычисление глубины залегания объекта по формуле:

H = Δ φ ω υ c p ,

где H - расстояние до отражающего объекта,

ω - угловая частота,

υср - скорость распространения волн в среде,

Δφ - разность фаз между сигналом генератора и восстановленным сигналом:

Δφ=ωΔt,

где Δt - время задержки.

Особенность способа по настоящему изобретению состоит в том, что наиболее оптимальной является частота коммутации, не менее чем в десять раз превышающая частоту гармонического сигнала генератора и кратная ей, а временные отрезки излучения и приема зондирующих колебаний равны между собой.

Сущность изобретения поясняется ниже на примерах компьютерного моделирования и математических расчетов со ссылками на чертежи, на которых:

Фиг.1 показывает эпюры сигналов, а именно: фиг.1а - сигнала генератора, фиг.1б - излучаемого сигнала, фиг.1в - принимаемого приемником, фиг.1г - обрабатываемого, фиг.1д - восстановленного.

Фиг.2 представляет блок-схему устройства для реализации предлагаемого способа радиолокации, где блок 1 - генератор, 2 - приемник, 3 - коммутатор, 4 - антенна, 5 - объект отражения, 6 - устройство обработки информации, 7 - блок синхронизации.

Излучаемые колебания можно назвать разрывными, то есть колебаниями, полученными из гармонических колебаний, которые формирует генератор, путем периодического переключения антенны с генератора на приемник таким образом, что в моменты подключения генератора приемник отключен, а в моменты отключения генератора антенна соединена с приемником, при этом частота коммутации в десять и более раз превышает частоту генератора и кратна ей. Условие кратности частоты коммутации частоте генератора позволяет получить целое число импульсов в периоде гармонического колебания. Математически функцию разрывного колебания (Sp) можно записать как произведение гармонического колебания (с частотой f) и периодической последовательности однополярных импульсов (Sи) с частотой, в десять и более раз большей частоты гармонического колебания, и скважностью

T п T и = 2 :

Sp(t)=cos(2πft)·Sи(t),

S и ( t ) = { 1, п р и   t [ n T и , ( n + 1 2 ) T и ) , 0, п р и   t [ ( n + 1 2 ) T и , ( n + 1 ) T и ) ,

где n=0, 1, 2 …;

Tп - период импульсной последовательности;

Ти - длительность отдельного импульса,

T п = 1 f k ,

где k показывает, во сколько раз период гармонического колебания меньше периода импульсной последовательности.

Скважность

T п T и = 2

приводит к равенству временных отрезков излучения и приема зондирующих колебаний.

Земная кора является слабопроводящей средой, т.к. обладает свойствами проводника и диэлектрика [Р.Кинг, Г.Смит. Антенны в материальных средах: В 2-х книгах. Кн.1. Пер. с англ. - М.: Мир, 1984. С.408-413]. Зондирующий сигнал является широкополосным, ширина спектра возрастает с ростом частоты коммутации. В процессе его распространения в слабопроводящей среде он меняет свою форму: из-за поглощения средой электромагнитного колебания общий уровень сигнала снижается, из-за дисперсии (различная скорость распространения и затухание спектральных компонент) «расплываются» фронты импульсов, из-за процесса отражения значительно снижается уровень (отражается лишь часть сигнала).

На фиг.1 приведены эпюры сигналов, которые являются результатом компьютерного моделирования, проведенного в соответствии с [Неганов В.А. и др. Электродинамика и распространение радиоволн. Учебное пособие / Под ред. В.А.Неганова и С.Б.Раевского. Изд. 3-е, доп. и перераб. - М.: Радиотехника, 2007. С.116-117] и представляют простейший случай излучения, отражения от объекта с меньшей электрической плотностью (удельная проводимость среды распространения больше удельной проводимости объекта отражения), приема и фильтрации отраженного сигнала (выделение частоты генератора). В зависимости от параметров сред (диэлектрической проницаемости s и удельной проводимости а) эпюры сигналов будут различаться (при большей электрической плотности среды распространения «расплывание» фронтов зондирующего сигнала из-за дисперсии будет более выраженным, при большей электрической плотности объекта отражения по сравнению со средой распространения сигнала его полярность изменится и т.д.).

Частота коммутации не может быть меньше частоты дискретизации по теореме Котельникова. Согласно компьютерным экспериментам оптимальной является частота коммутации в 10·f, где f - частота гармонического сигнала генератора. При меньшей частоте коммутации увеличивается количество спектральных компонент вблизи f, что усложняет фильтрацию обрабатываемого сигнала и определение разницы фазы обрабатываемого сигнала и сигнала генератора. При большей частоте коммутации качество фильтрации почти не меняется, но увеличивается ширина спектра излучаемого колебания в область высоких частот и потеря энергии сигналом из-за того, что с увеличением частоты увеличивается затухание спектральных компонент, фильтруемых при обработке отраженного колебания, что является энергетически нецелесообразным.

Расчеты, проведенные для частоты зондирования 25 Гц для слабопроводящих сред с различающимися параметрами в соответствии с [Неганов В.А. и др. Электродинамика и распространение радиоволн. Учебное пособие / Под ред. В.А.Неганова и С.Б.Раевского. Изд. 3-е, доп. и перераб. - М.: Радиотехника, 2007, С.96-100] сведены в таблицу 1.

Таблица 1
fзонд, Гц Глубина проникновения, δ, м Длина волны в среде, λср, м Затухание в среде, α, дБ/м Параметры среды, ε и σ (См/м)
25 3.1·103 1.94·104 3.2·10-5 ε=5, σ=10-3
103 6.28·103 10-3 ε=5, σ=10-2

Согласно результатам компьютерного эксперимента и проведенным расчетам заявляемый способ радиолокации подповерхностных объектов возможен в пределах нескольких километров.

Способ осуществляется следующим образом. Генератор гармонических колебаний СНЧ диапазона 1 и приемник этих колебаний 2 подключены к коммутатору 3 таким образом, что к антенне 4 в тот или иной момент времени оказывается подключенным приемник либо передатчик. Коммутатор 3 периодически со скважностью

T п T и = 2

непрерывно осуществляет переключение. Сигнал с выхода генератора 1 подается на устройство обработки информации и на антенну через коммутатор, антенна излучает зондирующее разрывное колебание, которое, пройдя толщу среды с минимальным затуханием, отразится от объекта отражения 5, и в моменты, когда отключен генератор, регистрируется и восстанавливается приемником 2 и обрабатывается устройством обработки информации 6, вычисляющем время задержки, разность фаз с исходным сигналом и глубину объекта отражения. Работу устройств 1-6 синхронизирует блок синхронизации 7.

Таким образом, заявленный способ радиолокации объектов в слабопроводящих средах может быть реализован и позволяет проводить зондирование подповерхностных объектов на большой глубине с использованием одной антенны. Данный результат достигается использованием разрывных электромагнитных колебаний сверхнизкой частоты. Разность фаз между излучаемым и обрабатываемым сигналами содержит информацию о глубине залегания объекта.

1. Способ радиолокации объектов в слабопроводящих средах, состоящий в зондировании среды сверхнизкочастотными электромагнитными колебаниями и последующем приеме и обработке отраженных от объекта колебаний, отличающийся тем, что периодически переключают антенну с генератора на приемник таким образом, что в моменты подключения генератора приемник отключен, а в моменты отключения генератора антенна соединена с приемником, полученными таким образом сверхнизкочастотными электромагнитными колебаниями осуществляют зондирование, а прием ведут в момент отсутствия сигнала генератора на антенне, принятый сигнал восстанавливают по форме до гармонического фильтрацией на частоте генератора и сравнивают по фазе с сигналом генератора и по разности фаз Δφ производят вычисление глубины залегания объекта по формуле:
H = Δ φ ω υ с р ,
где H - расстояние до отражающего объекта,
ω - угловая частота,
υср - скорость распространения волн в среде,
Δφ - разность фаз между сигналом генератора и восстановленным сигналом:
Δφ=ωΔt,
где Δt - время задержки.

2. Способ по п.1, отличающийся тем, что частота коммутации не менее чем в десять раз превышает частоту сигнала генератора и кратна ей, а временные отрезки излучения и приема зондирующих колебаний равны.



 

Похожие патенты:

Использование: для детектирования электромагнитного излучения. Сущность: заключается в том, что быстродействующая и миниатюрная система детектирования, в частности, электромагнитного излучения в гигагерцовом и терагерцовом диапазонах содержит полупроводниковую структуру, имеющую двумерный слой носителей заряда или квазидвумерный слой носителей заряда с включенным одним дефектом или многочисленными дефектами, по меньшей мере первый и второй контакты для слоя носителей заряда и устройство для измерения фотоэлектродвижущей силы между первым и вторым контактами.

Изобретение относится к области геофизики и может быть использовано для исследования подповерхностных структур. .

Изобретение относится к области геофизики и может быть использовано для зондирования многолетнемерзлых пород с целью изучения их строения и свойств. .

Изобретение относится к геофизическим исследованиям в области сейсмологии и геоэлектричества и может быть использовано для прогнозирования землетрясений. .

Изобретение относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в конденсированных средах.

Изобретение относится к геоэлектроразведке с использованием электромагнитного поля изменяющейся частоты и может быть применено при выполнении различного рода поисковых и инженерно-геологических исследований.

Изобретение относится к геофизическим измерениям, выполняемым в море (4) над морским дном (1) с пластами (3) породы, имеющими относительно низкое удельное сопротивление, для обнаружения возможной нижележащей нефтегазоносной породы-коллектора (2), имеющей относительно высокое удельное сопротивление.

Изобретение относится к области геофизики и может быть использовано при электромагнитном зондировании верхней части геологического разреза. .

Изобретение относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в конденсированных средах.

Изобретение относится к области геофизики и может быть использовано для поиска засыпанных биообъектов или их останков. Заявлен способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. Устройство содержит сканирующий блок и приемопередатчик. Сканирующий блок содержит задающий генератор 1, усилитель 2 мощности, циркулятор 3, приемопередающую антенну 4, вибраторную антенну 4.1, рамочную антенну 4.2, усилители 5 и 29 высокой частоты, фазовые детекторы 6 и 37, компьютер 7, гетеродин 8, смесители 9 и 11, усилитель 10 первой промежуточной частоты, усилитель 12 второй промежуточной частоты, коррелятор 19, перемножитель 20, фильтр 21 нижних частот, усилитель 22, блок 23 регулируемой задержки, индикатор 24 дальности, редуктор 25, платформу 26, указатель 27 угла, сумматор 28, амплитудные детекторы 30 и 31, блок 32 деления, пороговый блок 33, ключи 34 и 35, дифференциатор 36, блок 38 управления диаграммой направленности, блок 39 формирования управляющего напряжения, мотор 40. Приемопередающий блок содержит пьезокристалл 13, микрополосковую антенну 14, электроды 15, шины 16 и 17, набор отражателей 18. Технический результат - повышение точности определения местонахождения засыпанных биообъектов или их останков. 2 н.п.ф-лы, 10 ил.

Предлагаемое устройство относится к контрольно-поисковым средствам, а именно к устройствам обнаружения местоположения людей, оказавшихся под завалами, образовавшимися в результате стихийного (землетрясения, торнадо, цунами и др.) или иного бедствия, и поиска взрывчатых и наркотических веществ, и может быть использовано при техногенных авариях, природных катастрофах, террористических актах и при предотвращении опасных для населения акций. Технической задачей изобретения является повышение помехоустойчивости и достоверности приема и демодуляции сложных сигналов с фазовой манипуляцией путем подавления узкополосных помех. Устройство обнаружения людей под завалами и поиска взрывчатых и наркотических веществ содержит одетый на служебную собаку 1 ошейник 2, мобильный первичный преобразователь 3 и вторичный преобразователь 12. Первичный преобразователь 3 содержит тактильные сенсоры 4.1 и 4.2, коммутатор 5, усилитель 6, модулятор 7, радиопередатчик 8, источник 9 питания, световой 10 и звуковой 11 маячки, задающий генератор 18, фазовый манипулятор 19, триггер 17, однополярный вентиль 20, интегратор 21, пороговый блок 22, ключ 23, усилитель 24 мощности и передающую антенну 25. Вторичный преобразователь 12 содержит вибраторную антенну 26, рамочную антенну 27, усилители 28 и 29 высокой частоты, амплитудные детекторы 30 и 31, блок 32 деления, пороговый блок 33, ключ 15, демодуляторы 14 и 44, перемножители 34, 35, 38 и 39, узкополосные фильтры 36 и 40, фильтры 37 и 41 нижних частот, фазоинверторы 42 и 43, блок 45 вычитания и регистратор 16. 7 ил.

Изобретение относится к области геофизики и может быть использовано для определения электрофизических параметров объектов, с которыми пространственно связаны месторождения полезных ископаемых в условиях техногенной инфраструктуры, построенной с применением металлоконструкций. Заявлен способ геоэлектроразведки в условиях техногенной инфраструктуры, в котором дополнительно выявляют находящиеся вблизи источников и приемных датчиков базовой системы наблюдений поверхностные и подземные токопроводящие техногенные промышленные и бытовые объекты, которые могут создать искажающее влияние на электромагнитное поле от поисковых объектов вблизи приемных датчиков. Устанавливают их плановое геодезическое положение относительно фактического положения источников и приемных датчиков базовой системы наблюдений и электрофизические параметры. По установленным параметрам для всех приемных датчиков определяют значения компонент электромагнитного поля от каждого установленного техногенного объекта, находят разностный сигнал между измеренными и расчетными электромагнитными сигналами на исследуемой площади. Проводят интерпретацию разностных сигналов для всей совокупности точек системы наблюдений, по результатам которой судят о строении и электрофизических параметрах исследуемой среды. Технический результат изобретения - повышение точности разведочных данных. 1 з.п. ф-лы, 11 ил.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Устройство обнаружения носимых осколочных взрывных устройств содержит СВЧ передающее устройство с частотой f1, СВЧ передающее устройство с частотой f2, СВЧ приемное устройство комбинационных частот второго порядка, СВЧ приемное устройство комбинационных частот третьего порядка. Дополнительно в устройство введены блоки измеритель отношения амплитуд сигналов комбинационных частот второго и третьего порядка, регистратор низкочастотного контактного шума и регистратор периодической инфразвуковой составляющей. Изобретение позволяет повысить дальность обнаружения осколочных взрывных устройств на фоне помех от электронных компонентов. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к геофизическим исследованиям с управляемым источником. Сущность: способ содержит этапы, на которых: развертывают по меньшей мере один приемник и электрический дипольный источник; передают электромагнитное поле от электрического дипольного источника; детектируют первую горизонтальную составляющую и вторую горизонтальную составляющую отклика электромагнитного поля на передаваемое электрическое поле, используя по меньшей мере один приемник, и вычисляют вертикальную составляющую отклика электромагнитного поля, используя детектированные первую и вторую горизонтальные составляющие отклика электромагнитного поля, причем эти первую и вторую горизонтальные составляющие комбинируют. Технический результат: повышение точности определения вертикальных составляющих отклика электромагнитного поля. 4 н. и 20 з.п. ф-лы, 12 ил.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля изменения состояния поверхности открытых водоемов, вызванного их загрязнением поверхностно-активными веществами, при проведении экологических и природоохранных мероприятий. Техническим результатом изобретения является возможность при осуществлении анализа характеристик бликов зеркального отражения учитывать фактор влияния, ветра, что обеспечивает повышение точности определения наличия загрязнения, а также степени его интенсивности. Согласно изобретению поверхность облучают лазером, регистрируют блики зеркального отражения и определяют их характеристики. При этом одновременно с регистрацией бликов измеряют скорость ветра, а уровень загрязнения определяют путем сравнения полученных характеристик с образцовыми значениями для измеренной скорости ветра. 3 ил.

Заявленная группа изобретений относится к области скважинной геофизики и может быть использована для исследования подповерхностных структур из скважин. Сущность: формируют сверхширокополосные видеоимпульсы длительностью 10-11-10-8 с. Излучают видеоимпульсы передающей антенной (2), размещенной в диэлектрическом корпусе, в разных азимутальных направлениях в плоскости, перпендикулярной оси скважины. Регистрируют видеоимпульсы блоком приемных антенн (3), размещенных в диэлектрическом корпусе. Записывают полноволновую форму зарегистрированного сигнала, представленную в виде двумерного кадра «амплитуда - время задержки», по которой оценивают азимутальную анизотропию среды. Обрабатывают полученную информацию в реальном масштабе времени. Визуализируют результат обработки в 4D представлении. Система для реализации способа содержит передающий и приемный блоки. При этом передающий блок включает устройство (не показано на чертеже), обеспечивающее формирование сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с, передатчик (1), одну или несколько передающих антенн (2), размещенных в диэлектрическом корпусе. Приемный блок включает одну или несколько приемных антенн (3) с устройствами согласования (4), размещенных в диэлектрическом корпусе, коммутатор (5), приемник (6), блок (7) управления и связи с персональным компьютером, антенну (8) синхронизации и оптиковолоконную линию (9) синхронизации. Приемные антенны (3) размещают в диэлектрическом корпусе в такой конфигурации, которая обеспечивает формирование диаграммы направленности блока приемных антенн в двух режимах: радиозондирования и радиопросвечивания. Технический результат: повышение информативности каротажа за счет увеличения динамического диапазона сигналов, а также расширение функциональных возможностей - возможность осуществления как радиозондирования, так и радиопросвечивания (радиотомографии), причем на значительном удалении от оси скважины. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области геофизики и может быть использовано при исследовании залежей сверхвязких нефтей. Сущность изобретения: излучают электромагнитные волны и принимают сигналы, отраженные от границ раздела слоев зондируемой среды, после чего проводят обработку результатов измерений. При этом предварительно строят структурные карты поднятия, а также временные сейсмические разрезы отраженных границ верхней части осадочного чехла, изучают материалы геофизических исследований скважин, материалы керна. На поверхности намечают линии профилей с учетом структурных карт поднятия и временных сейсмических разрезов отраженных границ верхней части осадочного чехла. Линии профилей проводят во взаимно перпендикулярных направлениях через пробуренные скважины с выходом за контур поднятия не менее чем на 500 м. Выполняют занесение в базу данных координат крайних и переломных точек линий профилей. Проводят рассмотрение возможных внешних помех, вводят по необходимости корректировки координат линий профилей. Проводят привязку линий профилей на местности, определяют высотные и координатные точки исследования. Проводят тестовые исследования на одной линии профилей. Экспериментально назначают длительность записи отраженной волны замера совокупности электромагнитных сигналов, зарегистрированных в точке приема в течение заданного времени после излучения электромагнитной волны, как превышающую двойное время пробега электромагнитной волны до самого глубокого объекта исследований. На основании сведений о глубинах и предполагаемых или заранее известных значений скоростях распространения электромагнитных волн в среде, полученных при анализе геофизических исследований и материалов керна, проводят выбор фиксированного времени, в течение которого приемник принимает отраженные сигналы. При этом шаг дискретизации по времени выбирают достаточным для детального описания электромагнитного отраженного сигнала в количестве от 10 до 20 точек на период центральной частоты. В ходе полевых наблюдений излучение электромагнитных волн от передатчика мощностью 10 МВт и прием отраженного сигнала выполняют последовательно тремя антеннами на трех частотах: 50 МГц, 25 МГц и 10 МГц в линейном и логарифмическом режимах записи и регистрации с шагом 4-6 м. Импульс, полученный на наиболее высокой частоте, учитывают как отражающий детальность исследований и высокое разрешение, а на наиболее низкой - как максимальную глубину зондирования. При этом в линейном режиме регистрации импульса проводят выделение и дискретизацию отраженного сигнала нижней части разреза. В логарифмическом режиме выполняют регистрацию «загрубления» высокой амплитуды сигнала и усиление низкой амплитудной записи верхней части разреза. В результате обработки полевых материалов строят временные разрезы, на которых волновая картина отображает особенности геологического строения и состава горных пород. По изменению свойств диэлектрической проницаемости выделяют границы раздела пластов и дифрагирующих объектов в полях электромагнитных волн, определяемых осью синфазности отраженных волн. Для визуализации используют выделение поля обратного отражения из совокупности полученных данных с использованием частотной и пространственной фильтрации. Применяют функцию сложения-вычитания для радарограмм, записанных в линейном и логарифмическом режимах, посредством которых добиваются детального расчленения нижней части радарограммы. Для литолого-стратиграфической привязки границ отраженных волн проводят коррекцию скоростных характеристик электромагнитного импульса и материалов геофизических исследований скважин и данных отбора керна. При этом устанавливают закономерности в характере и распространении электромагнитного сигнала. Выделяют объекты со слабыми и переходными отражающими характеристиками. Поисковым признаком границы залежи на временном разрезе выбирают уменьшение времени прохождения границы выделенного нефтяного пласта и увеличение амплитуды сигнала относительно показаний вне залежи. Строят карты временных отражений электромагнитного импульса, на основании которых картируют стратиграфические поверхности отражающих горизонтов верхней части осадочного чехла. По изменениям амплитуды и знака электромагнитного сигнала в разных средах над залежью, при переходе и за пределами залежи строят карты нефтенасыщенных толщин. Технический результат: прогнозирование залежей сверхвязких нефтей. 11 ил.

Изобретение относится к геофизике, а именно к георадиолокации, и может использоваться на труднодоступных и ограниченных участках для исследования геометрии горных пород. Заявленный способ заключается в том, что геолокацию проводят с изменением углов разворота антенного блока георадара. При этом в месте проведения исследований, в ограниченном пространстве, выполняют углубление полуцилиндрической формы, в котором осуществляют зондирования в различных угловых положениях антенного блока георадара, для чего перемещают его по поверхности углубления, а измерения углов зондирований ведут по шкале и стрелке-отвесу, размещенным на антенном блоке. Радарограммы, записываемые с помощью данного способа, отличаются набором уникальных трасс сигналов, зарегистрированных под различными углами к отражающей горизонтальной границе, что позволяет выделить регулярные сигналы, тем самым повысить информативность данных георадиолокации. 1 ил.
Наверх