Способ определения парциальных концентраций физико-химических форм урана (vi)

Изобретение относится к области мониторинга природных и технологических вод и предназначено для определения парциальных концентраций физико-химических форм урана (VI) в водных растворах, что необходимо, в частности, для оптимизации процесса добычи урана методом подземного выщелачивания. Способ заключается в облучении объема исследуемого образца наносекундными импульсами лазерного излучения в ультрафиолетовом диапазоне и последующей регистрации зависимости интенсивности сигнала флуоресценции смеси от интенсивности лазерного излучения и времени задержки строба приемника относительно лазерного импульса. В качестве источника лазерного излучения может быть использован АИГ:Nd лазер с преобразованием частоты излучения в четвертую гармонику (длина волны 266 нм) с максимальной энергией в импульсе не менее 1 мДж. В качестве системы регистрации сигнала флуоресценции может быть использована стробируемая наносекундными импульсами ПЗС камера, присоединенная к спектральному прибору (полихроматору). Изобретение обеспечивает повышение точности определения. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к области мониторинга природных и технологических вод и предназначено для определения парциальных концентраций физико-химических форм урана (VI) в их смеси. Изобретение касается контроля видообразования и миграции урана (VI), являющегося экотоксикантом, в природных водах, а также контроля видообразования урана (VI) в технологической водной среде в процессе добычи его методом подземного выщелачивания, для оптимизации эффективности (кпд экстракции урана) которого необходимы знание закономерностей видообразования и оперативная информация о парциальных концентрациях физико-химических форм урана (VI) в их смеси.

Известен способ определения состава смеси форм урана (VI) методом EXAFS-анализа (extended X-ray absorption fine structure spectroscopy) [P.G.Alien et al., Investigation of Aquo and Chloro Complexes of U O 2 2 + , N p O 2 + , Np4+, and Pu3+ by X-ray Absorption Fine Structure Spectroscopy. Inorg. Chem., 1997, v.36 (21), 4676-4683]. Недостатками данного способа являются сложность и дороговизна аппаратуры, необходимой для его реализации, трудности, возникающие при интерпретации получаемых данных в связи с тем, что данный метод предоставляет усредненный по всем компонентам спектр, и необходимость в большой концентрации урана в смеси (10-3 моль/л) для возможности проведения анализа.

Известен способ определения состава смеси форм урана (VI) методом электроспрей ионизационной масс-спектрометрии [Moulin С. Speciation of Uranium by Electrospray lonization Mass Spectrometry: Comparison with Time-Resolved Laser-Induced Fluorescence. Applied spectroscopy, 2000, v.54 (6), 843-848]. Недостатком данного способа является зависимость результатов от условий проведения эксперимента (конического напряжения, скорости протекания газа, температуры) и низкая на данный момент чувствительность (10 мг/литр), недостаточная для детектирования урана в сточных водах.

Наиболее близким к заявляемому техническому решению является способ [Р.Mauchien, P.Cauchetier. Process for the determination of traces of uranium in solution by time resolution spectrofluorimetry. US Patent no. 4,641,032 (February 3, 1987); G. Geipel et al. Uranium (VI) sulphate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS), Radiochimica Acta, 1996, v.75, 199-204; U. Gabriel et al. Uranyl surface speciation on silica particles studied by time-resolved laser-induced fluorescence spectroscope Journal of Colloid and Interface Science, 2001, v.239, 358-368], включающий облучение объема исследуемой смеси лазерными импульсами и регистрацию сигнала флуоресценции в микросекундном временном диапазоне. Для определения состава смеси используется селекция физико-химических форм урана по времени жизни их возбужденных состояний. При этом используется тот факт, что времена жизни возбужденных состояний координационных соединений урана (VI) в воде определяются, в основном, скоростью нерадиационной дезактивации и сильно зависят от типа соединения, меняясь в диапазоне 1-300 мкс. Значения времен жизни возбужденных состояний физико-химических форм урана (VI) на несколько порядков превышают значения времен жизни для органических соединений, которые потенциально могут находиться в исследуемом объеме, что позволяет отсечь паразитные сигналы (флуоресценцию органических примесей и рассеянное возбуждающее излучение) с помощью временной селекции. Парциальные концентрации в данном методе определяются из пропорциональных им амплитуд вкладов временных компонент в кинетику затухания флуоресценции с учетом условия нормировки (сумма всех парциальных концентраций равна единице). Преимуществом данною способа является высокая чувствительность (10-7 моль/литр) и дискриминирующая способность для различных координационных соединений (селективность).

Недостатком этого способа является то, что задача аппроксимации кинетики флуоресцентного отклика многоэкспоненциальной кривой затухания является некорректно поставленной обратной задачей спектроскопии и не допускает получения ее устойчивого решения для числа форм более трех.

В техническом решении (Gabriel et al., 2001) авторы с целью увеличения точности способа прибегают к дополнительному варьированию условий внешней среды (рН) с целью изменения парциальных концентраций физико-химических форм урана (VI), полагая остальные сомножители в амплитуде вклада в кинетику затухания соответствующей компоненты неизменными. Таким образом, число исходных данных (кинетических кривых) становится достаточным для получения устойчивого решения обратной задачи спектроскопии, однако применение подобного подхода требует проведения манипуляций со смесью физико-химических форм урана (в данном случае изменения pH, в общем случае - какого-либо другого фактора, влияющего на распределение форм, например, температуры) и дополнительного оборудования. Кроме того, указанное выше предположение о постоянстве значений фотофизических параметров, от которых, также как и от концентраций форм, зависят амплитуды их вкладов в кинетику затухания флуоресценции, как правило, не выполняется, что приводит к ошибкам в определении концентраций.

Задачей изобретения является разработка нового способа определения парциальных концентраций физико-химических форм урана в их водной смеси.

Техническим результатом данного изобретения является повышение точности определения парциальных концентраций физико-химических форм урана (VI) в их водной смеси без изменения ее параметров путем определения их индивидуальных фотофизических параметров - сечения поглощения и скорости радиационного затухания возбужденного состояния, входящих в предэкспоненциальный множитель (амплитуду) в кинетике затухания флуоресценции, и времени жизни возбужденного состояния, определяющего скорость экспоненциального распада населенности возбужденного состояния.

Поставленная задача решается тем, что в способе определения парциальных концентраций физико-химических форм урана в их водной смеси, включающем облучение объема исследуемой смеси лазерными импульсами, регистрацию сигнала флуоресценции исследуемой водной смеси с последующим определением парциальных концентраций физико-химических форм урана, согласно изобретению, измеряют зависимость интенсивности флуоресценции смеси I от времени t и плотности потока фотонов возбуждающего излучения F, а парциальные концентрации ni определяют из соотношения, путем решения обратной задачи:

I ( F , t ) = П i = 1 N к i ( 1 e F σ i τ p ) n i e t / τ i ,

где П - приборный фактор, включающий интенсивность возбуждающего излучения и параметры геометрии лазерного спектрометра,

ni - парциальная концентрация i-й формы в смеси,

σi, кi, τi, - сечение поглощения, скорость радиационной дезактивации возбужденного состояния и время жизни возбужденного состояния этой формы. При облучении объема исследуемой смеси используют лазерные импульсы длительностью 1-100 нс, при этом плотность потока фотонов возбуждающего излучения меняют в диапазоне 1025-1027 см-2с-1, а интенсивность флуоресценции смеси измеряют для каждого значения задержки относительно лазерного импульса с равномерным шагом но плотности потока фотонов в не менее чем 50 точках. Интенсивность флуоресценции смеси измеряют при различных задержках относительно лазерного импульса, начиная с задержки 200 нс и соотношением сигнал/шум не менее 100 до значений задержек, когда соотношение сигнал/шум падает до 5. Зависимость интенсивности флуоресценции смеси от времени измеряют с шагом не более 100 нс. При решении обратной задачи используют условие нормировки парциальных концентраций.

Технический результат достигается тем, что в способе определения парциальных концентраций физико-химических форм урана (VI) в их водной смеси исследуемый объем облучают наносекундными лазерными импульсами с плотностью мощности (плотностью потока фотонов), изменяющейся в пределах 1025-1027 см-2с-1. При этом регистрируют зависимость интенсивности флуоресценции от времени t (с шагом 100 нс) и плотности потока фотонов F возбуждающего излучения. Далее решают обратную задачу спектроскопии, состоящую в определении парциальных концентраций форм урана из значений их вкладов в кинетику затухания флуоресценции при разных значениях F.

Кинетика затухания флуоресцентного отклика смеси комплексов урана (VI), измеряемая системой регистрации после окончания возбуждающего импульса длительностью τp, в случае малой плотности мощности возбуждения (Fστp<1) имеет вид

I ( t ) = i = 1 N A i e t / τ i = П i = 1 N σ i к i n i e t / τ i ,                                         (1)

где N - число физико-химических форм урана (VI) в смеси. Ai - амплитуда вклада i-й формы в кинетику затухания флуоресценции смеси, П - приборный фактор, включающий интенсивность возбуждающего излучения и параметры геометрии лазерного спектрометра, ni - парциальная концентрация i-й формы в смеси, σi,, кi, τi - сечение поглощения, скорость радиационной дезактивации возбужденного состояния и время жизни возбужденного состояния этой формы. С учетом условия нормировки i = 1 N n i = 1 , путем решения обратной задачи из (1) можно получить значения парциальных концентраций в смеси, однако такое решение для числа форм больше трех является неустойчивым (J.Lakowicz, Principles of fluorescence spectroscopy. 2000), что может привести к значительным ошибкам определения ni.

В случае больших значений плотности мощности возбуждающего излучения (Fστp>1) зависимость интенсивности флуоресценции смеси физико-химических форм урана от времени t и плотности потока фотонов возбуждающего излучения F определяется выражением

I ( t ) = П ˜ i = 1 N к i ( 1 e F σ i τ p ) n i e t / τ i ,                                 (2)

переходящим при Fστp<<1 в (1) с учетом нормировки П = П ˜ F τ p . Появление в факторе перед экспонентой е-t/τ сомножителя, зависящего от параметров возбуждающего излучения, аналогично с точки зрения решения обратной задачи появлению в нем сомножителя ci(x), описывающего перераспределение парциальных концентраций физико-химических форм урана в смеси под влиянием внешнего фактора x (например, рН [U. Gabriel et al. Uranyl surface speciation on silica particles studied by time-resolved laser-induced fluorescence spectroscopy. Journal of Colloid and Interface Science, 2001, v.239, 358-368], температуры [Moulin С.et al. Uranium Speciation in Solution by Time-Resolved Laser-Induced Fluorescence. Analytical Chemistry, 1995. 67 (2). 348-353] и т.д.). Формальное различие заключается в том, что в случае варьирования внешних условий неизменным полагается сомножитель σiкi в (1), в заявляемом же способе неизменными при изменении плотности потока фотонов лазерного импульса F остаются концентрации ni, а сомножитель, в который входят фотофизические параметры σi, кi, форм урана изменяется согласно (2). Таким образом, в заявляемом способе путем измерения не одной, а семейства кинетических кривых в режиме, когда проявляется насыщение флуоресценции, т.е. массива I(F,t), увеличивается устойчивость и, как следствие, точность решения обратной задачи спектроскопии, что позволяет определять парциальные концентрации форм урана (VI) в растворе при их числе три и более.

Технический результат достигается также тем, что значения парциальных концентраций определяют путем решения обратной задачи методом градиентного спуска для матрицы I(tM,FL), где М - число измеренных точек по времени в кинетике затухания флуоресценции, полученных при L (L>N, где N - число физико-химических форм урана (VI) в смеси) значениях плотности потока фотонов возбуждающего излучения, с учетом условия нормировки парциальных концентраций.

Сущность изобретения поясняется чертежами, где на фиг.1 представлен предпочтительный вариант реализации лазерного спектрометра; на фиг.2 - примеры измеренных зависимостей I(F,t); на фиг.3 - распределение физико-химических форм урана (VI) при условиях, типичных для процесса добычи урана методом подземного выщелачивания: на фиг.4 - зависимость интенсивности флуоресценции смеси форм урана от времени и аппроксимация ее по формуле (1); на фиг.5 - кинетика затухания флуоресценции смеси форм урана (VI) при разных значениях плотности потока фотонов возбуждающего излучения; на фиг.6 - зависимость интенсивности флуоресценции в первой точке этих кинетик затухания флуоресценции от плотности потока фотонов возбуждающего излучения.

На Фиг.1 показан пример импульсного лазерного спектрометра для реализации заявляемого способа, где:

1 - импульсный АИГ:Nd лазер (лазер на основе алюмоиттриевого граната с ионами неодима) с преобразованием частоты излучения в четвертую гармонику (длина волны 266 нм);

2 - блок калиброванного ослабления мощности лазерного излучения на основе ячейки Поккельса;

3 - приемо-передающий оптоволоконный зонд с узлом ввода излучения, в центральную жилу которого заводится возбуждающее излучение, а через остальные жилы осуществляется сбор сигнала флуоресценции образца;

4 - объем с исследуемой смесью форм урана (VI);

5 - система регистрации на основе ПЗС-камеры (камеры на основе прибора с зарядовой связью) с усилителем яркости, стробируемым в наносекундном временном диапазоне (5а), присоединенная к спектральному прибору (полихроматору, 5б);

6 - блок синхронизации, управления, сбора и обработки данных, подающий на усилитель яркости стробирующие импульсы с регулируемой задержкой относительно лазерного импульса для регистрации кинетик затухания флуоресценции I(t) и подающий напряжение на блок ослабителя мощности для получения зависимости I(F);

На Фиг.2. показан пример зависимости I(F,t), полученной с помощью лазерного спектрометра для смеси форм урана со следующими характеристиками: рН=1,5, полная концентрация урана в исследуемой смеси 10-5 моль/л, ионная сила раствора 1 моль/л, полная концентрация фторид-ионов 0.05 моль/л, полная концентрация сульфат-ионов 1 моль/л. Кривые, получаемые при фиксированных значениях F - кинетики затухания флуоресценции смеси, а при фиксированных значениях t - кривые насыщения флуоресценции.

На Фиг.3 в качестве примера показано распределение физико-химических форм урана в условиях, типичных для процесса добычи урана методом подземного выщелачивания (построено с помощью программного обеспечения MEDUSA (http://sites.google.com/site/chemdiagr/), константы комплексообразования взяты из базы HYDRA, значения концентраций по оси ординат приведены в логарифмическом масштабе).

На Фиг.4 приведена кинетика затухания флуоресценции водной смеси физико-химических форм, описанной в Примере реализации заявляемого способа, и аппроксимация ее суммами двух компонент и трех компонент для различных значений параметров аппроксимации.

На Фиг.5 приведены кинетики затухания флуоресценции смеси физико-химических форм урана (параметры смеси указаны в Примере) при различных значениях плотности потока фотонов возбуждающего излучения.

На Фиг.6. приведена зависимость интенсивности флуоресценции в первой точке кинетических кривых, приведенных на Фиг.5, от плотности потока фотонов возбуждающего излучения.

Осуществление заявленного способа определения парциальных концентраций физико-химических форм урана (VI) в их водной смеси поясняется следующим примером.

Определение парциальных концентраций физико-химических форм урана в смеси проводится с использованием лазерного спектрометра, представленного на Фиг.1. Образец, содержащий смесь физико-химических форм урана (VI), при условиях, моделирующих процесс добычи урана методом подземного выщелачивания с использованием раствора серной кислоты (рН=1,5, полная концентрация урана в смеси 10-5 моль/л, ионная сила раствора 1 моль/л, полная концентрация фторид-ионов 0,05 моль/л, полная концентрация сульфат-ионов 1 моль/л, распределение форм приведено на Фиг.3), облучается лазерными импульсами длительностью 10 нс с длиной волны 266 нм, максимальной энергией 1 мДж и плотностью потока фотонов, варьируемой в диапазоне 1025-1027 см-2с-1. При этом регистрируется зависимость интенсивности флуоресценции от времени и плотности потока фотонов возбуждающего излучения. Измеренные экспериментальные значения приведены на Фиг.2. При данных условиях парциальные концентрации физико-химических форм в растворе составляют [ U O 2 F 3 ] = 2 % , [UO2SO4]=10%, [UO2F+]=12%, [UO2F2]=26%, [ U O 2 ( S O 4 ) 2 2 ] = 50 % . На Фиг.4 приведена измеренная зависимость интенсивности флуоресценции от времени для минимального значения плотности потока фотонов возбуждающего излучения и аппроксимация ее суммой двух экспоненциально затухающих слагаемых и трех экспоненциально затухающих слагаемых для двух фиксированных наборов начальных условий аппроксимации.

Как видно из Фиг.4, аппроксимация кинетики флуоресценции смеси двумя компонентами является недостаточной (восстанавливаются времена 10 и 78 мкс с амплитудами 80% и 20%), аппроксимация же тремя компонентами является неустойчивой: для наборов времен жизни и амплитуд (2 мкс, 5%: 12 мкс, 70%; 96 мкс, 25%) и (8 мкс, 60%; 20 мкс, 30%; 105 мкс, 10%) аппроксимация дает одинаковую невязку. Таким образом, решение обратной задачи является неустойчивым уже при определении трех компонент в кинетике затухания флуоресценции. Ориентировочные значения времен жизни возбужденного состояния сульфатных комплексов урана можно найти, например, в [G.Geipel et al. Uranium (VI) sulphate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS), Radiochimica Acta, 1996, v.75, 199-204]: τ(UO2SO4)=4 мкс; τ ( U O 2 ( S O 4 ) 2 2 ) = 11  мкс , а для фторидных комплексов - в [Z.Fazekas et al., Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes. Journal of Alloys and Compounds, 1998. v.271, 756-759]: τ(UO2F+)=30 мкс; τ(UO2F2)=90 мкс; τ ( U O 2 F 3 ) = 180  мкс .

Сопоставление этих данных с восстановленными из кинетики затухания флуоресценции параметрами дает значения парциальных концентраций для комплексов [ U O 2 ( S O 4 ) 2 2 ] = 70 ± 20 % и [UO2F2]=30±15%.

На Фиг.5 приведены кинетики затухания флуоресценции образца, полученные при различных значениях плотности потока фотонов возбуждающего излучения, при этом парциальные концентрации форм для всех кривых одни и те же, а их вклады в кинетику затухания меняются согласно (2), зависимость интенсивности флуоресценции в первой точки кинетических кривых от плотности потока фотонов возбуждающего излучения F приведена на Фиг.6. Совместная обработка кинетических кривых, измеренных для различных значений F с учетом условия нормировки парциальных концентраций, дает значения [ U O 2 F 3 ] = 5 ± 5 % , [UO2SO4]=10±5%, [UO2F+]=15±7%, [UO2F+]=20±7%, [ U O 2 ( S O 4 ) 2 2 ] = 50 ± 10 % , то есть точность восстановления парциальных концентраций с помощью заявляемого способа значительно превышает точность подхода, оперирующего одной кинетикой затухания флуоресценции смеси.

1. Способ определения парциальных концентраций физико-химических форм урана в их водной смеси, включающий облучение объема исследуемой смеси лазерными импульсами, регистрацию сигнала флуоресценции исследуемой водной смеси с последующим определением парциальных концентраций физико-химических форм урана, отличающийся тем, что измеряют зависимость интенсивности флуоресценции смеси I от времени t и плотности потока фотонов возбуждающего излучения F, а парциальные концентрации ni определяют из соотношения, путем решения обратной задачи:
I ( F , t ) = П i = 1 N к i ( 1 e F σ i τ p ) n i e t / τ i ,
где П - приборный фактор, включающий интенсивность возбуждающего излучения и параметры геометрии лазерного спектрометра,
ni - парциальная концентрация i-й формы в смеси,
σi, кi, τi - сечение поглощения, скорость радиационной дезактивации возбужденного состояния и время жизни возбужденного состояния этой формы.

2. Способ по п.1, отличающийся тем, что при облучении объема исследуемой смеси используют лазерные импульсы длительностью 1-100 нс, при этом плотность потока фотонов возбуждающего излучения меняют в диапазоне 1025-1027 см-2с-1, а интенсивность флуоресценции смеси измеряют для каждого значения задержки относительно лазерного импульса с равномерным шагом по плотности потока фотонов в не менее чем 50 точках.

3. Способ по п.1 или 2, отличающийся тем, что интенсивность флуоресценции смеси измеряют при различных задержках относительно лазерного импульса, начиная с задержки 200 нс и соотношением сигнал/шум не менее 100 до значений задержек, когда соотношение сигнал/шум падает до 5.

4. Способ по п.1 или 2, отличающийся тем, что зависимость интенсивности флуоресценции смеси от времени измеряют с шагом не более 100 нс.

5. Способ по п.1, отличающийся тем, что при решении обратной задачи используют условие нормировки парциальных концентраций.



 

Похожие патенты:
Способ относится к области сельского хозяйства, в частности к плодоводству и селекции. Способ включает промораживание однолетних побегов в период покоя в камере искусственного климата.

Группа изобретений относится к области лабораторной диагностики и может быть использована для диагностики и мониторинга лечения различных заболеваний. Способ мониторинга лечения заболевания включает возбуждение центров флуоресценции образца биологической жидкости путем его облучения излучением, по крайнем мере, двух длин волн и регистрацию, соответственно, по крайней мере, двух спектров идущего от образца излучения.

Изобретение относится к устройству для анализа люминесцирующих биологических микрочипов, содержащему держатель образца, средство освещения. Устройство включает в себя лазерные источники возбуждения люминесцентного излучения и волоконно-оптическую систему распределения излучения лазеров, устройство фиксации изображения образца, фильтр для выделения света люминесценции образца и оптическую систему для проецирования люминесцентного изображения образца на устройство фиксации изображения.

Изобретение относится к области обнаружения свечения. Система обнаружения свечения содержит источник возбуждающего излучения и устройство (18, 20) обработки излучения, содержащее элемент (20) формирования линии и элемент (18) профилирования пучка, фокусирующее устройство, устройство для сбора флуоресцентного или фосфоресцентого излучения, детектор (28), подложку (16) для удержания образца (14) и средство сканирования возбуждающей линии.

Изобретение относится к аналитической химии органических соединений, а именно к способу определения в воздухе пиридина на фоне алифатических аминов. Способ заключается в том, что ДБМВF2 или его производное адсорбируют на полимерной матрице, содержащей полярные группы (например, ОН-группы).

Изобретение относится к области биотехнологии и касается химерного белка, нуклеиновой кислоты, кодирующей такой белок, кассеты экспрессии и эукариотической клетки-хозяина.

Изобретение относится к измерительной технике и может быть использовано для оперативной идентификации разливов нефти и нефтепродуктов на морских, озерных и речных акваториях.

Изобретение относится к технологии оптического обнаружения для флоат-стекла (термополированного стекла), особенно к устройству опознавания оловянной поверхности флоат-стекла.
Изобретение относится к области исследования и экспертизы пожаров и предназначено для обнаружения на месте пожара остатков интенсификаторов горения. Сущность способа заключается в выполнении твердофазной экстракции остатков сгоревшего материала, выделении остатков интенсификаторов горения, содержащихся на месте пожара.

Изобретение относится к системам и способам детектирования, в частности, в области диагностики. Система детектирования содержит держатель для подложки (16), причем подложка имеет поверхность детектирования и выполнена с возможностью содержать объем образца так, что образец находится, по меньшей мере, частично в контакте с поверхностью детектирования; источник (18) возбуждающего излучения для подачи возбуждающего излучения; компоновку подачи излучения для подачи возбуждающего излучения на область возбуждения образца, причем область возбуждения содержит поверхность детектирования; детектор (22), чтобы детектировать излучение детектирования, возникающее в результате взаимодействия возбуждающего излучения с образцом и собранное от анализируемой области в пределах области возбуждения образца, причем анализируемая область содержит поверхность детектирования; причем система дополнительно содержит магнитную компоновку, расположенную вблизи и с той же стороны поверхности детектирования образца, и неподвижную относительно источника (18) возбуждающего излучения и компоновки подачи излучения, причем магнитная компоновка выполнена с возможностью притягивать магнитные гранулы (15) в пределах образца к поверхности детектирования, и компоновку (24) направления магнитного поля для фокусировки магнитного поля от магнитной компоновки на анализируемую область, причем компоновка (24) направления магнитного ноля содержит отверстие, через которое компоновка подачи излучения может направить возбуждающее излучение и/или излучение детектирования.

Изобретение относится к медицине, в частности к медицинской диагностике, и может быть использовано для получения двумерных и трехмерных (томографических) флуоресцентных изображений диагностируемого объекта. Устройство содержит источник зондирующего излучения в полосе поглощения флуорофора, снабженный волоконным выходом, приемник излучения, выполненный в виде CCD камеры, систему сканирования объекта источником излучения в «проекционной» конфигурации, а также систему обработки и визуализации данных. Устройство содержит также источник зондирующего излучения в полосе эмиссии флуорофора, снабженный волоконным выходом, широконаправленные источники излучения в полосе поглощения и эмиссии флуорофора, расположенные в «отражательной» конфигурации, второй приемник излучения с волоконным входом, выполненный в виде ФЭУ, систему сканирования объекта ФЭУ в «проекционной» конфигурации относительно источника зондирующего излучения, а также блок управления сканированием. Система обработки и визуализации данных снабжена оригинальным программным обеспечением для реализации методов поверхностного имиджинга, проекционной визуализации и диффузионной флуоресцентной томографии. Устройство отличается простотой и малым временем измерений. 1 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к области биофизики. Предложены способы определения пространственно-временного распределения активности протеолитического фермента в гетерогенной системе, в соответствии с которыми обеспечивают систему in vitro, которая содержит образец плазмы крови, цельной крови, воды, лимфы, коллоидного раствора, кристаллоидного раствора или геля, и протеолитический фермент или его предшественник, добавляют флуорогенный, хромогенный или люминесцентный субстрат для упомянутого фермента, регистрируют в заданные моменты времени пространственное распределение сигнала высвобождающейся метки субстрата и получают пространственно-временное распределение активности протеолитического фермента путем решения обратной задачи типа «реакция - диффузия - конвекция» с учетом связывания метки с компонентами среды. Также рассмотрено устройство для реализации способов по настоящему изобретению и способ диагностики нарушений гемостаза, основанный на их применении. Настоящее изобретение может найти дальнейшее применение в исследованиях системы свертывания крови и диагностике заболеваний, связанных с нарушениями свертывания крови. 5 н. и 17 з.п. ф-лы, 6 ил.

(57) Изобретение относится к области экологии и предназначено для оценки токсичности воды и донных отложений Азовского и Черного морей. Способ включает помещение флуоресцирующих тест-объектов в контрольные и анализируемые пробы, облучение возбуждающим светом, определение флуоресцентных характеристик, по изменению которых судят о токсичности контролируемой среды. В качестве тест-объектов используют микроводоросли вида Scenedesmus apiculatus, которые предварительно выделяют из экологически чистых районов исследуемых водоемов. Использование заявленного способа позволяет быстро и точно дать оценку токсичности вод и донных отложений Азовского и Черного морей. 6 табл., 4 пр.

Изобретение относится к области измерительной техники и может быть использовано в атомной энергетике и для охраны окружающей среды. Осуществляют прокачку анализируемой смеси газов через исследуемую ячейку, возбуждают в ней флуоресцентное излучение перестраиваемыми полупроводниковыми лазерами с длинами волн, соответствующими линиям с максимальным поглощением изотопов 129I и 127I и диоксида азота, определяют концентрации изотопов 129I, 127I и диоксида азота в анализируемой смеси по формулам, учитывающим состав буферных газов. Изобретение обеспечивает повышение чувствительности определения концентрации изотопов молекулярного йода. 1 з.п. ф-лы, 2 ил.

Изобретение предназначено для обнаружения и определения концентрации паров аммиака в атмосфере или пробе воздуха. Сенсор включает в себя полупроводниковые нанокристаллы (квантовые точки), внедренные в пристеночный слой трековых пор полиэтилентерефталатных мембран, при этом сами поры остаются пустыми. В присутствии в пробе воздуха паров аммиака молекулы аммиака связываются с поверхностью квантовых точек, в результате чего интенсивность люминесценции квантовых точек уменьшается. Изобретение решает задачи повышения чувствительности, точности определения концентрации паров аммиака, срока эксплуатации и упрощения изготовления сенсора. 5 ил., 1 пр.
Изобретение относится к области секвенирования ДНК, в частности к секвенированию ДНК с использованием регулируемого по времени определения флуоресценции для идентификации оснований ДНК. Устройство содержит область вмещения дл удержания компонентов реакции секвенирования, источники света, выполненные с возможностью испускать световой импульс с определенной длинной волны, пиксель детектора, детектор, вывод, выполненный с возможностью переноса электрического сигнала от пиксела детектора, средство стробирования для стробирования детектора, причем пиксель детектора дополнительно содержит первый и второй аккумуляторы. Первый аккумулятор выполнен с возможностью накопления электрического сигнала от детектора в ответ на первый световой импульс, а второй аккумулятор выполнен с возможностью накопления электрического сигнала от детектора в ответ на второй световой импульс. Технический результат - увеличения скорости получения результатов секвенирования. 3 н. и 9 з.п. ф-лы, 7 ил.

Изобретение относится к применению бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида в качестве флуоресцентного сенсора на катион цинка(II). Изобретение позволяет повысить флуоресцентную активность гетероциклического органического соединения по отношению к иону цинка(II) в присутствии других ионов металлов. 1 табл., 40 пр.

Изобретение относится к области биохимии. Предложен способ оценки жизнеспособности клеток в микробиореакторе с помощью оптического световода. Способ включает помещение клеток в мембранную ячейку сменного клеточного блока микробиореактора, приготовление рабочего раствора витального красителя, внесение красителя в ячейку микробиореактора. После внесения осуществляют инкубацию клеток в растворе витального красителя и удаление несвязавшегося с клетками раствора витального красителя. Удаление осуществляют путем замены раствора инкубации на ростовую среду, не содержащую краситель. При этом оптический световод, соединенный со спектрометром, приводят в контакт с оптически прозрачным материалом сменного клеточного блока под мембранной ячейкой микробиореактора. Далее измеряют опорный спектр флуоресцентного сигнала как интеграл интенсивности флуоресценции на мембранной ячейке микробиореактора, в которой отсутствуют исследуемые клетки. Также измеряют спектр флуоресцентного сигнала как интеграл интенсивности флуоресценции на мембранной ячейке микробиореактора с исследуемыми клетками. После из полученного спектра флуоресцентного сигнала для мембранной ячейки с исследуемыми клетками вычитают опорный спектр флуоресцентного сигнала для мембранной ячейки микробиореактора без исследуемых клеток. Вычисляют количество жизнеспособных клеток в мембранной ячейке микробиореактора на основании полученной величины интенсивности сигнала флуоресценции. Изобретение позволяет быстро определить жизнеспособность клеток под влиянием воздействующих факторов в режиме реального времени в микробиореакторе. 5 з.п. ф-лы, 3 ил., 5 табл., 5 пр.

Изобретение относится к аналитической химии органических соединений и может быть применено при определении содержания паров бензола, толуола и ксилолов (БТК) в городском воздухе, воздухе жилых помещений, химических лабораторий, автозаправочных станций и предприятий нефтеперерабатывающей промышленности, в газовых выбросах промышленных предприятий. Способ определения концентрации паров бензола, толуола и ксилолов в газовой смеси заключается в том, что материал, содержащий флуорофор дибензоилметанат дифторида бора (ДБМБФ2) или его метил- или метоксипроизводное, помещают в газовую смесь, облучают материал светом в диапазоне длин волн 355-400 нм и измеряют интенсивность флуоресценции материала в диапазоне длин волн 400-550 нм. Причем в отличие от известного способа измерение проводят не менее чем на двух спектральных каналах, причем число каналов выбирают не менее числа определяемых компонентов в смеси плюс один, затем по измеренным значениям рассчитывают относительные интенсивности спектров флуорофора и его эксисплексов с бензолом, толуолом и ксилолом, по отношению интенсивностей соответствующего эксиплекса к интенсивности ДБМБФ2 определяют концентрации бензола, толуола и ксилола. Технический результат - возможность одновременного непрерывного селективного измерения бензола, толуола и ксилола в газовых смесях в широком диапазоне концентраций с малым временем реакции. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способу измерения изменений интенсивности флуоресценции потенциалочувствительного флуорохрома в зависимости от изменения потенциала или ионной силы, который включает добавление к потенциалочувствительному флуорохрому ионизирующегося соединения для вызова изменения потенциала или ионной силы, а также добавление витамина Е и/или холестерина для увеличения изменения потенциала или ионной силы по потенциалочувствительному флуорохрому. Также изобретение относится к способу измерения потенциала действий культивируемых кардиомиоцитов. Настоящее изобретение обеспечивает измерение интенсивности флуоресценции потенциалочувствительных флуорохромов или потенциалозависимые количественные изменения интенсивности их флуоресценции без использования таких материалов (мембранных носителей), как клетки или липидные бислойные липосомы. 2 н. и 8 з.п. ф-лы, 3 пр., 5 ил.
Наверх