Термогравиметрическая установка


 

G01N23/00 - Исследование или анализ материалов радиационными методами, не отнесенными к группе G01N 21/00 или G01N 22/00, например с помощью рентгеновского излучения, нейтронного излучения (G01N 3/00-G01N 17/00 имеют преимущество; измерение силы вообще G01L 1/00; измерение ядерного или рентгеновского излучения G01T; введение объектов или материалов в ядерные реакторы, извлечение их из ядерных реакторов или хранение их после обработки в ядерных реакторах G21C; конструкция или принцип действия рентгеновских аппаратов или схемы для них H05G)

Владельцы патента RU 2515333:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания и поддержания газовой атмосферы с заданным парциальным давлением кислорода. Причем система создания и поддержания газовой атмосферы с заданным парциальным давлением кислорода включает электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом. При этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру. Техническим результатом является повышение надежности получаемых результатов в термогравиметрической установке, упрощение конструкции, снижение затрат на ее производство и обеспечение компактности ее размещения в лаборатории. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области материаловедения твердых оксидных материалов и может быть использовано для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода окружающей газовой атмосферы.

Известна установка для дифференциально-термического и термогравиметрического анализа (Патент РФ на полезную модель №76135 Ul, G01N 25/02, опубликован 10.09.2008), содержащая печь с реакционной камерой, измерители температуры пробы, эталона и температуры среды внутри печи, нагревательный элемент печи из плавленого кварца из двух тонкостенных вставленных друг в друга цилиндров, между которыми расположена нагревательная спираль, при этом внутренний цилиндр выполнен с вертикальными отверстиями в стенках для улучшения воздушного теплообмена; между теплоизолирующим слоем печи из легкой шамотной керамики и нагревательным элементом создана воздушная оболочка, сообщающаяся с окружающей атмосферой через специальные отверстия, закрываемые автоматически при нагреве, и открываемые при охлаждении; компьютер, управляющий тепловым режимом и режимом измерений, сбором и визуализацией данных, их обработкой, и блок управления, в которой измеритель температуры жестко закреплен на дополнительно введенном датчике измерения веса образца, который электрически связан с дополнительным блоком усиления сигнала и через дополнительный канал аналого-цифрового преобразования - с компьютером, в котором добавлен модуль обработки данных изменения веса образца.

Недостатком этой полезной модели является отсутствие возможности создания и контроля парциального давления кислорода в газовой атмосфере, которая необходима для исследования кислородной нестехиометрии в твердых оксидных материалах в зависимости от температуры и парциального давления кислорода.

Известна термогравиметрическая установка-прототип (S.Onuma, К.Yashiro, S.Miyoshi, A.Kaimai, Н.Matsumoto, Y.Nigara, Т.Kawada, J.Mizusaki, K.Kawamura, N.Sakai, H.Yokokawa Oxygen nonstoichiometry of the perovskite-type oxide Lai-xCaxCrO3-δ (x=0.1, 0.2, 0.3). // Solid State Ionics. 2004. V. 174. P. 287-293), предназначенная для исследования кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода, содержащая измерительную систему, включающую помещенную в высокотемпературную печь реакционную трубку, датчик парциального давления кислорода, термопару и высокочувствительные электронные весы с держателем образца, проточную систему создания атмосферы с заданным парциальным давлением кислорода, которая содержит газосмесительную систему для приготовления смесей газов 02/Аг, СО/С02 и Н2, Н20/Аг с различным количественным соотношением, датчики парциального давления кислорода на входе газовой смеси в реакционную трубку и ее выходе из реакционной трубки.

Недостатками этой установки являются:

-громоздкость и сложность организации системы создания и контроля парциального давления кислорода, устроенной по проточному типу, а именно:

для создания газовой атмосферы с заданным парциальным давлением кислорода требуется использование различных газовых смесей O2/Аr, СО/СО2 и H2/Ar, т.е. наличие баллонов с взрывоопасными газами Н2, O2 и токсичным СО, для безопасного хранения и использования которых требуются специальные условия и меры предосторожности,

требуется дополнительный контроль парциального давления кислорода для потока газовой смеси, выходящего из газосмесительной системы в реакционную камеру и выходящего из реакционной камеры во внешнюю среду с помощью установки двух дополнительных датчиков парциального давления кислорода и соответствующих высокотемпературных печей,

-расположение измерительных весов над реакционной камерой, благодаря чему восходящие конвективные потоки горячего газа могут влиять на показания весов.

Задачей предлагаемого изобретения является значительное конструкционное упрощение системы создания заданного парциального давления кислорода газовой атмосферы и повышение надежности получаемых результатов в термогравиметрической установке для определения кислородной нестехиометрии твердооксидных материалов по изменению их массы в зависимости от температуры и парциального давления кислорода.

Поставленная задача решается за счет того, что в термогравиметрической установке, содержащей измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания газовой атмосферы с заданным парциальным давлением кислорода, в качестве системы создания газовой атмосферы с заданным парциальным давлением кислорода использован электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом, при этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру.

Кроме того, в предлагаемой установке весы с держателем тигля для образца и термопарой расположены внизу реакционной камеры и высокотемпературной печи.

Предлагаемая термогравиметрическая установка может осуществлять измерения массы твердых оксидных материалов одновременно в зависимости от температуры и парциального давления кислорода газовой атмосферы в интервале температур от 650°С до 1100°С и парциальных давлений кислорода от 10-20 атм до 1 атм. Используемая в установке замкнутая система создания газовой атмосферы с заданным парциальным давлением кислорода не требует применения дорогостоящих систем смешения газов, баллонов с различными газами и дополнительных датчиков парциального давления кислорода, что значительно упрощает конструкцию самой установки, снижает затраты на ее производство и обеспечивает компактность ее размещения в лаборатории. Расположение весов в термостатируемом кожухе ниже реакционной камеры позволяет избежать погрешностей измерения массы образца, вызванные конвекцией горячей газовой атмосферы, которая неизбежна в случае расположения весов над реакционной камерой.

Сущность изобретения поясняется чертежом, на котором изображена схема термогравиметрической установки для измерения массы твердооксидных материалов в зависимости от температуры и парциального давления кислорода.

Предлагаемая установка включает в себя высокочувствительные весы 1 в термостатируемом кожухе 2, реакционную камеру 3, внутри которой находятся: держатель тигля 4, жестко связанный с измерительным плечом 5 высокочувствительных весов 1, тигель с образцом 6, термопара 7 и датчик парциального давления кислорода 8. Снаружи реакционной камеры 3 располагается высокотемпературная электропечь 9. Посредством газопроводов 10 с циркуляционным насосом 11 реакционная камера 3 замкнуто сообщается с электрохимическим кислородным насосом 12, помещенным в высокотемпературную электропечь 13. Контроллер 14 соединен с датчиком парциального давления кислорода 8 и электрохимическим кислородным насосом 12 с помощью электрических проводов 15, обеспечивая регулирование парциального давления кислорода внутри замкнутого контура реакционной камеры 3 и газопроводов 10.

Датчик парциального давления кислорода 8 выполнен в виде газоплотной пробирки из стабилизированного диоксида циркония с нанесенными с обеих сторон электродами, располагается в непосредственной близости от тигля с образцом 6. Электрохимический кислородный насос 12 выполнен в виде газоплотной трубки из стабилизированного диоксида циркония с нанесенными с обеих сторон электродами. Внешняя сторона датчика парциального давления кислорода 8 и внутренняя сторона электрохимического кислородного насоса 12 омываются газовой атмосферой, замкнуто циркулирующей внутри реакционной камеры 3 и газопроводов 10. Внутренняя сторона датчика парциального давления кислорода 8 и внешняя сторона электрохимического кислородного насоса 12 омываются внешней воздушной атмосферой.

В качестве измерительной системы (за исключением встроенного в реакционную камеру 3 датчика парциального давления кислорода 8, подсоединенного к контроллеру 14) могут быть использованы термогравиметрическая установка или термоанализатор, способный работать в режиме термогравиметрического анализа при высоких температурах.

Работает устройство следующим образом.

Предварительно взвешенный тигель с образцом 6 известной массы устанавливается на держатель тигля 4, жестко соединенный с измерительным плечом 5 высокочувствительных весов 1, с помощью которых происходит измерение массы образца. Температура образца внутри реакционной камеры 3 измеряется с помощью термопары 7 и поддерживается электропечью 9.

Необходимое парциальное давление кислорода газовой атмосферы в реакционной камере 3 создается и автоматически поддерживается контроллером 14. При этом с помощью датчика парциального давления кислорода 8 фиксируются текущие значения парциального давления кислорода в газовой атмосфере реакционной камеры 3, а электрохимический кислородный насос 12 изменяет текущее значение парциального давления кислорода, приближая его к заданной величине. Для эффективной работы электрохимического кислородного насоса 12 его нагревают до постоянной температуры не ниже 800°С с помощью электропечи 13, работа которой регулируется контроллером 14. Циркуляционный насос 11 обеспечивает перемешивание газовой атмосферы между реакционной камерой 3 и внутренней областью электрохимического кислородного насоса 12, минимизируя тем самым градиент парциального давления кислорода, возникающий между электрохимическим насосом 12 и датчиком парциального давления кислорода 8 в процессе регулирования и поддержания заданного парциального давления кислорода в замкнутом контуре.

Для измерения массы образца исследуемого оксида в зависимости от температуры и парциального давления кислорода выполняется следующая последовательность действий.

Шаг 1. Выбирают значения температур и парциальных давлений кислорода, при которых необходимо провести исследования образца, и составляют план измерений.

Шаг 2. Разогревают электропечь 13 до температуры 800-900°С для обеспечения эффективной работы электрохимического кислородного насоса 12 и включают циркуляционный насос 11.

Шаг 3. Предварительно взвешенные на аналитических весах тигель с образцом 6 устанавливаются сверху на держатель тигля 4.

Шаг 4. С помощью электропечи 9 нагревают тигель с образцом 6 до заданной температуры.

Шаг 5. С помощью контроллера 14 задают необходимое парциальное давление кислорода внутри реакционной камеры 3.

Шаг 6. По достижении постоянных во времени значений параметров среды - температуры образца и парциального давления кислорода газовой атмосферы в реакционной камере 3 - следят за изменением массы образца.

Шаг 7. При достижении постоянства во времени всех трех измеряемых параметров - температуры образца, парциального давления кислорода газовой атмосферы и массы образца - записывают значения в лабораторный журнал.

Шаг 8. При необходимости измерения массы образца при других значениях парциального давления кислорода газовой атмосферы и/или температуры последовательно выполняют действия с шага 4 по шаг 7.

Шаг 9. Для учета влияния выталкивающей силы на измерения массы исследуемого образца выполняют аналогичные измерения на эталонном образце. При этом должны выполняться следующие условия:

абсолютная масса эталонного образца должна быть постоянной вне зависимости от его температуры и парциального давления кислорода газовой атмосферы;

объем эталонного образца в тигле должен соответствовать объему исследуемого образца оксида;

внешние условия окружающей эталонный образец среды - значения температур и парциальных давлений кислорода газовой атмосферы - должны быть идентичны условиям, при которых проводились измерения исследуемого образца.

Шаг 10. Производят коррекцию значений масс исследуемого образца по эталонному образцу для заданных в эксперименте температур и парциальных давлений кислорода газовой атмосферы.

1. Термогравиметрическая установка, содержащая измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания газовой атмосферы с заданным парциальным давлением кислорода, отличающаяся тем, что в качестве системы создания газовой атмосферы с заданным парциальным давлением кислорода использован электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом, при этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру.

2. Термогравиметрическая установка по п.1, отличающаяся тем, что весы с держателем тигля для образца и термопарой расположены ниже реакционной камеры и высокотемпературной печи.



 

Похожие патенты:

Использование: для досмотра людей с использованием рентгеновского излучения. Сущность изобретения заключается в том, что выполняют двустороннее сканирование досматриваемого человека тонкими пучками рентгеновского излучения из двух, размещенных по разные стороны досматриваемого человека, источников рентгеновского излучения путем вертикальной развертки за счет их линейного вертикального перемещения посредством снабженных электроприводом кареток и горизонтальной развертки посредством коллиматоров и регистрацию обратно рассеянного рентгеновского излучения посредством установленного на каждой из кареток приемного детектора для формирования растровых изображений досматриваемого человека за один цикл сканирования, при этом линейное вертикальное перемещение обоих источников рентгеновского излучения осуществляют одновременно и асинхронно с задержкой начала сканирования одного относительно другого, а рассеянное рентгеновское излучение, прошедшее от противоположного источника рентгеновского излучения, поглощают посредством защитных экранов на каждом из приемных детекторов.

Изобретение относится к неразрушающим способам контроля и может быть использовано для оценки технического состояния деталей авиационной техники. Способ включает снятие с детали рентгенограммы, по которой определяют остаточные напряжения сжатия, определение управляющего критерия и сравнение его с предельным значением.

Использование: для контроля процесса накопления осадка при разделении суспензий, полученных при растворении отработавшего ядерного топлива, в центрифугах. Сущность: заключается в том, что измеряют изменение интенсивности гамма-излучения от осадка, удельная активность которого отличается от удельной активности жидкой фазы разделяемой суспензии.

Использование: для нейтронной радиографии. Сущность: заключается в том, что информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру гамма-излучения, возникающего в объекте.

Использование: для управления временной структурой пучка рентгеновского излучения. Сущность заключается в том, что высокочастотный акустооптический модулятор рентгеновского излучения состоит из пьезоэлектрической подложки со сформированным на ней преобразователем высокочастотного электрического сигнала в ультразвуковую волну, закрепленной на держателе, обеспечивающем крепление всего устройства, по месту использования, и снабженном контактными площадками для подключения источника высокочастотного электрического сигнала, при этом имеется второй преобразователь высокочастотного электрического сигнала в ультразвуковую волну, причем преобразователи сформированы так, что ультразвуковые волны могут быть запущены во встречных направлениях и расположены на расстоянии, обеспечивающем достижение максимальной амплитуды ультразвуковой волны в промежутке между преобразователями, а пьезоэлектрическая подложка выполнена из материала, обеспечивающего максимальную эффективность Брэгговской дифракции рентгеновского излучения и обладающего термостабильностью акустических свойств, обеспечивающей постоянное значение скорости распространения акустических волн в материале при повышении температуры кристалла, вызываемого поглощением рентгеновского излучения, а также радиационной стойкостью и имеет площадь не менее 1 см2.

Изобретение относится к радиоизотопным методам бесконтактного измерения плотности вещества и предназначено для измерения плотности пустой породы в составе горной массы на ленточном конвейере.
Изобретение относится к медицинской технике, а именно к устройствам для компьютерной томографической ангиографии с компенсацией дыхательного движения. .

Изобретение относится к медицинской технике, а именно к рентгеновским устройствам и способам получения рентгеновских изображений. .

Изобретение относится к методам неразрушающего контроля элементного состава вещества и предназначен в основном для ревизии на предмет выявления новых полезных элементов добытых в процессе извлечения из недр и попавших в отвалы «пустой» породы.

Использование: для определения содержания индия в касситерите. Сущность изобретения заключается в том, что для определения содержания примеси индия в касситерите используют метод масс-спектрометрии с индуктивно-связанной плазмой с лазерной абляцией (LA-ICP-MS), при этом анализируют мономинеральные зерна касситерита, не содержащие микровключений других In-содержащих минералов, и устанавливают концентрацию индия по менее распространенному изотопу 113In. Способ включает измерение интенсивности сигналов от аналитических линий 113In, 113Cd, 110Cd и 111Cd с последующей математической обработкой, устраняющей влияние помех от аналитических линий кадмия и расчет концентрации индия в касситерите по внешнему стандарту с учетом внутреннего стандарта, в качестве которого используют концентрации железа и/или титана, определенные рентгеноспектральным микроанализом. Технический результат: позволяет точно оценить содержание индия в касситерите и избежать ошибок определения за счет наложения аналитических линий или наличия микровключений в минерале.

Использование: для определения фазового состава бейнитных сталей. Сущность изобретения заключается в том, что получают рентгенодифракционный спектр, проводят качественный фазовый анализ и количественно определяют содержание фаз методом Ритвельда с учетом фактора сходимости GOF, при этом в качестве пробы выбирают бейнитную сталь в виде металлографического шлифа, на дифрактограмме выделяют рефлексы, принадлежащие альфа-фазе и разделяют их на компоненты - пики феррита и бейнитного феррита, задают степень тетрагональности решетки бейнитного феррита, рассчитывают и корректируют количественный и качественный фазовый состав. Технический результат: обеспечение возможности определения качественного и количественного фазового состава бейнитных сталей с выявлением соотношения бейнита и феррита. 5 ил.

Предлагаемое изобретение относится к области измерительной техники, предназначено для измерения электрического заряда движущихся частиц минералов и предназначено, в частности, для обнаружения алмазов в алмазосодержащих смесях минералов, для их последующего извлечения с помощью исполнительного механизма. Кроме того, заявляемое изобретение может быть использовано для измерения электрического заряда частиц минералов при исследовании процессов электрической сепарации различных руд. Технический эффект заключается в уменьшении числа паразитных срабатываний исполнительного механизма, в результате чего уменьшается доля сопутствующих минералов в концентрате. Это ведет к повышению кондиции концентрата без дополнительных затрат времени и электроэнергии. Датчик для бесконтактного измерения электрического заряда движущихся частиц минералов включает чувствительный электрод с внутренним каналом переменного поперечного сечения, высококачественный изолятор и заземленный электрод, верхняя часть которого выполнена в форме усеченной пирамиды с наклоном внутренней поверхности боковых граней пирамиды к вертикальной оси датчика, выбранной из интервала 30-55 градусов. 4 ил.

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально источнику электромагнитного излучения на противоположной стороне трубопровода, при этом импульсный источник быстрых нейтронов является одновременно и импульсным источником электромагнитного излучения, дополнительно содержащим мониторный детектор быстрых нейтронов и мониторный детектор электромагнитного излучения, гамма спектрометр дополнительно содержит коллиматор гамма лучей и расположен рядом с импульсным источником быстрых нейтронов и электромагнитного излучения, детектор гамма лучей расположен на одной стороне трубопровода с импульсным источником быстрых нейтронов и электромагнитного излучения на заданном расстоянии от импульсного источника быстрых нейтронов и электромагнитного излучения по направлению течения многофазной жидкости, детектор быстрых нейтронов, расположен диаметрально импульсному источнику быстрых нейтронов и электромагнитного излучения на противоположной стороне трубопровода, детектор тепловых и эпитепловых нейтронов расположены от импульсного источника быстрых нейтронов и электромагнитного излучения на расстоянии, равном длине замедления быстрых нейтронов в многофазной жидкости, а гамма спектрометр, мониторный детектор электромагнитного излучения и сцинтиллятор выполнены с возможностью измерения спектра импульсного электромагнитного излучения. Технический результат: повышение точности измерения фракционного состава и расхода многофазной жидкости. 1 ил.

Изобретение относится к области химического анализа веществ и направлено на обеспечение возможности количественного высокочувствительного определения металлов и комплексных соединений металлов в природных и промышленных объектах, для решения задач биотехнологии и медицины, в фармакологии для определения концентрации металлсодержащих лекарственных препаратов, для экспресс-анализа содержания металлов при экологическом контроле. Указанный результат достигается способом определения металлов и комплексных соединений металлов в природных и промышленных объектах, включающим нанесение комплексного соединения определяемого элемента на эмиттер ионов, воздействие на эмиттер ионов импульсным лазерным излучением и детектирование полученных в результате такого воздействия ионов анализатором, при этом в качестве эмиттера ионов используют твердотельную подложку, длину волны лазерного излучения выбирают из условия его поглощения материалом твердотельной подложки и комплексным соединением определяемого элемента, а плотность энергии лазерного излучения выбирают равной или ниже порогового уровня разрушения поверхности твердотельной подложки. Технический результат - повышение чувствительности способа определения металлов и комплексных соединений металлов. 8 з.п. ф-лы, 4 ил.

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого кристалла картин изгибных экстинкционных контуров проводят анализ симметрии картин контуров и при выявлении элементов симметрии, отличных от тождественного преобразования, по результатам микродифракционного исследования диагностируют реальную структуру одного из симметрично равных участков нанотонкого кристалла, а затем диагностируют реальную структуру другого как симметрично равную реальной структуре исследованного участка, после чего диагностируют реальную структуру нанотонкого кристалла в целом. Технический результат: обеспечение возможности повышения экспрессности диагностики реальной структуры нанотонких кристаллов. 7 ил., 5 табл.

Использование: для формирования протонных изображений. Сущность изобретения заключается в том, что осуществляют формирование протонного пучка, пропускание его через объект исследования, пропускание прошедшего излучения через магнитную оптику, состоящую из квадрупольных линз, схему размещения которых подбирают предварительно с помощью метода, основанного на решении задачи минимизации функции множества переменных, используя соответствующую оптимизационную программу, в качестве информативных параметров в которой используют энергию протонного пучка, коэффициент увеличения магнитной оптики, диапазон изменения перемещений квадрупольных линз вдоль оптической оси и диапазон изменения градиентов магнитного поля в квадрупольных линзах, последующее формирование в плоскости регистрации изображения и его регистрацию, при этом в процессе формирования протонного пучка ускорение протонов осуществляют до энергии не менее 20 ГэВ, при этом к информативным параметрам добавляют разброс энергии протонов после прохождения объекта исследования, коэффициент коррекции хроматической аберрации, который определяют из условия получения безаберрационного пятна фокусировки пучка протонов в плоскости регистрации и общее расстояние от объекта исследования до плоскости регистрации. Технический результат: повышение точности передачи изображения за счет снижения хроматических аберраций, расширение функциональных возможностей способа за счет расширения диапазона массовых толщин исследуемых объектов. 2 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при определении коллекторских свойств трещиноватых образцов породы. Сущность: определяют максимальную влажность образца спороды. Способ состоит в том, что в камеру реторты помещают металлический имитатор объемом, равным объему образца породы, камеру прогревают до температуры 140-150°С и определяют исходную влажность в реторте с0, определяют калибровочную зависимость реторты и постоянный коэффициент α, универсальный для используемой реторты, выпаривают воду из образца породы при температуре 140-150°С в закрытой реторте. Водонасыщенность образца породы рассчитывается по выражению: S в = ( с п о р о д ы − с 0 ) ( V 0 − V о б р ) α V п о р ,           ( 1 ) где Sв - водонасыщенность образца породы; спороды - измеренная максимальная влажность образца породы; с0 - влажность в реторте без образца породы, определяемая непосредственно перед экспериментом при температуре выпаривания 140-150°С; V0 - объем реторты с подводящими соединениями; Vобр - объем образца горной породы; α - постоянный коэффициент, универсальный для используемой реторты; Vпор - объем пор образца. Техническим результатом является увеличение точности и достоверности определения водонасыщенности образцов породы с низкой пористостью. 2 з.п. ф-лы, 2 ил., 2 табл.

Использование: для формирования фазово-контрастных изображений. Сущность изобретения заключается в том, что при формировании фазово-контрастных изображений объекта выполняют следующие этапы: формируют основанное на поглощении изображение объекта, расположенного между источником (S) пучка рентгеновских лучей и детектором (D), указывают интересующую область (ROI) в основанном на поглощении изображении, причем интересующая область имеет ширину и положение, перемещают систему решеток между источником (S) и детектором (D), покрывая интересующую область, адаптируют поле зрения пучка рентгеновских лучей к интересующей области, генерируют сигналы посредством детектора (D) для обнаружения пучка рентгеновских лучей, при этом часть объекта (O) находится вместе с системой решеток в пределах пучка рентгеновских лучей между источником (S) пучка рентгеновских лучей и детектором, получают передаваемые данные с различных углов проекции, выполняют локальную обработку сигналов из детектора (D), и формируют изображение на основе обработанных сигналов. Технический результат: обеспечение возможности сканирования контролируемого объекта с меньшей интенсивностью по сравнению с традиционным сканированием на основе поглощения. 3 н. и 12 з.п. ф-лы, 6 ил.

Использование: для определения канцерогенности вещества. Сущность изобретения заключается в том, что исследуемое вещество в твердом или жидком состоянии помещают в позитронно аннигиляционный временной спектрометр быстро-быстрых задержанных совпадений, измеряют его аннигиляционный спектр, обрабатывая который с помощью компьютера, находят значение долгоживущей временной компоненты (τ3) Ps, и если оно менее 1,005±0,005 нс, то делают вывод о наличии канцерогенных свойств у вещества, а если оно более 1,005±0,005 нс, то делают вывод об отсутствии канцерогенных свойств у вещества. Технический результат: обеспечение высокой скорости процедуры получения заключения о наличии или отсутствии канцерогенности вещества. 3 з.п. ф-лы, 1 табл.
Наверх