Способ нейтронной радиографии

Использование: для нейтронной радиографии. Сущность: заключается в том, что информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру гамма-излучения, возникающего в объекте. Технический результат: расширение области применения радиографического контроля внутренней структуры и идентификации вещественного состава просвечиваемых объектов, уменьшение влияния рассеянного излучения и увеличение контраста изображения, упрощение процедуры идентификации. 1 ил.

 

Изобретение относится к нейтронной радиографии и может быть использовано в установках, предназначенных для досмотра или неразрушающего контроля просвечиваемых объектов с определением их внутренней структуры и вещественного состава.

Известен рентгеновский способ для определения массовых долей веществ, входящих в состав исследуемого тела. Способ включает облучение среды на двух энергетических уровнях, определение значения коэффициента поглощения для каждого пикселя исследуемого тела и определение массовых долей водящих в тело веществ. Патент США 2009/0208084, 2009. Недостатком этого способа является возможность его использования только для трехкомпонентных сред с заранее известным составом.

Известен рентгеновский способ проверки объекта с использованием мультиэнергетического излучения.

Способ включает взаимодействие мультиэнергетического излучения с проверяемым объектом, измерение и регистрацию измеренных величин после взаимодействия мультиэнергетического излучения с проверяемым объектом, подстановку части измеренных значений в заранее определенную калибровочную функцию для получения информации, содержащей основное значение характеристики объекта, и более точное определение характеристики материала объекта путем применения набора функций, подходящих для энергетической полосы, соответствующей полученной информации. Патент Российской Федерации №2351921, 2009. Недостатком предлагаемого способа является отсутствие четкого критерия, позволяющего сопоставить функциональные зависимости измеренных значений конкретному материалу.

Известен способ идентификации материалов путем многократного радиографического облучения объекта при заданном наборе энергий, задают множество веществ, подлежащих гарантированной идентификации, определяют возможную ошибку нахождения коэффициентов ослабления, для каждого уровня энергии и для каждого включения, с помощью компьютерной программы определяют набор веществ, соответствующий выбранной погрешности, после чего идентифицируют материалы. Патент Российской Федерации №2426102, МПК: G01N 23/06, 2010 г.

Недостатком способа является неоднозначность идентификации, связанная, в частности, с тем то, что вещества, особенно взрывчатые, могут быть композитными и не содержаться в базе данных. Кроме того, количество используемых энергий излучения ограничено. Так, при контроле авиационного багажа энергия излучения, в основном, не превышает 100 кэВ. Следовательно, и множество идентифицируемых веществ также ограничено.

Техническим результатом изобретения является расширение области применения радиографического контроля внутренней структуры и идентификации вещественного состава просвечиваемых объектов, уменьшение влияния рассеянного излучения и увеличение контраста изображения, упрощение процедуры идентификации.

Технический результат достигается тем, что в способе нейтронной радиографии с источником проникающего излучения в виде генератора нейтронов с встроенным позиционно-чувствительным детектором альфа частиц, информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру гамма-излучения, возникающего в объекте, причем для разделения изображений в нерассеянных и рассеянных нейтронах используют соотношение:

Δt=L/vn-l/vα, где:

Δt - временной интервал между моментом регистрации альфа-частицы и моментом регистрации нейтрона, вылетевшего из мишени в противоположном ей направлении,

L - расстояние между мишенью генератора и элементом нейтронного детектора, зарегистрировавшего нейтрон,

vn - скорость нейтрона источника,

l - расстояние между мишенью генератора 1 и элементом альфа-детектора, зарегистрировавшим альфа-частицу и находящимся с противоположной стороны по отношению к мишени генератора 1 от соответствующего элемента нейтронного детектора, vα - скорость альфа-частицы.

Сущность изобретения поясняется на чертежом, на котором схематично представлена блок-схема устройства реализации, где: 1 - мишень нейтронного генератора; 2 - позиционно-чувствительный детектор альфа-частиц; 3 и 4 - линейные однокоординатные детекторы быстрых нейтронов, расположенные в плоскости перпендикулярной плоскости рисунка; 5 - просвечиваемый объект (стрелкой показано направление перемещения объекта), 6 - веерные пучки быстрых нейтронов в плоскости, перпендикулярной плоскости рисунка, 7 - гамма-спектрометр, 8 - компьютерный блок с программным обеспечением, 9 - экран-коллиматор для детекторов 3 от нейтронов источника.

Мишень 1 нейтронного генератора бомбардируют узким дейтронным пучком. При взаимодействии дейтрона с содержащимся в мишени нейтронного генератора 1 ядром трития возникают две частицы, вылетающие в противоположных направлениях: быстрый нейтрон и альфа-частица.

Момент регистрации альфа-частицы одним из элементов позиционно-чувствительного детектора альфа-частиц 2 определяет момент и направление вылета быстрого нейтрона, а также элементы нейтронного линейного детектора 4, на один из которых приходит нейтрон в определенный последующий момент времени, если он проходит через просвечиваемый объект 5 без взаимодействия. Нейтроны, пришедшие в другие моменты времени, претерпевают рассеяние либо в просвечиваемом объекте 5, либо в элементах установки.

Линейный однокоординатный детектор быстрых нейтронов 4 служит для регистрации одновременно нейтронов, прошедших без рассеяния, т.е. в определенные моменты времени после регистрации альфа-частицы на соответствующий элемент позиционно-чувствительного альфа-детектора 2, и для регистрации нейтронов, рассеянных вперед, в случае их прихода на детектор при других временах.

Линейные однокоординатные детекторы быстрых нейтронов 3, установленные перед просвечиваемым объектом 5 со стороны источника, служат для получения радиографического изображения с помощью нейтронов, рассеянных в просвечиваемом объекте 5 в обратном направлении. Для этого детекторы 3 экранированы от нейтронов источника, идущих напрямую с помощью экрана-коллиматора 9, служащего также для коллимации нейтронов, излучаемых источником. Гамма-спектрометр 7 измеряет спектр излучения, возникающего в результате неупругого рассеяния в нем быстрых нейтронов источника.

При получении радиографического изображения с помощью нерассеянных нейтронов регистрируют только сцинтилляционные события, которые сопровождаются регистрацией альфа-частиц, возникающих в элементах альфа-детектора, находящихся с противоположной стороны по отношению к мишени генератора, в моменты времени, предшествовавшие нейтронному событию. Разность времен между моментами регистрации нейтрона и альфа-частицы Δt определяют, исходя из энергии альфа- частицы, энергии нейтрона источника, направления вылета нейтрона и расстояний от мишени генератора до соответствующих элементов альфа- детектора и нейтронного детектора:

Δt=L/vn-l/vα, где:

L - расстояние между мишенью генератора и элементом нейтронного детектора, зарегистрировавшего нейтрон,

vn - скорость нейтрона источника,

l - расстояние между мишенью генератора 1 и элементом альфа-детектора, зарегистрировавшим альфа-частицу и находящимся с противоположной стороны по отношению к мишени генератора 1 от соответствующего элемента нейтронного детектора,

vα - скорость альфа-частицы.

Если регистрация альфа-частицы сопровождается регистрацией нейтрона в другие моменты времени, то этот нейтрон является рассеянным. Число и соотношение нейтронов, рассеявшихся вперед и назад в определенном направлении, определяется вещественным составом объекта в этом направлении. Это связано с тем, что на водороде быстрые нейтроны рассеиваются вперед, а на более тяжелых элементах - практически изотропно.

Для получения радиографических данных просвечиваемый объект 5 перемещают вдоль плоскости, в которой расположены линейные однокоординатные детекторы быстрых нейтронов 3 и 4. При сканировании получают набор данных, показывающих:

пространственное распределение ослабления первичного нейтронного пучка, пространственное распределение нейтронов, рассеянных вперед и обратно, пространственное распределение химического элементного состава.

Эти данные вводят в качестве исходных данных в компьютерную программу, предназначенную для идентификации вещественного состава объекта 5 в различных его сечениях.

Комплексное применение 3-х видов контроля повышает информативность способа, надежность идентификации вещественного состава объекта, а также упрощает процедуру идентификации, так как ограничивает число рассматриваемых веществ.

Положение той или иной области внутри просвечиваемого объекта 5 и ее вещественный состав визуализируют на мониторе с помощью стереоскопических изображений.

Пространственное разрешение радиографических изображений определяют поперечным сечением элементов линейных однокоординатных детекторов быстрых нейтронов 3 и 4, скоростью перемещения просвечиваемого объекта 5 и временем набора сцинтилляционных сигналов с линейных однокоординатных детекторов быстрых нейтронов 3 и 4.

Каждый элемент линейного однокоординатного детектора быстрых нейтронов 3 и 4 состоит из сцинтиллятора, фотоприемника, электроники считывания и предварительной обработки сигнала, электроники передачи данных в компьютерный блок 8.

Регистрация быстрых нейтронов основана на возникновении в сцинтилляторе протонов отдачи, которые возбуждают в нем сцинтилляционные вспышки. Часть фотонов от сцинтилляционной вспышки поступает на фотоприемник, образуют в нем в результате фотоэффекта электроны, которые затем регистрируют электроникой считывания.

Сторона прямоугольного сечения пластмассовых сцинтилляторов, применяемых для быстрых нейтронов, в случае источника в виде портативного нейтронного генератора обычно составляет от 1 мм до 20 мм. Длина сцинтиллятора вдоль пучка, необходимая для эффективной регистрации быстрых 14 МэВ нейтронов, составляет около 10 см. Для повышения доли сцинтилляционных фотонов, приходящих на фотоприемник, поверхность сцинтиллятора покрыта светоотражающим слоем. В качестве фотоприемника чаще всего используют фотодиоды, устанавливаемые на торцевую поверхность сцинтиллятора со стороны, противоположной просвечиваемому объекту 5.

Способ нейтронной радиографии с источником проникающего излучения в виде генератора нейтронов с встроенным позиционно-чувствительным детектором альфа частиц, отличающийся тем, что информацию о структуре и вещественном составе просвечиваемого объекта получают путем обработки данных по ослаблению первичного пучка, по соотношению и количеству нейтронов, рассеянных вперед и назад, а также по спектру гамма-излучения, возникающего в объекте, причем для разделения изображений в нерассеянных и рассеянных нейтронах используют соотношение:
Δt=L/vn-1/vα,
где Δt - временной интервал между моментом регистрации альфа-частицы и моментом регистрации нейтрона, вылетевшего из мишени в противоположном ей направлении,
L - расстояние между мишенью генератора и элементом нейтронного детектора, зарегистрировавшего нейтрон,
vn - скорость нейтрона источника,
l - расстояние между мишенью генератора 1 и элементом альфа-детектора, зарегистрировавшим альфа-частицу и находящимся с противоположной стороны по отношению к мишени генератора 1 от соответствующего элемента нейтронного детектора,
vα - скорость альфа-частицы.



 

Похожие патенты:

Использование: для управления временной структурой пучка рентгеновского излучения. Сущность заключается в том, что высокочастотный акустооптический модулятор рентгеновского излучения состоит из пьезоэлектрической подложки со сформированным на ней преобразователем высокочастотного электрического сигнала в ультразвуковую волну, закрепленной на держателе, обеспечивающем крепление всего устройства, по месту использования, и снабженном контактными площадками для подключения источника высокочастотного электрического сигнала, при этом имеется второй преобразователь высокочастотного электрического сигнала в ультразвуковую волну, причем преобразователи сформированы так, что ультразвуковые волны могут быть запущены во встречных направлениях и расположены на расстоянии, обеспечивающем достижение максимальной амплитуды ультразвуковой волны в промежутке между преобразователями, а пьезоэлектрическая подложка выполнена из материала, обеспечивающего максимальную эффективность Брэгговской дифракции рентгеновского излучения и обладающего термостабильностью акустических свойств, обеспечивающей постоянное значение скорости распространения акустических волн в материале при повышении температуры кристалла, вызываемого поглощением рентгеновского излучения, а также радиационной стойкостью и имеет площадь не менее 1 см2.

Изобретение относится к радиоизотопным методам бесконтактного измерения плотности вещества и предназначено для измерения плотности пустой породы в составе горной массы на ленточном конвейере.
Изобретение относится к медицинской технике, а именно к устройствам для компьютерной томографической ангиографии с компенсацией дыхательного движения. .

Изобретение относится к медицинской технике, а именно к рентгеновским устройствам и способам получения рентгеновских изображений. .

Изобретение относится к методам неразрушающего контроля элементного состава вещества и предназначен в основном для ревизии на предмет выявления новых полезных элементов добытых в процессе извлечения из недр и попавших в отвалы «пустой» породы.

Изобретение относится к области исследования материалов без их разрушения, а точнее к гамма-дефектоскопии. .

Изобретение относится к области исследования материалов посредством проникающего излучения. .

Изобретение относится к области исследования материалов промышленных изделий без их разрушения, а именно к радиографическому методу контроля, и может быть использовано для контроля качества широкой номенклатуры сварных соединений в качестве универсального средства гамма-дефектоскопии.

Использование: для контроля процесса накопления осадка при разделении суспензий, полученных при растворении отработавшего ядерного топлива, в центрифугах. Сущность: заключается в том, что измеряют изменение интенсивности гамма-излучения от осадка, удельная активность которого отличается от удельной активности жидкой фазы разделяемой суспензии. Изменение интенсивности излучения является функцией объема осадка и фиксируется детектором. Приведена формула расчета объемной доли осадка в центрифуге в зависимости от мощностей экспозиционных дозы излучения от суспензии, от осадка и по удельной активности изотопа цезия-137 в ядерном топливе. Технический результат: обеспечение возможности контролировать накопление радиоактивного осадка в центрифуге при разделении суспензий, получаемых при растворения отработавшего ядерного топлива. 1 ил.

Изобретение относится к неразрушающим способам контроля и может быть использовано для оценки технического состояния деталей авиационной техники. Способ включает снятие с детали рентгенограммы, по которой определяют остаточные напряжения сжатия, определение управляющего критерия и сравнение его с предельным значением. При этом для оценки многоцикловой усталости в качестве управляющего критерия используют параметр напряженного состояния для концентратора напряжения, .который определяется как отношение остаточного напряжения сжатия в точке с большей интенсивностью изменения остаточных напряжений концентратора напряжений к остаточному напряжению сжатия в точке с меньшей интенсивностью изменения остаточных напряжений сжатия концентратора напряжений. Далее сравнивают значение параметра напряженного состояния с предельным значением для данного вида концентратора напряжений, полученное экспериментальным путем. При этом деталь возвращают в эксплуатацию, если значение параметра напряженного состояния больше предельного значения в концентраторе напряжений, или деталь подвергают детальному исследованию в зоне пониженного значения параметра напряженного состояния, когда параметр напряженного состояния меньше или равен предельному значению и деталь в концентраторе напряжений находится в предельном состоянии на стадии образования дефекта. Также на поверхности вблизи концентратора напряжений, расположенной в плоскости вдоль направления распространения предполагаемого дефекта вглубь металла, параметр напряженного состояния определяется как отношение остаточного напряжения сжатия в точке с большей интенсивностью изменения остаточных напряжений сжатия на поверхности вблизи концентратора напряжений, к остаточному напряжению сжатия в точке с меньшей интенсивностью изменения остаточных напряжений сжатия на поверхности вблизи концентратора напряжений. Затем сравнивают полученное значение с предельным значением параметра напряженного состояния, полученное экспериментальным путем. При этом деталь возвращают в эксплуатацию, если значение параметра напряженного состояния на поверхности вблизи концентратора напряжений меньше предельного значения, или же подвергают детальному исследованию, если значение параметра напряженного состояния больше или равно предельному значению, то есть деталь находится в предельном состоянии на поверхности вблизи концентратора напряжений. Технический результат заключается в возможности оценки технического состояния деталей в концентраторах напряжений или на поверхностях, близких к концентраторам напряжений. 5 ил.

Использование: для досмотра людей с использованием рентгеновского излучения. Сущность изобретения заключается в том, что выполняют двустороннее сканирование досматриваемого человека тонкими пучками рентгеновского излучения из двух, размещенных по разные стороны досматриваемого человека, источников рентгеновского излучения путем вертикальной развертки за счет их линейного вертикального перемещения посредством снабженных электроприводом кареток и горизонтальной развертки посредством коллиматоров и регистрацию обратно рассеянного рентгеновского излучения посредством установленного на каждой из кареток приемного детектора для формирования растровых изображений досматриваемого человека за один цикл сканирования, при этом линейное вертикальное перемещение обоих источников рентгеновского излучения осуществляют одновременно и асинхронно с задержкой начала сканирования одного относительно другого, а рассеянное рентгеновское излучение, прошедшее от противоположного источника рентгеновского излучения, поглощают посредством защитных экранов на каждом из приемных детекторов. Технический результат: повышение пропускной способности при досмотре людей. 2 н. и 7 з.п. ф-лы, 2 ил.

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания и поддержания газовой атмосферы с заданным парциальным давлением кислорода. Причем система создания и поддержания газовой атмосферы с заданным парциальным давлением кислорода включает электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом. При этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру. Техническим результатом является повышение надежности получаемых результатов в термогравиметрической установке, упрощение конструкции, снижение затрат на ее производство и обеспечение компактности ее размещения в лаборатории. 1 з.п. ф-лы, 1 ил.

Использование: для определения содержания индия в касситерите. Сущность изобретения заключается в том, что для определения содержания примеси индия в касситерите используют метод масс-спектрометрии с индуктивно-связанной плазмой с лазерной абляцией (LA-ICP-MS), при этом анализируют мономинеральные зерна касситерита, не содержащие микровключений других In-содержащих минералов, и устанавливают концентрацию индия по менее распространенному изотопу 113In. Способ включает измерение интенсивности сигналов от аналитических линий 113In, 113Cd, 110Cd и 111Cd с последующей математической обработкой, устраняющей влияние помех от аналитических линий кадмия и расчет концентрации индия в касситерите по внешнему стандарту с учетом внутреннего стандарта, в качестве которого используют концентрации железа и/или титана, определенные рентгеноспектральным микроанализом. Технический результат: позволяет точно оценить содержание индия в касситерите и избежать ошибок определения за счет наложения аналитических линий или наличия микровключений в минерале.

Использование: для определения фазового состава бейнитных сталей. Сущность изобретения заключается в том, что получают рентгенодифракционный спектр, проводят качественный фазовый анализ и количественно определяют содержание фаз методом Ритвельда с учетом фактора сходимости GOF, при этом в качестве пробы выбирают бейнитную сталь в виде металлографического шлифа, на дифрактограмме выделяют рефлексы, принадлежащие альфа-фазе и разделяют их на компоненты - пики феррита и бейнитного феррита, задают степень тетрагональности решетки бейнитного феррита, рассчитывают и корректируют количественный и качественный фазовый состав. Технический результат: обеспечение возможности определения качественного и количественного фазового состава бейнитных сталей с выявлением соотношения бейнита и феррита. 5 ил.

Предлагаемое изобретение относится к области измерительной техники, предназначено для измерения электрического заряда движущихся частиц минералов и предназначено, в частности, для обнаружения алмазов в алмазосодержащих смесях минералов, для их последующего извлечения с помощью исполнительного механизма. Кроме того, заявляемое изобретение может быть использовано для измерения электрического заряда частиц минералов при исследовании процессов электрической сепарации различных руд. Технический эффект заключается в уменьшении числа паразитных срабатываний исполнительного механизма, в результате чего уменьшается доля сопутствующих минералов в концентрате. Это ведет к повышению кондиции концентрата без дополнительных затрат времени и электроэнергии. Датчик для бесконтактного измерения электрического заряда движущихся частиц минералов включает чувствительный электрод с внутренним каналом переменного поперечного сечения, высококачественный изолятор и заземленный электрод, верхняя часть которого выполнена в форме усеченной пирамиды с наклоном внутренней поверхности боковых граней пирамиды к вертикальной оси датчика, выбранной из интервала 30-55 градусов. 4 ил.

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально источнику электромагнитного излучения на противоположной стороне трубопровода, при этом импульсный источник быстрых нейтронов является одновременно и импульсным источником электромагнитного излучения, дополнительно содержащим мониторный детектор быстрых нейтронов и мониторный детектор электромагнитного излучения, гамма спектрометр дополнительно содержит коллиматор гамма лучей и расположен рядом с импульсным источником быстрых нейтронов и электромагнитного излучения, детектор гамма лучей расположен на одной стороне трубопровода с импульсным источником быстрых нейтронов и электромагнитного излучения на заданном расстоянии от импульсного источника быстрых нейтронов и электромагнитного излучения по направлению течения многофазной жидкости, детектор быстрых нейтронов, расположен диаметрально импульсному источнику быстрых нейтронов и электромагнитного излучения на противоположной стороне трубопровода, детектор тепловых и эпитепловых нейтронов расположены от импульсного источника быстрых нейтронов и электромагнитного излучения на расстоянии, равном длине замедления быстрых нейтронов в многофазной жидкости, а гамма спектрометр, мониторный детектор электромагнитного излучения и сцинтиллятор выполнены с возможностью измерения спектра импульсного электромагнитного излучения. Технический результат: повышение точности измерения фракционного состава и расхода многофазной жидкости. 1 ил.

Изобретение относится к области химического анализа веществ и направлено на обеспечение возможности количественного высокочувствительного определения металлов и комплексных соединений металлов в природных и промышленных объектах, для решения задач биотехнологии и медицины, в фармакологии для определения концентрации металлсодержащих лекарственных препаратов, для экспресс-анализа содержания металлов при экологическом контроле. Указанный результат достигается способом определения металлов и комплексных соединений металлов в природных и промышленных объектах, включающим нанесение комплексного соединения определяемого элемента на эмиттер ионов, воздействие на эмиттер ионов импульсным лазерным излучением и детектирование полученных в результате такого воздействия ионов анализатором, при этом в качестве эмиттера ионов используют твердотельную подложку, длину волны лазерного излучения выбирают из условия его поглощения материалом твердотельной подложки и комплексным соединением определяемого элемента, а плотность энергии лазерного излучения выбирают равной или ниже порогового уровня разрушения поверхности твердотельной подложки. Технический результат - повышение чувствительности способа определения металлов и комплексных соединений металлов. 8 з.п. ф-лы, 4 ил.

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого кристалла картин изгибных экстинкционных контуров проводят анализ симметрии картин контуров и при выявлении элементов симметрии, отличных от тождественного преобразования, по результатам микродифракционного исследования диагностируют реальную структуру одного из симметрично равных участков нанотонкого кристалла, а затем диагностируют реальную структуру другого как симметрично равную реальной структуре исследованного участка, после чего диагностируют реальную структуру нанотонкого кристалла в целом. Технический результат: обеспечение возможности повышения экспрессности диагностики реальной структуры нанотонких кристаллов. 7 ил., 5 табл.
Наверх