Способ определения распределения массы частиц огнетушащего вещества в нестационарном газовом потоке

Изобретение относится к противопожарной технике и может быть использовано при оценке огнетушащей способности порошковых составов огнетушителей. Способ определения распределения массы частиц огнетушащего вещества, содержащегося в нестационарном газовом потоке, с осаждением их на подложке и измерением времени осаждения частиц. Причем распределение массы частиц огнетушащего вещества находят по граничным линиям осажденных частиц фракций порошка и совокупного состава порошка, а также в точках размещения подложек на прогнозируемой площади пожара. Техническим результатом является обеспечение возможности получения информации о распределении массы частиц порошка по площади тушения при нестационарном истечении, характерном для огнетушителей, за счет реализации нестационарного потока огнетушащего вещества испытываемым огнетушителем или его моделью и исключает необходимость в выполнении расчетов, характеризующих распределение числа и размеров частиц во взвешенном состоянии. 10 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к противопожарной технике и может быть использовано при оценке огнетушащей способности порошковых составов огнетушителей.

Уровень техники

Известны способы определения массы и дисперсного состава частиц измельченных материалов путем осаждения их из воздушной среды на твердую подложку (см. П.А.Коузов «Основы дисперсного анализа промышленных пылей и измельчаемых материалов». Л., Химия, 1971, с.169-180). Основным недостатком этих способов является высокая трудоемкость и низкая точность выполняемых расчетов.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ определения размера частиц во взвешенном состоянии (см. X.Грин, В.Лейн «Аэрозоли, пыли, дымы и туманы». - Л., Химия, 1972, с.220-233). Согласно ему счет и определение размеров частиц во взвешенном состоянии определяют с помощью щелевого микроскопа Жигмонди, используя эффект Тиндаля. Недостатком метода является невозможность получения информации о распределении массы частиц порошка по площади тушения при нестационарном истечении, характерном для огнетушителей. Кроме того, требуется сложная аппаратура для его реализации.

По указанным причинам эти способы не могут быть применены для определения распределения массы частиц огнетушащего вещества (ОТВ) в нестационарном газовом потоке.

Раскрытие изобретения

Предлагаемый способ устраняет указанный недостаток за счет реализации нестационарного потока ОТВ испытываемым огнетушителем или его моделью и исключает необходимость в выполнении расчетов, характеризующих распределение числа и размеров частиц во взвешенном состоянии. Таким образом, предлагаемый способ соответствует критерию изобретения "новизна".

Сравнение предлагаемого способа с аналогом и другими техническими решениями показывает, что использование седиментационного способа для определения дисперсного состава части аэрозолей широко известно (см., например, а.с. RU 2045757, кл. G01N 15/02, G01N 15/04, 1995). Однако они не могут быть применены для определения распределения массы частиц ОТВ в нестационарном газовом потоке. Это позволяет сделать вывод о соответствии технического решения критерию "существенные отличия".

Для определения распределения массы частиц ОТВ совокупного состава или его отдельных фракций в нестационарном газовом потоке используется метод седиментации частиц на подложки (например, бумага со строго определенными размерами сторон), заранее размещенные на прогнозируемую площадь осаждения (с геометрическими размерами L и b) распыленного ОТВ. Подложки предварительно нумеруются и взвешиваются.

Нестационарный газовый поток ОТВ создается испытываемым огнетушителем или его моделью.

Время полного осаждения порошка принимают не менее величины, необходимой для осаждения частиц самой мелкой его фракции.

Схема размещения подложек для сбора распыленного ОТВ выбирается любой. Один из примеров представлен на фиг.1.

По массе частиц, осевших на подложках, судят о характере распределения ОТВ в нестационарном газовом потоке. Для этого по подложкам с нулевой массой частиц строят граничную линию осаждения ОТВ (фиг.2, линия Л).

Описанный прием повторяется для каждой из исследуемых фракций порошка. По результатам исследования строят фигуру, характеризующую распределения масс частиц ОТВ, осевшего из нестационарного газового потока (фиг.3).

Осуществление изобретения

Заявляемый способ осуществлен на примере истечения из модели порошкового огнетушителя типоразмера ОП-1 порошка марки «Фоскон-430» совокупного состава и его фракций с размерами частиц 45-62 мкм, 125-249 мкм, 250-499 мкм.

На прогнозируемой площади осаждения (размеры L=2900 мм, b=1700 мм) распыленного ОТВ (фиг.4) размещали предварительно пронумерованные и взвешенные подложки (с шагом 100 мм) в количестве 51 единицы (листы бумаги с размерами сторон 100×100 мм; массой около 2,5 г каждый).

Начальная величина импульса, приведенная к единице массы газа, составляла 0,87·103 м/с. Время полного осаждения частиц принимали для самой мелкой фракции порошка. После чего взвешивали каждую подложку на лабораторных весах (погрешность измерения 0,005 г). По разнице масс подложек с порошком и без него строили граничную линию осаждения ОТВ (фиг.5, линия ФО, характеризующую распределение его в газовом потоке (например, для фракции частиц 45-62 мкм).

Описанный прием применяли для каждой из исследуемых фракций порошка и его совокупного состава. Результаты исследования представлены фиг.6, характеризующей распределения массы частиц ОТВ, осевшего из газового потока.

Распределение массы частиц ОТВ вдоль направления и в поперечных сечениях нестационарного газового потока в точках размещения подложек на прогнозируемой площади пожара (для частиц отдельных фракций и совокупного состава порошка) представлены на фиг.7-10.

Краткое описание чертежей

На фиг.1 представлена примерная схема размещения подложек (с шагом Ш) для сбора распыленного ОТВ, где ОП - модель огнетушителя; №№1-n - номера подложек.

На фиг.2 представлено распределение массы частиц ОТВ (M1, М2, М3, М4 M5, М6) по подложкам, где ОП - модель огнетушителя; Л - граничная линия осаждения ОТВ.

На фиг.3 представлены распределения масс частиц ОТВ, осевшего из нестационарного газового потока, где ОП - модель огнетушителя; Л1, Л2, Л3, Л4 - граничные линии для фракций ОТВ, имеющие геометрические размеры L1 и b1, L2 и b2, L3 и b3, L4 и b4 соответственно.

На фиг.4 представлена схема размещения подложек для сбора распыленного ОТВ.

На фиг.5 представлено распределение массы частиц ОТВ (M1=0,00 г, M2=0,02 г, М3=0,03 г, М4=0,05 г, M5=0,10 г, М6=0,15 г) на площади осаждения длиной 3000 мм, где ОП - модель огнетушителя; Ф1 - граничная линия осаждения ОТВ.

На фиг.6 представлены распределения масс частиц ОТВ, осевшего из нестационарного газового потока, где ОП - модель огнетушителя; Ф1, Ф3, Ф4 - граничные линии для фракций 45-62 мкм, 125-249 мкм, 250-499 мкм и совокупного состава (Ф2) ОТВ, имеющие геометрические размеры (3000×1700) мм, (2700×900) мм, (2650×800) мм, (3000×1300) мм соответственно.

На фиг.7 представлено распределение массы частиц ОТВ (частицы фракций 45-62 мкм) вдоль направления истечения и в поперечных сечениях нестационарного газового потока в точках размещения подложек (№№1-51) на прогнозируемой площади пожара.

На фиг.8 представлено распределение массы частиц ОТВ (частицы фракций 125-249 мкм) вдоль направления истечения и в поперечных сечениях нестационарного газового потока в точках размещения подложек (№№1-51) на прогнозируемой площади пожара.

На фиг.9 представлено распределение массы частиц ОТВ (частицы фракций 250-499 мкм) вдоль направления истечения и в поперечных сечениях нестационарного газового потока в точках размещения подложек (№№1-51) на прогнозируемой площади пожара.

На фиг.10 представлено распределение массы частиц ОТВ (совокупный состав) вдоль направления истечения и в поперечных сечениях нестационарного газового потока в точках размещения подложек (№№1-51) на прогнозируемой площади пожара.

Способ определения распределения массы частиц огнетушащего вещества, содержащегося в нестационарном газовом потоке, с осаждением их на подложке и измерением времени осаждения частиц, отличающийся тем, что распределение массы частиц огнетушащего вещества находят по граничным линиям осажденных частиц фракций и совокупного состава порошка и в точках размещения подложек на прогнозируемой площади пожара.



 

Похожие патенты:

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в том числе низко проницаемыми коллекторами. Техническим результатом является повышение точности, надежности и значительное уменьшение времени определения значения коэффициента извлечения нефти (КИН).
Изобретение относится к нефтяной и газовой промышленности в области контроля за разработкой нефтегазовых месторождений. Техническим результатом является получение достоверной информации о пространственном распределении переменной эффективной проницаемости, имеющей характер пропускной способности флюидов пласта под воздействием стационарного давления по площади.

Изобретение относится к автомобильно-дорожной и коммунальной отраслям, а именно к способам, предотвращающим скользкость на автодорогах и тротуарах в зимний период нанесением на них противогололедных реагентов (ПГР).

Изобретение относится к нефтедобывающей отрасли. .

Изобретение относится к устройствам для дисперсного анализа и одновременного измерения объемной активности аэрозольной и газовой фракций радиоактивных аэродисперсных систем, содержащих радиоактивный рутений, оно может быть использовано в промышленности и для санитарно-гигиенической оценки воздушной среды, а также для оценки эффективности работы пылеулавливающего оборудования и средств индивидуальной защиты (СИЗ) органов дыхания.

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования. .

Изобретение относится к области петрофизических исследований определения объема (количества) связанной воды породы и может быть использовано для определения важнейшего параметра - нефтегазонасыщенности пород - при оценке запасов месторождений.

Изобретение относится к технологиям нефтедобычи, а именно к способам мониторинга добычи и разработки совместно эксплуатируемых нефтяных пластов. .

Изобретение относится к нефтяной промышленности, а именно к способам контроля за разработкой нефтяных месторождений. Техническим результатом является повышение эффективности способа контроля за разработкой нефтяных месторождений за счет более полного и формализованного учета параметров, характеризующих протекающие в пористой среде процессы. Способ основан на проведении лабораторных испытаний керна, определении по ним абсолютной и фазовой проницаемостей для дальнейшего расчета относительной фазовой проницаемости (ОФП) нефти и воды. Дополнительно замеряют вязкости нефти и воды, использованные при проведении исследований. Затем делают расчеты и строят графики зависимостей относительной фазовой проницаемости от водонасыщенности образца. Для получения графиков задаются критические точки. С учетом этих критических точек на основе полученных графиков относительных фазовых проницаемостей затем на их основе строят функцию Бакли-Ливеретта и ее производную, характеризующие распределение водонасыщенности при поршневом вытеснении в математическом моделировании процессов фильтрации. 2 табл., 3 ил., 1 пр.

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных низкопроницаемых месторождений. Техническим результатом является определение местоположения застойных и слабодренируемых нефтенасыщенных участков нефтяных низкопроницаемых залежей. Способ включает проведение фильтрационных экспериментов на кернах в стационарном режиме, построение зависимости скорости фильтрации жидкости от градиента давления, определение предельного градиента давления, соответствующего изменению характера фильтрации жидкости. Дополнительно проводят фильтрационные эксперименты на кернах различной проницаемости в нестационарном режиме, находят зависимость предельного градиента давления от проницаемости, строят карту модуля градиента пластового давления и карту проницаемости. Наносят квадратную сетку на карту модуля градиента пластового давления и карту проницаемости, оценивают для каждой ячейки сетки значения модуля градиента пластового давления и коэффициента проницаемости, по зависимости предельного градиента давления от проницаемости вычисляют для каждой ячейки сетки значения предельного градиента давления, сравнивают полученные в ячейках значения предельного градиента давления со значениями модуля градиента пластового давления, выделяют ячейки, где модуль градиента пластового давления ниже значения предельного градиента давления, которые будут представлять собой застойную или слабодренируемую зону нефтяной залежи. 9 ил.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при изучении возможного взаимодействия в недрах земли пластовых вод и жидких производственных отходов при закачивании последних в глубокозалегающие водоносные пласты. Техническим результатом является повышение эффективности определения совместимости жидких производственных отходов с пластовыми водами. Способ исследования совместимости жидких производственных отходов с пластовой водой, в котором на первом этапе исследований включают блок термостатирования, и закачивают в модель пласта пластовую воду, и определяют приемистость модели пласта по пластовой воде. На втором этапе исследований отключают блок термостатирования, закачивают в модель пласта жидкие производственные отходы и определяют приемистость модели пласта по жидким производственным отходам. На выходе из модели пласта перед измерением расхода пластовой воды и расхода смеси жидких производственных отходов с пластовой водой производят дегазацию. Совместимость жидких производственных отходов с пластовой водой констатируют, в случае если величина приемистости модели пласта по пластовой воде отличается от приемистости модели пласта по жидким производственным отходам не больше чем на 20%. 5 ил.

Изобретение относится к области поверхностных явлений и может быть использовано в разных отраслях, в том числе для характеристики дисперсных материалов или раздробленных материалов, песка, цемента и т.п. Способ характеризуется тем, что изучаемый дисперсный материал помещают в шаблон, выполненный в виде пластины, имеющей свободное пространство в своем центре, который располагают в центре ограничительной окружности, нанесенной на легко сменяемой поверхности, или в кювету с известной внутренней площадью, накрывают слоем воды, на который воздействуют поверхностно-активным веществом, фиксируют появление движущихся объектов и рассчитывают скорость их движения с последующим расчетом скорости перемещения воды по поверхности дисперсного материала. 6 прим., 1 табл., 6 ил.

Изобретение относится к области аналитической химии. Испытуемый образец золошлакового материала и пары азотной кислоты подвергают контакту в изолированной камере в течение 8-90 часов. После вскрытия камеры испытуемый образец извлекают из камеры и заливают дистиллированной водой. Проводят измерение рН полученного раствора. По разнице между рН данного раствора и рН раствора, полученного после контакта исходного материала с дистиллированной водой, оценивают сорбционную способность испытуемого образца по отношению к парам азотной кислоты. 5 ил., 3 пр.

Изобретение относится к способам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов. Способ измерения дисперсного состава аэрозольных частиц и их концентрации в воздушной среде осуществляют при использовании криволинейного канала. При движении воздуха с частицами через криволинейный участок канала на двигающиеся частицы действует центробежная сила. Скорость центробежного движения частиц к стенке канала пропорциональна их размеру и массе, поэтому в начале канала осаждаются наиболее крупные частицы, а дальше по каналу оседающие частицы становятся все мельче и мельче. Таким образом, регистрируя количество осевших частиц вдоль канала, в зависимости от формы канала и скорости прокачки воздуха можно определить дисперсный состав аэрозоля. Техническим результатом является обеспечение возможности измерений дисперсности аэрозоля в режиме реального времени, повышение чувствительности, селективности и точности, а также снижение трудоемкости измерений. 3 з.п. ф-лы, 2 ил.

Изобретение относится к способам и устройствам для измерения содержания растворенного газа, остающегося в нефти после сепарации, при различных давлениях и температурах в установках замера дебитов скважин. Способ определения содержания растворенного газа в нефти включает в себя отбор проб, ввод в прибор калиброванного объема нефти, создание заданного соотношения фаз. Также способ включает приведение системы «нефть-газ» в термодинамическое равновесие при различных температурах и регистрацию давления. При этом приведение системы «нефть-газ» в термодинамическое равновесие производится в присутствии в исходном состоянии газовой фазы в диапазоне давления и температур, имеющихся на замерных установках по месторождению, с получением зависимости содержания растворенного газа от температуры и давления, вводя ее в контроллер замерной установки. Устройство для определения содержания растворенного газа в нефти содержит измерительную камеру с поршнем и терморубашкой, механизм перемещения поршня с блоком управления, фланец с входным клапаном, дозировочную камеру с поршнем и газовой камерой, вентиль турбулизирующий и датчик давления. При этом фланец устройства, для обеспечения сообщения измерительной камеры с атмосферой, снабжен выходным вентилем и резиновой мембраной с заглушкой, имеющей конусное отверстие. Техническим результатом является повышение точности и достоверности измерения за счет ведения процесса разгазирования в условиях, соответствующих реально существующим на месторождении, упрощение процесса отбора проб нефти и увеличение, за счет этого, количества проводимых анализов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам анализа образцов пористых материалов. Для определения распределения и профиля проникшего загрязнителя в пористой среде приготовляют суспензию загрязнителя, содержащего по меньшей мере один твердый компонент и окрашенного по меньшей мере одним катионным красителем. Прокачивают суспензию окрашенного загрязнителя через образец пористой среды, после чего производят раскол образца пористой среды и определяют распределение и профиль загрязнителя в образце по распределению и интенсивности по меньшей мере одного красителя. Техническим результатом является обеспечение возможности определения распределения и профиля проникшего загрязнителя в пористой среде с достаточно высокой точностью и высоким разрешением. 12 з.п. ф-лы, 4 ил.
Изобретение относится к сельскому хозяйству, а именно к машинному доению коров. Сначала каждую корову доят доильным аппаратом через счетчик молока. Затем транспортируют выдоенное молоко по молочной линии с коммуникациями доильной установки до сборной емкости. Определяют массовую долю жира в средней пробе молока до и после транспортировки по молочной линии. Определяют класс молочной линии по индексу дестабилизации жировых частиц - Д. Причем при разной производительности молочной линии на предприятии в течение суток определяют общую продолжительность каждого доения - Tn и количество молока в конечном танке - Mn, где n - порядковый номер доения. Вычисляют среднюю производительность молочной линии - Vn по формуле: Vn=Mn/Tn. Устанавливают индекс дестабилизации жировых частиц при высокой производительности молочной линии - Дв и при низкой производительности линии - Дн. Класс молочной линии устанавливают при разной ее производительности в соответствии со следующими диапазонами значений Дв и Дн: к I классу с высокой сохранностью жира - менее 4%, ко II классу со средней сохранностью жира - до 7%, к III классу с низкой сохранностью жира - более 7%. Повышается точность определения класса молочной линии. 5 табл.
Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением. Способ определения качества покрытий на изделиях, получаемых обработкой давлением, заключается в том, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301.78 и нанесением покрытия на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие. Затем исследуемую поверхность образца-свидетеля подвергают комплексной обработке, соответствующей комплексу поверхностной обработки реального изделия после обработки давлением перед нанесением покрытия. В этом случае напряженно-деформированное состояние образца и физико-механическое состояние его поверхности в наибольшей степени соответствует таковым для конкретного вида обработки давлением и последующей поверхностной обработки, при которых получено изделие. Техническим результатом является повышение точности (достоверности) определения параметров качества разнофункциональных покрытий на изделиях, получаемых обработкой давлением.
Наверх