Способ расширения полосы частот оценки спектров сигналов



Способ расширения полосы частот оценки спектров сигналов
Способ расширения полосы частот оценки спектров сигналов
Способ расширения полосы частот оценки спектров сигналов
Способ расширения полосы частот оценки спектров сигналов
H03M1/08 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2516763:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный университет им. П.Г. Демидова" (RU)
Общество с ограниченной ответственностью "РТС" (RU)
Общество с ограниченной ответственностью "ИМТ" (RU)

Изобретение относится к радиотехнике. Техническим результатом является расширение полосы анализа сигналов и возможность проведения анализа в режиме реального времени. Сущность способа заключается в том, что используют обработку исходного сигнала параллельно на нескольких аналого-цифровых преобразователях с различными частотами дискретизации, вычисляют амплитудный спектр по каждой оцифрованной последовательности, далее производят развертку полученных спектров на единую ось частот в зоны Найквиста в порядке, обратном их наложению при дискретизации, выделяют сигналы в спектральной области путем сравнения с заданным порогом амплитудных спектров от каждого АЦП, выбирают спектральные линии от всех АЦП, совпадающих по частотному положению; принятие решения о существовании на этой частоте узкополосного сигнала производят при нахождении линий, совпадающих по положению на частотной оси от всех АЦП. 4 ил.

 

Изобретение относится к радиотехнике и может быть использовано при проведении радиоконтрольных мероприятий, выделении узкополосных сигналов на фоне шумов в широкой полосе частот.

Существует несколько способов расширения полосы частот анализа радиоспектра. Наиболее близким к предлагаемому изобретению выбран способ увеличения частоты взятия выборок на основе системы из нескольких аналого-цифровых преобразователей (АЦП) с временным интерливингом, описанный в статье «Blind Equalization of Time Errors in a Time-Interleaved ADC System» [IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO.4, APRIL 2005], включающий подачу входного сигнала на набор из M пронумерованных от 1 до М АЦП, каждый из которых работает с выборочным интервалом МТS, где ТS - выборочный интервал, который требуется обеспечить на выходе всей системы, на каждый АЦП с номером i подается сигнал синхронизации по времени, задержанный на величину iTS. Таким образом, получается, что каждый АЦП работает на одной частоте дискретизации, но с разными сдвигами фазы.

Недостатками прототипа являются:

- необходимость точной временной синхронизации АЦП;

- ограничения на наличие спектральных составляющих сигналов вблизи границ зон Найквиста;

- вычислительная сложность алгоритмов оценки и выравнивания временных сдвигов тактовой синхронизации нескольких АЦП.

Указанные недостатки являются причиной того, что анализ спектров сигналов нельзя производить в режиме реального времени.

Технический результат заявляемого способа - расширение полосы анализа и возможность проведения анализа в режиме реального времени.

Для достижения указанного технического результата в способе расширения полосы частот оценки спектров сигналов производится выбор порога обнаружения; прием сигнал; аналого-цифровое преобразование широкополосного сигнала одновременно как минимум на двух аналого-цифровых преобразователях, причем аналого-цифровые преобразователи имеют различные частоты дискретизации; вычисление амплитудного спектра каждой оцифрованной последовательности; сравнение спектральных составляющих с величиной порога обнаружения; развертка спектров на единую ось частот; сравнение амплитуд полученных составляющих с величиной порога, при превышении порога производится выбор составляющих спектров, совпадающих по частоте, от всех АЦП; при нахождении спектральных составляющих, совпадающих по частотному положению во всех спектрах и превышающих по амплитуде заданный порог, принимается решение о существовании на данной частоте узкополосного сигнала.

Изобретение основано на идее использования алгоритмов, позволяющих распараллеливать задачу спектрального анализа на несколько устройств и работающих с АЦП с зонами Найквиста меньше полосы входных сигналов.

Благодаря новой совокупности существенных признаков в заявленном способе обеспечивается возможность выделения множества узкополосных сигналов в широкой полосе частот в режиме реального времени.

Заявленный способ поясняется чертежами, на которых показаны:

фиг.1. Вид спектра узкополосного сигнала на входе АЦП (а), вид спектра дискретизированного сигнала для нескольких зон Найквиста (б);

фиг.2. Сравнение спектров для 3-х АЦП с разными частотами дискретизации fd1(a), fd2(б) и fd3(в) и определение истинного положения спектральной линии;

фиг.3. Структурная схема макета экспериментальной проверки способа обнаружения множества узкополосных сигналов в широкой полосе частот (а), структурная схема платы цифровой обработки сигналов ЦОС-80 (б);

фиг.4. Спектр сигнала от 3-х АЦП в полосе 220 МГц (а), восстановленный спектр в полосе 220 МГц (б).

Способ расширения полосы частот оценки спектров радиосигнала осуществляется следующим образом:

Задается порог обнаружения сигналов. Заявляемый способ предназначен для выделения множества узкополосных сигналов, резко выделяющихся на фоне помех. Производится прием сигнала, оцифровывается одновременно как минимум на двух АЦП с различными частотами дискретизации. При этом должно быть соблюдено условие - аналоговая полоса частот АЦП больше, чем половина частоты дискретизации. Выбор частот дискретизации зависит от интересующего диапазона частот анализа и ширины полосы частот обнаруживаемых сигналов. Основное условие при выборе частот дискретизации - частоты должны отличаться не менее чем на максимальную допустимую ширину полосы частот обнаруживаемых сигналов, чтобы последние обнаруживались однозначно и не вызывали ложных обнаружений.

После аналого-цифрового преобразования по каждой из оцифрованных последовательностей вычисляется амплитудный спектр, при этом спектры содержат наложение всех зон Найквиста, т.к. аналоговая полоса частот АЦП больше, чем половина частоты дискретизации. Полученные спектры разворачиваются на единую ось частот в интересующие зоны Найквиста, в порядке, обратном их наложению при дискретизации. Если сетки частот разных спектров не совпадают, производится передискретизация в общую сетку частот (например, при помощи интерполяции).

После этого выбираются составляющие спектра, которые присутствуют во всех спектрах на одной и той же частоте. Эти составляющие сравниваются с заданным порогом, и при превышении составляющей над порогом принимается решение о существовании на данной частоте узкополосного сигнала.

Возможность достижения заявленного технического результата подтверждена экспериментально. Для постановки эксперимента был собран макет, структурная схема которого изображена на фиг.3a, представляющий собой соединение трех одинаковых плат, представленных на фиг.3б. На каждой плате установлен АЦП 5 с номинальной тактовой частотой 80 МГц и разрядностью 14 бит. По сигналу синхронизации данные с АЦП 5 накапливаются в буфере памяти 6 размером 2000 выборок и затем передаются в ЭВМ по интерфейсу USB 8. Тактовая частота АЦП 5 подается с внешнего генератора через распределитель тактовой частоты 9. Также на плате ЦОС-80 установлена программируемая логическая интегральная схема (ПЛИС) 7, выполняющая функцию управления процессами чтения-записи данных.

Исследуемый сигнал подается на вход макета (фиг.3а), где аналоговый сигнал разветвляется и подается на вход плат 1, 2, 3, где дискретизируется с помощью АЦП на различных тактовых частотах. Тактовые частоты АЦП задаются с помощью внешнего генератора 4 и составляют 72 МГц, 80 МГц и 90 МГц. Запуск процесса записи сигнала начинается синхронно по команде с ЭВМ (входы синхронизации плат объединены). После окончания записи по 2000 выборок с плат передаются в ЭВМ, где производится их обработка и вычисление спектра в нескольких зонах Найквиста. Плата ЦОС-80 имеет полосу по входу АЦП порядка 220 МГц по уровню -3 дБ, что для тактовой частоты АЦП 72 МГц соответствует примерно 6 зонам Найквиста: 220/(72·0.5)=6.1.

Реализованный алгоритм расширения полосы спектрального анализа при использовании различных частот дискретизации АЦП позволяет обнаруживать узкополосные сигналы во всей входной полосе АЦП (220 МГц и 6 зон Найквиста). В ходе эксперимента на макет подавался гармонический сигнал с генератора на частоте 28 МГц без фильтрации. Так как фильтрация отсутствовала, то в спектре сигнала генератора помимо основной составляющей присутствовали ее гармоники, что усложнило сигнальную обстановку. Относительный уровень второй гармоники генератора составлял порядка -30 дБ.

Амплитудный спектр от данных, полученных с трех АЦП с тактовыми частотами 72 МГц, 80 МГц, 90 МГц, представлен на фиг.4а. В спектре присутствует достаточно большое количество спектральных составляющих, обусловленных наличием гармоник генератора и их переносом из старших зон Найквиста.

На фиг.4б приведен амплитудный спектр сигнала, восстановленный с помощью алгоритма расширения полосы спектрального анализа при использовании различных частот дискретизации АЦП. Видно, что неоднозначность положения спектральных составляющих полностью устранена. На спектре присутствуют основная спектральная линия генератора на частоте 28 МГц и ее гармоники. Спектральная линия на частоте 17 МГц также является паразитной составляющей генератора.

Таким образом, заявленный способ действительно позволяет достичь заявленного технического результата.

Способ расширения полосы частот оценки спектров сигналов, включающий
выбор порога обнаружения
прием сигнала,
аналого-цифровое преобразование сигнала одновременно на как минимум двух аналого-цифровых преобразователях,
вычисление амплитудного спектра оцифрованного сигнала,
сравнение амплитуд спектральных составляющих с величиной порога обнаружения, отличающийся тем, что
аналого-цифровое преобразование производится параллельно по крайней мере на двух аналого-цифровых преобразователях (АЦП) с различными частотами дискретизации, вычисление амплитудного спектра производится по каждой оцифрованной последовательности,
далее производится развертка полученных спектров на единую ось частот в зоны Найквиста в порядке, обратном их наложению при дискретизации, выделение сигналов в спектральной области путем сравнения с заданным порогом амплитудных спектров от каждого АЦП, выбор спектральных линий от всех АЦП, совпадающих по частотному положению, принятие решения о существовании на этой частоте узкополосного сигнала производится при нахождении линий, совпадающих по положению на частотной оси от всех АЦП.



 

Похожие патенты:

Изобретение относится к области автоматики и робототехники и может быть использовано в следящих приводах с цифровыми датчиками угла (ЦДУ), работающих в диапазоне углов, больших чем ±180°, в которых задается знак направления движения.

Группа изобретений относится к аналого-цифровым преобразователям и может быть использована в устройствах преобразования энергии для силовой электроники. Техническим результатом является повышение быстродействия.

Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат заключается в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников ко входам компараторов напряжения.

Изобретение относится к автоматике и вычислительной технике и может быть использовано при создании систем автоматического управления (САУ). Технический результат заключается в осуществлении работы в широком диапазоне температур в полях ионизирующего излучения, резервировании, кодовом управлении выходным током и радиационной стойкости с временем работы при изменении в широком диапазоне температур окружающей среды, возникновении катастрофических и параметрических отказов отдельных элементов источника и при изменении нагрузки в условиях действия ионизирующего излучения.

Изобретение относится к области электроники, а именно к цифроаналоговым преобразователям. Техническим результатом является упрощение конструкции и повышение быстродействия цифроаналогового преобразователя при сохранении точности преобразования за счет формирования двухполярного выходного сигнала.

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код.

Изобретение относится к области радиоизмерений и предназначено для контроля работы аналого-цифровых преобразователей без применения специальных тестовых сигналов.

Изобретение относится к аналого-цифровой измерительной технике для измерения аналогового сигнала. Техническим результатом изобретения является повышение точности измерения аналогового сигнала за счет измерения скорости изменения аналогового сигнала с предварительно установленным пороговым значением.

Изобретение относится к вычислительной технике и может быть использовано в системах контроля и управления в совокупности с арифметическими устройствами, которые реализуют различные арифметические процедуры над минимизированными позиционно-знаковыми структурами аргументов ±[mj]f(+/-)min троичной системой счисления f(+1,0,-1) с последующим преобразованием ее в аргумент аналогового сигнала напряжения ±UЦАПf([mj]) посредством функциональной структуры цифро-аналогового преобразования f1(ЦАП).

Изобретение относится к измерительной технике, автоматике, а также к технике преобразования цифровых величин в аналоговые и может быть использовано при создании высокоточных аналого-цифровых преобразователей и систем контроля параметров изделий электронной техники.

Изобретение относится к области дискретного спектрального анализа, к области систем обработки информации и измерительной техники, и может быть использовано для доплеровской фильтрации (выделения) лучевой структуры ионосферных сигналов.

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты, вида модуляции и манипуляции сигналов, принимаемых в заданном диапазоне частот.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров.

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания и проводится на каждой частоте входного моногармонического сигнала до тех пор, пока средние определяемые значения коэффициентов Фурье выходного сигнала не станут достаточно постоянными, т.е.

Изобретение относится к испытательной технике и может быть использовано для выделения и фильтрации исследуемых сигналов из воспроизводимого стационарного случайного процесса и измерения в реальном времени параметров сигнала.

Изобретение относится к радиотехнике и может быть использовано для целей радиоконтроля, радиомониторинга, определения характеристик источников радиоизлучения. .
Изобретение относится к радиотехнике, а именно к способам точной оценки частоты одиночного гармонического колебания в ограниченном диапазоне. .

Изобретение относится к способам определения спектра электрических сигналов. .

Изобретение относится к технике спектрального анализа электрических сигналов. .

Изобретение относится к области гидроакустики и радиотехники и может быть использовано для построения систем обнаружения сигнала. .

Изобретение относится к области радиоэлектроники, а именно - к способам определения спектральной плотности мощности электрических сигналов. Определяют дискретные значения автокорреляционной функции анализируемого сигнала и по ним определяют дискретные значения спектральной плотности мощности. Причем диапазон контролируемых частот, включающий спектр анализируемого сигнала, разбивают на малые элементы разрешения, размер которых определяется требуемой точностью спектрального анализа. Нумеруют их и для каждого элемента разрешения формируют весовую функцию, зависящую от времени, номера и размера элемента разрешения. Определяют дискретные значения автокорреляционной функции анализируемого сигнала при временных сдвигах, удобных для их определения. Составляют векторно-матричное уравнение измерений r → = w T f → + n →    , где вектор r → включает дискретные значения автокорреляционной функции W - весовая матрица, определяемая значениями весовых функций в моменты дискретизации автокорреляционной функции, f → - спектральный вектор, включающий в качестве компонент значения спектральной плотности мощности в каждом элементе разрешения, n → - вектор ошибок определения дискретных значений автокорреляционной функции. По уравнению измерений находят оценку спектрального вектора, компоненты которого представляют собой оценки дискретизированных по элементам разрешения составляющих спектральной плотности мощности анализируемого сигнала. Технический результат заключается в повышении точности спектрального анализа, устранение искажений спектра в связи с эффектом просачивания мощности в соседние частотные области и сокращение времени спектрального анализа.
Наверх