Способ производства корма для рыб


 


Владельцы патента RU 2517228:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" (RU)

Способ производства кормов для рыб предусматривает смешивание муки рыбной, муки мясокостной, шрота подсолнечного, шрота соевого, масла растительного, муки пшеничной и премикса ПМ-2 с наночастицами комплекса железо-кобальт. Процентное соотношение железа к кобальту в комплексе 70 к 30. Комплекс вводится методом ступенчатого смешивания и экструдирования в количестве 30 мг на килограмм остальных компонентов корма. Измельчение каждого компонента корма производится отдельно. Экструдирование производится при влажности смеси 25-30% и при температуре 60-80°С. После экструдирования полученный корм высушивается при температуре 20-30°С до влажности 12-15%. Полученный по изобретению корм обеспечивает усиление обмена веществ и повышение интенсивности роста у рыб. 5 табл., 1 пр.

 

Изобретение относится к рыбной промышленности и может быть использовано при производстве кормовых продуктов для кормления рыб.

Известен способ приготовления кормов для рыб, в котором в корма вводят микроэлементы в виде солей металлов (см. Сборник нормативно-технологической документации по товарному рыбоводству. - М.: Агропромиздат, 1986. - С.120-121). Минеральная добавка содержит соли, которое в пищеварительном тракте животных диссоциирует на катион эссенциального элемента и анион.

Недостатком данного способа является то, что соли обладают токсическим действием и характеризуется относительно низкой биодоступностью. Кроме того, при диссоциации минеральных компонентов в организме происходит нежелательное накопление анионов солей металлов.

Технической задачей настоящего изобретения является повышение питательности, естественной резистентности организма за счет использования менее токсических добавок - наноформ металлов, обладающих проникающей способностью через клеточные мембраны, и повышения интенсивности роста, и усиления обмена веществ.

Поставленная задача достигается тем, что в способе производства корма для выращивания карпа, включающем смешивание компонентов комбикорма РГМ-8В, состоящем из муки рыбной, муки мясокостной, шрота подсолнечного, шрота соевого, масла растительного, муки пшеничной и премикса ПМ-2 с микроэлементами: железо и кобальт, введенные в рецептуру в виде наночастиц комплекса железо-кобальт в соотношении 30 мг/кг корма, методом ступенчатого смешивания и экструдирования, измельчение каждого компонента производится отдельно, а экструдирование производится при влажности смеси 25-30% и при температуре 60-80°С, после экструдирования продукт высушивается при температуре 20-30°С до влажности 12-15%.

Пример реализации способа.

В эксперименте на модели карпа оценено воздействие наночастиц металлов на рыбу. Использован карп, возраст (0+), с навеской 10-15 г, выращенных в условиях ООО «Ирикларыба». В ходе исследований методом аналогов было сформировано шесть групп (n=15), которые в течение подготовительного периода, продолжительностью семь суток, находились в одинаковых условиях. Основной учетный период длительностью сорок два дня предполагал использование в кормлении рыбы комбикормов разного состава. Рацион I группы соответствовал рецепту комбикорма РГМ-8В (ОР) (табл.1).

Таблица 1
Схема эксперимента
Период опыта
Группа Подготовительный (7 сут) Учетный (42 сут)
Характер кормления
I(контроль) ОР
II ОР+CoSO4*7H2O и FeSO4*7H2O
III ОР+микрочастицы железа
IV Основной рацион (ОР) ОР+FeSO4*7H2O
V ОР+CoSO4*7H2O
VI ОР+наночастицы комплекса железо-кобальт

Рецептуры комбикормов остальных групп отличались содержанием микроэлементов железа и кобальта: II группа - ОР+CoSO4*7Н2О (0,08 мг/кг корма) и FeSO4*7H2O (30 мг/кг корма); III группа - ОР+микрочастицы железа (30 мг/кг корма); IV группа - ОР+FeSO4*7H2O (30 мг/кг корма); V группа - ОР+CoSO4*7H2O (0,08 мг/кг корма) и VI группа - ОР+наночастицы комплекса железо-кобальт (30 мг/кг корма).

Основными компонентами комбикорма являлись: мука рыбная, мука мясокостная, шрот подсолнечный, шрот соевый, масло растительное, мука пшеничная, премикс ПМ-2.

Условия содержания и кормления рыб регламентировались рыбоводно-биологическими нормативами, рекомендованными ВНИИПРХа (1986). Учитывая взаимосвязь обменных процессов у рыб и пищеварения от температуры воды, в период выполнения исследований проводились измерения температуры воды. Средняя температура воды составляла 28±1°С.

Длительность основного учетного периода составляла 6 недель.

Наночастицы комплекса железо-кобальт синтезировались методом высокотемпературной конденсации на установке Миген. Размер частиц 100±2 нм. Размер микрочастиц железа составлял 6-9 мкм.

Для проведения исследования были использованы аквариумы объемом 300 литров (125×70×40 см). Каждый аквариум был оснащен системой фильтрации и насыщения воды кислородом воздуха (AQUAEL FAN-3), поддержания температуры воды (терморегуляторы AQUAEL AQ-300).

Мы проводили еженедельные взвешивания подопытного карпа. Динамика изменений живой массы тела карпов представлена в таблице 2.

Таблица 2
Динамика живой массы подопытных карпов, г
Неделя учетного периода Группа
I II III IV V VI
Начало опыта 12,8±2,0 12,9±2,2 12,9±2,7 12,9±2,9 12,9±2,5 12,9±2,2
1 13,6±2,0 14,3±1,7 14,1±2,9 14,2±2,7 13,9±2,5 15,8±2,9
2 15,4±2,3 16,4±2,0 16,0±3,5 16,1±2,5 15,4±2,7 18,2±3,4
3 17,2±2,4 19,0±2,6 17,9±3,6 17,7±2,3 17,5±2,4 20,8±3,3
4 19,3±2,7 21,9±3,3 20,5±4,5 20,1±2,2 19,2±2,4 23,2±3,2
5 22,1±2,8 24,5±3,8 22,8±4,4 21,8±2,2 21,2±3,1 26,0±3,5

Отклонений от нормы по внешним признакам обнаружено не было. Для всех рыб была свойственна характерная окраска. Чешуя цельная, блестящая, с перламутровым оттенком. Глаза блестящие, не запавшие в орбиту. Плавники цельные. Тело плотное, эластичное.

Анализ полученных данных показывает, что присутствие наночастиц комплекса железо-кобальт в рационе сопряжено с увеличением живой массы по сравнению с контролем. Влияние наночастиц металлов на увеличение живой массы подопытного карпа можно объяснить относительно меньшей токсичностью в сравнении с солями, способностью данных препаратов катализировать многие биохимические процессы в организме, что в конечном счете, усиливает переваримость и усвоение питательных веществ рациона, повышает активность окислительно-восстановительных реакций и обмена веществ в целом (Воробьев Д.В. Физиолого-биогеохимические основы применения микроэлементов в аквакультуре [монография] / Д.В.Воробьев, Т.Д.Искра, В.Н.Кириллов, В.И.Воробьев; под общ. ред. В.И.Воробьева, - Астрахань, ООО «ЦНТЭП», 2008. - 344 с.).

Содержание в тканях рыб и используемых комбикормов химических элементов исследовали в лаборатории АНО «Центра биотической медицины», г.Москва (аттестат аккредитации №РОСС RU.0001.22ПЯ05). Определение элементного состава оцениваемых биосубстратов производили методами атомно-эмиссионной спектрометрии и масс-спектрометрии с индуктивно связанной плазмой на приборах Optima 2000 DV и Elan 9000 (Perkin Elmer, США). Методы масс-спектрометрии основаны на получении спектров масс ионов при испарении анализируемого вещества, ионизации составляющих его атомов и молекул, создании ионного сгустка, последующем его разделении под действием электрических и магнитных полей по величине отношения массы к заряду и детектировании. В образцах определена концентрация 25 элементов (Са, K, Mg, Na, Р, Cr, Cu, Со, Fe, I, Mn, Se, Zn, As, В, Li, Ni, Si, V, Al, Cd, Hg, Pb, Sn, Sr).

Химический состав биосубстратов и физико-химические свойства изучались в испытательном центре ГНУ «Всероссийский НИИ мясного скотоводства РАСХН», г. Оренбург (аттестат аккредитации И.Ц. №РОСС RU 0001 21ПФ59).

Включение в рацион карпа микроэлементов железа и кобальта в различной химической форме оказало неоднозначное влияние на обмен отдельных макроэлементов (табл.3) и эссенциальных микроэлементов (табл.4).

Результаты исследований подтвердили, что наночастицы стимулируют накопление макроэлементов и эссенциальных микроэлементов.

Таблица 3
Содержание макроэлементов в теле рыбы, мкг/гол.
Элемент Группа
I II III IV V VI
Са 89226±9783 100264±9944А 80792±10065 81736±12381 74441±11856A 112161±10166A
K 32160±3723 33785±5410 31108±6426 33028±3637 32598±4263 38516±4895А
Mg 5819±656 5615±828 4603±938 5196±632 4938±683A 6696±908
Na 13243±1476 13996±1931 12342±2476 13414±1808 13176±1956 16008±2259А
Р 53999±5999 69586±9233Б 48272±9669 45492±6045A 43712±6414А 81608±11850B
Примечание: АР0,05; БР0,01; ВР<0,001: Сравниваемые пары групп: I-II, I-IV, I-V, I-VI.

В VI группе, в рацион которой вводили наночастицы, наблюдалось повышение содержания элементов: кальция на 25,8% (Р<0,05), калия на 16,5% (Р<0,05), магния на 13,1%, натрия на 17,3% (Р<0,05), фосфора на 33,8% (Р<0,001), хрома на 5,5%, меди на 20,2% (Р<0,05), кобальта на 10,3%, железа на 35,1% (Р<0,001), селена на 9,7%, цинка на 21,4% (Р<0,05), алюминия на 13,6%, лития на 12,5% и кремния на 34,3% (Р<0,001). Аддитивный эффект, полученный в результате взаимодействия кобальта и железа, существенно влияет на баланс этих металлов в органах и тканях рыб. Кобальт, взаимодействуя с железом, вызывает синергетический эффект, способствуя включению атома железа в молекулу гемоглобина, усиливая ионизацию и резорбцию железа, ускоряя созревание эритроцитов.

Содержание железа в VI группе не превышало контрольных значений, что свидетельствует об отсутствии кумулятивных свойств данного препарата и его экологической безопасности.

Таблица 4
Содержание эссенциальных микроэлементов в теле рыбы, мкг/гол.
Элемент Группа
I II III IV V VI
Cr 24,5±2,87 28,8±4,58 21,4±4,51 23,3±2,37 31,2±4,21А 25,9±3,13
Cu 9,36±1,063 11,6±1,679A 9,33±1,893 9,41±1,129 10,9±1,546 11,7±1,573А
Со 0,35±0,038 0,37±0,047 0,20±0,039 0,29±0,042А 0,28±0,045 А 0,39±0,059
Fe 152,9±17,29 198,9±28,13A 152,1±30,78 151,9±18,62 141,2±19,53 235,6±32,82В
I 2,25±0,259 1,44±0,271В 2,29±0,470 3,19±0,399В 2,67±0,366 А 2,19±0,268
Mn 20,8±2,28 17,9±2,29 14,5±2,88 15,9±2,37Б 16,5±2,61А 18,1±2,68
Se 2,77±0,316 2,77±0,426 2,74±0,558 2,79±0,331 2,74±0,375 3,12±0,407
Zn 577,5±63,8 596,8±79,2 455,0±90,9 525,1±73,6 504,6±76,7 734,9±107,1А
As 1,24±0,141 1,34±0,199 1,48±0,299 1,32±0,162 1,29±0,182 1,89±0,260 В
В 4,34±0,487 4,26±0,615 4,44±0,893 4,05±0,511 4,29±0,619 4,23±0,567
Li 0,21±0,023 0,22±0,030 0,13±0,027 0,14±0,017В 0,14±0,019В 0,24±0,034
Ni 5,66±0,621 3,99±1,529Б 3,48±0,694 3,97±0,583Б 4,09±0,644 Б 5,08±0,752
Si 78,3±9,31 102,6±16,5А 82,2±17,2 82,1±8,13 81,0±9,89 119,2±15,1В
V 1,63±0,180 1,34±0,183А 1,18±0,237 1,40±0,193 1,46±0,222 1,45±0,205
Примечание: АР<0,05; БР<0,01; ВР<0,001: Сравниваемые пары групп: I-II, I-IV, I-V, I-VI.

Изменение состава комбикормов с помощью микроэлементов железа и кобальта сопровождалось достоверными изменениями отдельных токсических элементов в тканях рыбы (табл.5).

Содержание токсических элементов в теле рыб не превышает предельно допустимых концентраций, что свидетельствует об экологической безопасности наночастиц металлов.

Таблица 5
Содержание токсических элементов в теле рыб, мкг/гол.
Элемент Группа
I II III IV V VI
Al 47,0±5,49 50,9±8,30 43,0±9,01 41,5±4,07 40,5±4,89 54,5±6,73
Cd 0,058±0,007 0,055±0,009 0,052±0,012 0,054±0,006 0,053±0,007 0,078±0,010Б
Hg 0,101±0,012 0,103±0,018 0,104±0,022 0,117±0,013 0,098±0,012 0,114±0,014
Pb 0,442±0,049 0,473±0,066 0,306±0,060 0,389±0,049 0,383±0,055 0,429±0,059
Sn 0,801±0,092 0,791±0,125 0,665±0,138 0,699±0,075 0,682±0,088A 1,37±0,189В
Sr 584,5±63,9 466,7±57,7Б 364,4±72,4 405,5±63,0B 397,5±64,6В 561,5±85,6
Примечание: АР<0,05; БР<0,01; ВР<0,001: Сравниваемые пары групп: I-II, I-IV, I-V, I-VI.

Из вышесказанного свидетельствует, что введение наночастиц комплекса железо-кобальт способствует интенсивному накоплению живой массы, благодаря положительному влиянию на усвоение белков, углеводов и эссенциальных микроэлементов. Наночастицы активизируют ферментные, иммунную и гуморальные системы организма, способствуя повышению обмена веществ и усвоению питательных веществ рациона.

Способ производства кормов для рыб, отличающийся смешиванием компонентов комбикорма РГМ-8В, состоящего из муки рыбной, муки мясокостной, шрота подсолнечного, шрота соевого, масла растительного, муки пшеничной и премикса ПМ-2 с микроэлементами: железо и кобальт, введенными в рецептуру в виде наночастиц комплекса железо-кобальт размером 100±2 нм, синтезированных методом высокотемпературной конденсации, полученный комплекс имеет процентное соотношение железа к кобальту, равное 70 на 30, и вводится в дозировке к корму 30 мг/кг, методом ступенчатого смешивания и экструдирования, измельчение каждого компонента производится отдельно, а экструдирование производится при влажности смеси 25-30% и при температуре 60-80°С, после экструдирования полученный корм высушивается при температуре 20-30°С до влажности 12-15%.



 

Похожие патенты:
Изобретение относится к сельскому хозяйству, в частности к кормлению телят молочных и мясных пород с 20-го по 60-й день выращивания, и может быть использовано в комбикормовой промышленности и непосредственно в животноводческих хозяйствах.
Изобретение относится к кормопроизводству, а именно к кормам для кошек. Корм для кошек представляет собой композицию, включающую измельченное зерно, муку животного происхождения, дрожжи и витаминно-минеральный комплекс, йодированный казеин и селенпиран.

Способ предусматривает кормление животного композицией, содержащей, по меньшей мере, одну омега-3 полиненасыщенную кислоту и различные комбинации аминокислот, минералов и антиоксидантов, в количествах, эффективных для того, чтобы повышать настороженность, улучшать жизнеспособность, защищать хрящ, поддерживать мышечную массу, повышать усвояемость и улучшать качество кожи и шерсти.
Изобретение относится к кормовой промышленности. Изобретение обеспечивает способы для усиления энергетического обмена, оказания содействия здоровому энергетическому обмену, поддержания здорового энергетического обмена, предотвращения состояний, которые приводят к снижению или недостаточности энергетического обмена, лечения состояний, которые приводят к снижению или недостаточности энергетического обмена, и предотвращения накопления избытка жировой ткани у животных без уменьшения потребления энергии животными.
Изобретение относится к сельскому хозяйству, в частности к комбикормовой промышленности, и может быть использовано для производства кормов для птицы. Измельченное маннансодержащее растительное сырье смешивают с водой в соотношении 1:1 - 1:2.
Изобретение относится к кормопроизводству. Способ обработки на корм животным птичьего помета включает термическое обеззараживание птичьего помета при 95-100°C не менее 30 мин и его смешивание перед, и/или во время, и/или после термического обеззараживания с молочной сывороткой.
Изобретение относится к комбикормовой промышленности и предназначено для производства кормового продукта из фуражного зерна чины в виде хлопьев. Способ производства хлопьев из фуражного зерна чины включает очистку зерна от примесей, замачивание зерна, сушку зерна ИК-лучами, обработку его ИК-лучами с последующим плющением в хлопья.
Изобретение относится к комбикормовой промышленности и предназначено для производства кормового продукта из фуражного зерна вигны в виде хлопьев. Способ производства хлопьев из фуражного зерна вигны включает очистку зерна от примесей, замачивание зерна, сушку зерна ИК-лучами, обработку его ИК-лучами с последующим плющением в хлопья.
Изобретение относится к комбикормовой промышленности и предназначено для производства кормового продукта из фуражного зерна лопающейся кукурузы. Способ производства взорванного продукта включает замачивание зерна в воде в течение 29 часов до достижения им влажности 35-37%, сушку зерна ИК-лучами при длине волны 0,9-1,1 мкм и плотности лучистого потока 11-13 кВт/м2 в течение 2,0-2,5 мин до влажности 28-30%.
Изобретение относится к сельскохозяйственной биотехнологической переработке отходов свекловичного производства и может быть использовано для приготовления кормов для животных.
Согласно способу при инкубации нерестовые гнезда, обсемененные икрой судака, находящейся на 3-5 стадиях эмбрионального развития, помещают в прямоточные бассейны с уровнем воды 0,2-0,3 м, при плотности посадки икринок на нерестовом субстрате до 300 тыс.
Способ предусматривает нерест производителей, инкубирование выметанной и оплодотворенной икры, выращивание личинок и молоди. Из молоди одной генерации формируют четыре группы.

Способ выращивания посадочного материала судака предусматривает получение личинок от четырех групп производителей. Для каждой группы производителей устанавливают разные сроки вывода их на режим «искусственной зимовки» в течение года, так, чтобы сроки нереста соответствующей группы наступали через три месяца после срока начала нереста предыдущей группы.
Способ предусматривает исследование условий обитания, численности, видового многообразия, границ распределения бентоса на месте проведения дноуглубительных работ, определение средств компенсации предположительного ущерба и оптимального периода проведения работ.

Изобретение относится к рыбному хозяйству и может быть использовано для прижизненного определения возраста осетровых видов рыб. Способ предусматривает фиксацию исследуемой рыбы и высверливание в первом луче её грудного плавника перпендикулярно его длине микрокерна.

Изобретение относится к индустриальным способам выращивания холодолюбивых рыб. Рыбоводный комплекс состоит из заморного озера, водоема-спутника с водозаборным и водосбросным каналами и выростных прудов.
Изобретение относиться к рыбной промышленности. Способ включает выдерживание производителей в бассейнах с регуляцией температурного режима, проведение комбинированного гормонального стимулирования и получение икры.
Изобретение относится к области сельского хозяйства, в частности к восстановлению плодородия деградированных орошаемых почв. В способе ограничивают численность растений культуры солодки после выведения ее из севооборота путем уничтожения семян, неизвлеченных корней и корневищ растений солодки после сбора урожая.
Изобретение относится к рыбоводству, а именно к выращиванию стерляди в установках с замкнутым циклом водообеспечения, и может быть использовано в условиях круглогодичного выращивания товарной стерляди.
Изобретение относится к рыбоводству, а именно к разведению и выращиванию стерляди в установках с замкнутым циклом водообеспечения, и может быть использовано для круглогодичного получения икры на пищевые цели от самок стерляди, эксплуатируемых в режиме полицикла.

Изобретение касается очистки воды и грунта водоемов от органического и неорганического загрязнения пометом утки и загрязнения тяжелыми металлами. В рыбоводных комбинированных хозяйствах, расположенных в зоне промышленных предприятий, совместно выращивают рыбу и уток. Для очистки воды и грунта водоемов используют водные макрофиты: тростник, камыш, частуха, белокрыльник болотный, которые располагают полосой шириной 2-3 м вдоль водной части вольера для содержания уток и у подачи воды в пруд. Технологическая нагрузка птицы при этом составляет 250 шт./га. Изобретение позволяет улучшить санитарно-бактериологические, химические и токсикологические показатели воды и донных отложений участков очищаемых водоемов. 3 табл., 1пр.
Наверх