Способ осаждения пироуглерода на топливные частицы


 


Владельцы патента RU 2518048:

Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") (RU)

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике. Осуществляют осаждение пироуглерода на топливные частицы путем подачи в зону осаждения смеси углеводорода и инертного газа в течение времени τ, увеличения суммарного расхода газовой смеси в 1,1-1,4 раза по сравнению с исходным значением. В момент времени, равный τх=(0,45τ-0,55τ), подачу углеводорода прекращают на 1-3 с, а для обеспечения оптимального режима псевдоожижения топливных частиц увеличивают расход инертного газа на величину, равную произведению расхода углеводорода в момент времени τх и отношения молекулярных масс углеводорода и инертного газа. Обеспечивается снижение коэффициента анизотропии осажденного из пироуглерода покрытия. 4 пр.

 

Изобретение относится к области получения графитовых материалов и может быть использовано в химической технологии, атомной и электронной технике.

Графитовые материалы обладают высокими жаропрочностью и термопрочностью, а также являются надежными защитными барьерами при диффузии осколков деления в тепловыделяющих элементах (твэлах) ядерных реакторов.

Наиболее высокой плотностью среди графитовых материалов обладает пироуглерод, получающийся при пиролизе углеводородов (ацетилена, метана, этана, бутана и др.) при температуре 1000-1500°С (см. Amer. Ceram. Soc. Bull., 1974, v.54, p.270).

Основным недостатком метода осаждения углерода из газовой фазы является малая скорость осаждения. Этот недостаток становится актуальным при получении микротвэлов, представляющих собой топливные керны диаметром 0,2-0,5 мм с оболочками из неплотного и плотного пироуглерода. Неплотный слой толщиной 80-100 мкм является компенсатором давления газообразных продуктов деления, а плотный слой выполняет защитные функции (см. Черников А.С., Федик И.И., Курбаков С.Д. и др. Твэлы на основе сферических топливных частиц с защитными покрытиями для реакторов повышенной безопасности. - Атомная энергия, 1999, т.87, вып.6, с.451-460).

Недостаток способа заключается в разбросе характеристик покрытия вследствие резкого изменения размеров частиц в процессе покрытия.

Известен способ получения пироуглеродных покрытий, включающий подачу в кипящий слой смеси ацетилен-пропилен-аргон с варьированием концентрации ацетилена и пропилена при суммарной концентрации углеводородов 39-80 об.% (патент США №4194027 от 18.03.1980, МКИ С23С 16/26). Недостаток способа заключается в низкой производительности процесса нанесения покрытия.

Наиболее близким по технической сущности к решаемой задаче является способ осаждения пироуглерода и устройство для его осуществления (патент РФ №2209850, МКИ С23С 16/26, опубл. 10.08.2003). Способ осаждения пироуглерода на топливные частицы включает подачу в зону осаждения смеси углеводорода и инертного газа в течение времени τ, увеличение суммарного расхода газовой смеси в 1,1-1,4 раза по сравнению с исходным значением и варьирование расхода углеводорода во времени по мере осаждения покрытий вследствие роста размеров частиц и их поверхности.

Недостаток описанного способа заключается в том, что по мере осаждения пироуглерода на керны ядерного топлива в течение 2 минут увеличивается коэффициент анизотропии пироуглерода, т.е. растет угол, под которым зерна покрытия контактируют друг с другом. Так, если покрытие осаждают в течение 1 минуты (толщина покрытия составляет 15-20 мкм вместо необходимых 30-40 мкм), то коэффициент анизотропии составляет 1,05, а если в течение 2 минут осаждают 30-40 мкм покрытия, то коэффициент анизотропии наружного слоя составляет 1,10. Заметная разупорядоченность зерен покрытия приводит к уменьшению его прочности. Кроме того обнаружено, что размер зерна пироуглерода, полученного за 1 минуту осаждения, составляет 2-3 мкм, а размер зерна покрытия, полученного за временной интервал 1-2 минуты, составляет 4-5 мкм.

В основу настоящего изобретения положена задача снижения коэффициента анизотропии пироуглеродных покрытий на топливные частицы. Поставленная задача решается тем, что в способе осаждения пироуглерода на топливные частицы, включающем подачу в зону осаждения смеси углеводорода и инертного газа в течение времени τ, увеличение суммарного расхода газовой смеси в 1,1-1,4 раза по сравнению с исходным значением и варьирование расхода углеводорода во времени, согласно изобретению в момент времени τx=(0,45τ - 0,55τ) подачу углеводорода прекращают на 1-3 с, а оптимальный режим псевдоожижения частиц обеспечивают за счет увеличения расхода инертного газа на величину, равную произведению расхода углеводорода в момент времени τx на отношение молекулярных масс углеводорода и инертного газа.

Предложенный способ обосновывается следующим образом. Прекращение подачи углеводорода приводит к прерыванию роста зерен пироуглерода, процесс осаждения покрытий возвращается к исходному состоянию (τ=0), в котором происходит зародышеобразование и рост новых зерен, что позволяет получать покрытия, не имеющие преимущественной ориентации с размером зерна, не превышающим 3 мкм.

Время прекращения подачи углеводорода (1-3 с) соответствует периоду полного удаления углеводорода и продуктов его пиролиза из объема псевдоожиженного слоя.

Для сохранения устойчивости псевдоожиженного слоя на время прекращения подачи углеводорода увеличивают расход инертного газа аргона. Увеличение расхода инертного газа осуществляется на величину, равную произведению расхода углеводорода на отношение молекулярных масс углеводорода и инертного газа.

Примеры осуществления.

Пример 1. Осаждают слой пироуглерода на сферические частицы со средним диаметром 0,4 мм и общей массой 30 г при температуре t=1500°C, используя смесь пропилена (С3Н6, молекулярная масса равна 42) и аргона (Аr, атомная масса равна 39) с концентрацией пропилена 30 об.%. При этом расход газовой смеси за время осаждения покрытия линейно увеличивают с 1,5 м3/ч до 1,8 м3/ч. В момент времени 0,4 τ (48 с) процесс подачи пропилена прекращают.

В этот момент суммарный расход газовой смеси составляет 1,5+0,4·(1,8-1,5)=1,62 м3/ч, а расход пропилена 1,62·0,3=0,486 м3/ч, соответственно расход аргона увеличивают на 0,486·42:39=0,523 м3/ч.

После окончания процесса осаждения покрытий измеренный коэффициент анизотропии составляет 1,06.

Пример 2. Условия процесса осаждения аналогичны примеру 1, но подачу пропилена прекращают в момент времени 0,45 τ (54 с). После окончания процесса коэффициент анизотропии составляет 1,03.

Пример 3. Условия процесса осаждения были аналогичны примеру 1, но подачу пропилена прекращают в момент времени 0,55 τ (66 с). После окончания процесса коэффициент анизотропии составляет 1,05.

Пример 4. Условия процесса осаждения были аналогичны примеру 1, но подачу пропилена прекращают в момент времени 0,6 τ (72 с). После окончания процесса коэффициент анизотропии составляет 1,07.

Таким образом, предложенное техническое решение с характеристиками, указанными в формуле изобретения, позволяет решить поставленную задачу - снижение коэффициента анизотропии покрытий.

Способ осаждения пироуглерода на топливные частицы в псевдоожиженном слое, включающий подачу в зону осаждения смеси углеводорода и инертного газа в течение времени τ, увеличение суммарного расхода газовой смеси в 1,1-1,4 раза по сравнению с исходным значением и варьирование расхода углеводорода во времени, отличающийся тем, что в момент времени, равный τx=(0,45τ-0,55τ), подачу углеводорода прекращают на 1-3 с, а для обеспечения оптимального режима псевдоожижения топливных частиц увеличивают расход инертного газа на величину, равную произведению расхода углеводорода в момент времени τx и отношения молекулярных масс углеводорода и инертного газа.



 

Похожие патенты:

Изобретение относится к области высоковольтной техники, к силовым полупроводниковым устройствам и, в частности, к способу и устройству для одностадийного двустороннего нанесения слоя покрытия из аморфного гидрогенизированного углерода на поверхность кремниевой пластины, а также к держателю подложки для поддержки кремниевой пластины.
Изобретение относится к производству углеродных материалов, а именно к технологии получения углеродных материалов осаждением из газовой фазы пироуглерода с трехмерно ориентированной структурой на углеродном изделии, и может быть использовано для восстановления фрикционного износа углеродных изделий.
Изобретение относится к композитному покрытию из металла и углеродных нанотрубок (CNT) и/или фуллерена на металлических лентах или заранее отштампованных металлических лентах, а также к способу получения металлической ленты.

Изобретение относится к установке и способу плазменной вакуумной обработки. .

Изобретение относится к нанотехнологиям и может быть использовано для создания покрытий из наноалмазов, фуллеренов и углеродных нанотрубок, работающих в экстремальных условиях.

Изобретение относится к области материаловедения и может быть применено для защиты изделий из органических материалов - таких как органические стекла, оптические линзы, солнечные преобразователи, концентраторы излучения.

Изобретение относится к уплотнению пористых субстратов пиролитическим углеродом способом химической инфильтрации с использованием установки для осуществления этого способа.

Изобретение относится к устройствам для производства углеродных нанотрубок. .

Изобретение относится к микроструктурным технологиям, а именно к нанотехнологии, в частности к способу получения волокнистых углеродных наноматериалов, состоящих из углеродных нанотрубок, методом химического осаждения из газовой фазы.
Изобретение относится к области производства строительных материалов. .
Изобретение относится к химической технологии, в частности к способам нанесения покрытий на частицы сыпучих материалов, и может найти применение в химической, пищевой, фармацевтической и других отраслях промышленности.

Изобретение относится к нанесению покрытий в псевдоожиженном слое, в частности к устройству для осаждения покрытий в псевдоожиженном слое. .

Изобретение относится к производству длинномерных изделий типа проволоки, узких лент и др. .

Изобретение относится к установке для нанесения пленочных покрытий на дисперсные материалы и позволяет повысить эффективность нанесения пленок и очистки отработанного воздуха.

Изобретение относится к области получения пироуглеродных и карбидных покрытий в псевдоожиженном слое (ПС) частиц полифракционного состава, изменяющегося в процессе осаждения покрытий, и может быть использовано в атомной и электронной технике. Устройство для осаждения покрытий в ПС содержит химический реактор и систему подачи в него ожижающего газа. Химический реактор выполнен в виде прямого параллелепипеда с закругленными ребрами и основанием в виде прямоугольника. Одна боковая грань реактора имеет форму квадрата, а другая боковая грань - форму прямоугольника, площадь которого равна площади основания. Соотношение между площадями боковых граней составляет 1:(1,8-2), а прямоугольные грани в местах пересечения диагоналей снабжены выпуклостями. Обеспечивается повышение стабильности совокупности частиц в химическом реакторе и, тем самым, предотвращается унос частиц, на которые наносится покрытие. 1 з.п. ф-лы, 1 ил.
Наверх