Аппарат воздушного охлаждения газа



Аппарат воздушного охлаждения газа
Аппарат воздушного охлаждения газа

 


Владельцы патента RU 2518708:

Общество с ограниченной ответственностью "Газпром трансгаз Самара" (RU)

Изобретение относится к области энергетики, а именно к аппаратам воздушного охлаждения (АВО), применяемым для охлаждения природного газа. Охлаждаемый газ из магистрального газопровода после компрессорной станции подается в теплообменные трубы теплообменной секции. Дополнительно охлажденный теплоноситель второго контура (топливный газ и т.п.) поступает во внутренние трубы, расположенные в полости теплообменных труб. За счет теплообмена охлаждаемого газа с теплоносителем второго контура происходит дополнительное охлаждение газа после компрессорной станции и нагрев теплоносителя второго контура. Технический результат - повышение тепловой эффективности за счет снижения энергопотребления. 2 ил.

 

Изобретение относится к области энергетики, а именно к аппаратам воздушного охлаждения (АВО), применяемым для охлаждения природного газа.

В общем случае АВО представляет собой аппарат, состоящий из двух основных частей: поверхности охлаждения (теплообменные секции) и системы подачи воздуха.

Основные конструктивные различия АВО заключаются в пространственном расположении теплообменных секций и взаимном расположении теплообменных секций и вентилятора. По виду взаимного направления движения теплоносителей АВО выполнены как аппараты перекрестного типа, в которых теплоносители движутся во взаимно перпендикулярных направлениях. Охлаждающий воздух совершает однократный ток через пучок теплообменных труб, а горячий технологический продукт, например газ, движется внутри труб.

Известен аппарат воздушного охлаждения газа (патент №2075714 RU), содержащий теплообменные секции, закрепленные в трубных решетках, с камерами подвода и отвода теплоносителя, вентиляторы с приводом и опорную металлоконструкцию.

Известны аппараты воздушного охлаждения с горизонтальным расположением теплообменных секций нагнетательного типа, в которых вентилятор расположен до теплообменной секции по ходу движения воздуха (например, патент №2200907 RU). Аппараты такого типа являются более простыми и удобными в обслуживании, но потребляют много энергии.

Наиболее близким аналогом по технической сущности и достигаемому результату является аппарат воздушного охлаждения природного газа с коллекторами входа и выхода продукта 2АВГ-75(100), предназначенный для охлаждения газа на компрессорных станциях магистральных газопроводов (В.Б.Кунтыш, А.Н.Бессонный и др. Основы расчета и проектирования теплообменников воздушного охлаждения. - С/П: Недра, 1996, с.84-85, рис.2.37).

Аппарат состоит из горизонтально расположенных секций коллекторного типа, собранных из оребренных биметаллических труб, которые обдуваются потоком воздуха, нагнетаемого снизу осевыми вентиляторами с приводами от тихоходных электродвигателей. Теплообменные секции включают камеры подвода и отвода охлаждаемого газа, содержащие трубные доски с отверстиями, в которых заделаны концы оребренных теплообменных труб. Материал теплообменных труб: внутренних - сталь, оребрения - алюминий.

Недостатками известных АВО являются большое энергопотребление, что делает их дорогими в эксплуатации. Значительно высокая потребляемая мощность привода вентилятора вызвана большим аэродинамическим сопротивлением воздуха при движении его через пучок теплообменных труб. Кроме этого, воздух, набегающий на трубный пучок, имеет неравномерное скоростное поле, что не позволяет эффективно использовать всю теплообменную поверхность. Низкая скорость нагретого воздуха на выходе из теплообменных секций может привести к рециркуляции, то есть к обратному току воздушного потока в зону разрежения на всасе вентилятора, и, следовательно, к энергетическим потерям. К значительным потерям мощности на перемещение теплоносителя (охлаждаемого природного газа) по трубам также приводит увеличение гидравлического сопротивления при распределении газа по трубам пучка из камеры его подвода. Наиболее значительное снижение тепловой эффективности наблюдается в летний период при увеличении температуры наружного воздуха.

Технический результат, достигаемый изобретением, - повышение тепловой эффективности аппарата воздушного охлаждения за счет снижения энергопотребления.

Поставленная задача решается тем, что аппарат воздушного охлаждения газа содержит вентиляторы для подачи внешней охлаждающей среды, преимущественно воздуха, в корпус аппарата, который выполнен в виде секционного сосуда с, по крайней мере, двумя теплообменными секциями, каждая из которых включает камеру входа и камеру выхода охлаждаемого газа, содержащие трубные доски с отверстиями, в которых заделаны концами расположенные в секции рядами по ее высоте образующие пучок одноходовые оребренные теплообменные трубы, которые с боков ограничены продольными стенами каркаса секции, при этом каждая камера входа газа и выхода газа теплообменных секций аппарата имеет соответственно патрубки для присоединения к коллектору подвода газа из подающего газопровода и к коллектору отвода газа, сообщенному на выходе с газопроводом. Каждая камера входа и выхода охлаждаемого газа выполнена длиной, соответствующей ширине теплообменной секции аппарата, и содержит образующую переднюю часть - трубную доску, в которую заделаны концы теплообменных труб, и заднюю часть камеры, образованную преимущественно внешней доской, которая выполнена с отверстиями, соосными отверстиям в трубной доске. В полости теплообменных труб размещены внутренние трубы с продольным оребрением, сообщенные с коллектором входа и выхода теплообменной среды второго контура, при этом длина внутренней трубы превышает длину теплобменной трубы на величину, позволяющую обеспечить ее выход за внешнюю доску через существующие отверстия. Концы внутренних труб имеют возможность сообщения с коллекторами подвода и отвода теплоносителя второго контура, а количество теплообменных труб, разделенных на два контура, и отношение их диаметров подбирается из условия совершения максимально эффективного теплообмена между охлаждаемым газом и более холодным теплоносителем без увеличения гидравлического сопротивления аппарата воздушного охлаждения газа в целом.

Сущность изобретения поясняется чертежами, где

на фиг.1 изображена теплообменная секция, вид сверху;

на фиг.2 изображена теплообменная труба с внутренней трубой теплоносителя 2-го контура, вид А-А.

Теплообменная секция АВО газа 1 включает камеры входа 2 и выхода 3 охлаждаемого газа (конструктивно камера выхода 3 выполнена также, как камера входа 2), содержащие трубные доски 4. Трубные доски 4 выполнены с отверстиями 5, в которых заделаны концами расположенные в секции рядами по ее высоте образующие пучок одноходовые оребренные теплообменные трубы 6. Камера входа 2, помимо трубной доски, содержит заднюю часть - внешнюю доску, которая выполнена с отверстиями, соосными отверстиям в трубной доске.

Камера входа 2 имеет патрубок 7 для присоединения к коллектору подвода газа после компрессорной станции (на чертеже не изображен). Камера выхода 3 конструктивно аналогична камере входа 2 и имеет соответственно патрубок для присоединения к коллектору отвода газа (на чертеже не изображен).

В полости теплообменной трубы 6 размещена внутренняя труба 9 с продольным оребрением, концы которой выведены через существующие отверстия 11 внешней доски 10 камеры входа и выхода.

Внутренняя труба 9 имеет возможность сообщения с коллектором входа 12 и выхода 13 теплоносителя второго контура. Коллектор входа 12 выполнен в виде пустотелого цилиндра и имеет возможность сообщения с внутренними трубами 9, содержит патрубок 14 подвода теплоносителя второго контура. Выходной коллектор 13 конструктивно аналогичен коллектору входа и имеет соответственно патрубок 15 отвода теплоносителя второго контура.

Аппарат воздушного охлаждения газа работает следующим образом.

Охлаждаемый газ из магистрального газопровода после компрессорной станции подается через коллектор подвода газа в камеру входа 2 теплообменной секции АВО газа 1. Из камеры входа 2 охлаждаемый газ распределяется по теплообменным трубам 6. Теплообменная секция АВО газа 1, собранная из теполобменных труб 6, обдувается потоком охлаждающего воздуха, нагнетаемого снизу осевыми вентиляторами с приводами от тихоходных электродвигателей.

Охлажденный теплоноситель второго контура (топливный газ и т.п.) поступает во входной коллектор 12. Из входного коллектора 12 теплоноситель второго контура распределяется по внутренним трубам 9, расположенным в полости теплообменных труб 6. Проходя через внутреннее межтрубное пространство, образованное внутренней стенкой теплообменной трубы 6 и наружной поверхностью внутренней трубы 9, теплоноситель второго контура забирает тепло от теплообменной поверхности, нагретой проходящим внутри труб охлаждаемым газом. Теплоноситель второго контура, пройдя по внутренним трубам 9, собирается в выходном коллекторе 13 и отводится через патрубок 15 в коммуникации компрессорной станции.

Охлаждающий теплоноситель (воздух) поступает в межтрубное пространство теплообменной секции АВО газа 1. Проходя через наружное межтрубное пространство, омывая теплообменные трубы 6, воздух забирает тепло от теплообменной поверхности, нагретой проходящим внутри труб охлаждаемым газом.

Пройдя по трубам и охладившись, газ поступает в выходную камеру 3, откуда через патрубок 8 и коллектор отвода газа подается в магистральный газопровод.

При этом за счет теплообмена охлаждаемого газа с теплоносителем второго контура происходит дополнительное охлаждение газа после компрессорной станции и нагрев теплоносителя второго контура, к примеру топливного газа газоперекачивающих агрегатов компрессорной станции.

Предлагаемый аппарат воздушного охлаждения газа за счет оптимизации параметров теплообменных элементов обеспечивает в процессе его эксплуатации повышение теплопроизводительности и, таким образом, за счет более эффективного теплообмена охлаждаемого газа с наружной поверхностью внутренней трубы теплоносителя второго контура в межтрубном пространстве трубных досок позволяет уменьшить энергопотребление.

Таким образом, данная конструкция аппарата воздушного охлаждения газа является экономичной.

Аппарат воздушного охлаждения газа, характеризующийся тем, что он содержит вентиляторы для подачи внешней охлаждающей среды, преимущественно воздуха, в корпус аппарата, который выполнен в виде секционного сосуда с, по крайней мере, двумя теплообменными секциями, каждая из которых включает камеру входа и камеру выхода охлаждаемого газа, содержащие трубные доски с отверстиями, в которых заделаны концами расположенные в секции рядами по ее высоте образующие пучок одноходовые оребренные теплообменные трубы, которые с боков ограничены продольными стенами каркаса секции, при этом каждая камера входа газа и выхода газа теплообменных секций аппарата имеет соответственно патрубки для присоединения к коллектору подвода газа из подающего газопровода и к коллектору отвода газа, сообщенному на выходе с газопроводом, причем каждая камера входа и выхода охлаждаемого газа выполнена длиной, соответствующей ширине теплообменной секции аппарата, и содержит образующую переднюю часть - трубную доску, в которую заделаны концы теплообменных труб, и заднюю часть камеры, образованную преимущественно внешней доской, которая выполнена с отверстиями, соосными отверстиям в трубной доске, в полости теплообменных труб размещены внутренние трубы с продольным оребрением, сообщенные с коллектором входа и выхода теплообменной среды второго контура, при этом длина внутренней трубы превышает длину теплобменной трубы на величину, позволяющую обеспечить ее выход за внешнюю доску через существующие отверстия, концы внутренних труб имеют возможность сообщения с коллекторами подвода и отвода теплоносителя второго контура, при этом количество теплообменных труб, разделенных на два контура, и отношение их диаметров подбирается из условия совершения максимально эффективного теплообмена между охлаждаемым газом и более холодным теплоносителем без увеличения гидравлического сопротивления аппарата воздушного охлаждения газа в целом.



 

Похожие патенты:

Изобретение относится к конструкции теплообменника, в частности к теплообменнику металлическому системы отопления помещения. Теплообменник содержит трубопровод в виде стенки сквозной полости с внешней поверхностью, концевыми участками, а также внешние элементы теплопередачи, которые закреплены к одному концевому участку.

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий и может быть использовано при изготовлении теплообменника металлического системы отопления помещения.

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий, в частности к способу изготовления теплообменника металлического системы отопления.

Изобретение относится к конструкции элементов системы отопления помещения, в частности к теплообменнику металлическому, и может быть использовано при изготовлении системы отопления помещения.

Изобретение относится к термоэлектрическим устройствам нагрева-охлаждения циркулирующих потоков жидкости или газа и может найти применение в энергетической, химической, нефтехимической, пищевой и других отраслях промышленности.

Изобретение относится к области теплотехники и может быть использовано в реакторах-теплообменниках. .

Изобретение относится к способу работы дистилляционной колонны для удаления воды и компонентов кипящих ниже, чем 1,2-дихлорэтан, из 1,2-дихлорэтана. .

Изобретение относится к области теплотехники, а именно к способу и устройству для системы теплообмена с синтез-газом. .

Изобретение относится к области терморегулирования, а конкретнее - к устройствам отвода низкопотенциального тепла от систем космических аппаратов. .

Изобретение относится к области теплотехники и может быть использовано в охлаждающих башнях с теплообменниками сухого типа. Теплообменник для охлаждения жидкости, направленный вертикально вдоль продольной оси, включает в себя первую охладительную дельту, установленную в первой точке вдоль продольной оси и содержащую первый впускной трубопровод для впуска потока жидкости, соединенный по текучей среде с первым подающим магистральным трубопроводом, и первый выпускной трубопровод для выпуска потока жидкости, соединенный по текучей среде с первым впускным трубопроводом и первым отводящим магистральным трубопроводом; и вторую охладительную дельту, установленную во второй точке вдоль продольной оси над первой охладительной дельтой, содержащую второй впускной трубопровод для впуска потока жидкости, соединенный по текучей среде со вторым подводящим магистральным трубопроводом, и второй выпускной трубопровод для выпуска потока жидкости, соединенный по текучей среде со вторым впускным трубопроводом и вторым отводящим магистральным трубопроводом. Технический результат - повышение теплообмена в охладительных дельтах. 5 н.. и 16 з.п. ф-лы, 15 ил.

Изобретение относится к области теплотехники и может быть использовано в системах теплообмена, предназначенных для восстановления и использования отработанного тепла. Система, работающая по органическому циклу Ренкина, для восстановления и использования отработанного тепла, поступающего от источника отработанного тепла, с помощью замкнутого контура рабочей текучей среды содержит по меньшей мере один испаритель. Указанный испаритель дополнительно содержит поверхностно-обработанную подложку для содействия пузырьковому кипению рабочей текучей среды с обеспечением ограничения температуры рабочей текучей среды до значения ниже заданной температуры. Кроме того, испаритель выполнен с обеспечением испарения рабочей текучей среды путем использования отработанного тепла, поступающего от источника отработанного тепла. Технический результат - уменьшение размеров, снижение стоимости и повышение эффективности системы. 3 н. и 18 з.п. ф-лы, 3 ил.

Нагреватель предназначен для подогрева магистральных трубопроводов, транспортирующих нефть и газ с морских платформ ледового класса, в том числе использующих в качестве источника энергии атомные реакторы. Нагреватель содержит греющие блоки, каждый из которых расположен вокруг обогреваемого трубопровода и содержит теплоизоляционный слой с вмонтированным в него электронагревательным элементом, подключенным к токонесущим проводам, при этом греющий блок, расположенный в начальной части трубопровода, выполнен в виде теплообменника с промежуточным теплоносителем, использующим тепловую энергию конденсатора перегретого пара атомного реактора; причем каждый последующий греющий блок обеспечен датчиком температуры стенки трубопровода, электрически связанным с управляющим процессором, расположенным в блоке управления морской платформы; при этом нагревательный элемент каждого греющего блока содержит механизм пуска и отключения контакта с токонесущими проводами, взаимосвязанными с управляющим процессором, при этом трубопровод с греющими секциями и токопроводящими элементами помещены в едином теплоизолированном кожухе. Технический результат - стабильное поддержание диапазона заданной температуры прокачиваемого по магистральному трубопроводу продукта в условиях охлаждающего воздействия окружающей среды. 2 ил.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. В теплообменнике, содержащем пакет теплообменных пластин (1, 1а, 1b, 1с), образованных из листового металла, имеющего трехмерный рельеф (2, 3), каждая пластина (1, 1а, 1b, 1с) теплообменника имеет канавку (10), в которой расположена прокладка (9), причем указанная канавка (10) имеет днищевую внутреннюю поверхность (11), при этом указанная днищевая внутренняя поверхность (11) имеет по меньшей мере один выступ (14, 15), направленный к указанной соседней теплообменной пластине (1а). На участке указанного выступа (14, 15) указанная прокладка (9) сжата сильнее, чем на участке, расположенном за пределами указанного выступа (14, 15). Технический результат заключается в минимизации риска утечки жидкой среды. 14 з.п. ф-лы, 6 ил.

Группа изобретений относится к способам отвода низкопотенциального тепла от энергетических систем космических аппаратов (КА). Способ работы капельного холодильника-излучателя (КХИ) включает нагрев теплоносителя, его преобразование в поток капель, охлаждающихся излучением в космическом пространстве, сбор капель и подачу конденсата в энергетическую систему. В первом варианте на поток капель воздействуют внешним электрическим полем, параметры которого изменяют по траектории полета КА. Во втором варианте на поток капель воздействуют потоком заряженных частиц, параметры которого изменяют по траектории полета КА. В третьем варианте в поток капель вблизи их сбора впрыскивают газ с низкой электрической прочностью. Интервалы впрыска соответствуют времени накопления заряда на капле, а частоту впрыска изменяют по траектории полета КА. В четвертом варианте газ с низкой электрической прочностью растворяют в жидком теплоносителе КХИ. В зависимости от назначения КА и параметров КХИ возможно использование каждого из предложенных способов работы КХИ или любой их комбинации. Техническим результатом группы изобретений является уменьшение отклонения капель от прямолинейных траекторий и снижение тем самым потерь теплоносителя с обеспечением более эффективной и надежной работы КХИ. 4 н.п. ф-лы, 6 ил.

Изобретение относится к реактору со стационарным слоем катализатора, состоящему из многосекционного корпуса, крышки и днища, штуцеров для подачи и вывода продуктов реакции, каждая секция которого состоит из реакционной зоны - цилиндрического корпуса с устройством для удержания мелкозернистого катализатора, и теплообменной зоны - кожухотрубного теплообменника, в трубки которого подается реакционная смесь, а в межтрубное пространство - теплоноситель. Реактор характеризуется тем, что трубное пространство с помощью перегородок разбито на нечетное количество ходов таким образом, что все ходы, кроме последнего, расположены по периферии трубной решетки, а последний - по центру, причем диаметр этого хода по размеру совпадает с диаметром реакционной зоны, а торцы труб равномерно распределяются по сечению этой зоны. Реактор имеет повышенную эффективность работы и для него характерна сниженная металлоемкость. 2 з.п. ф-лы, 6 ил.

Изобретение относится к способу изготовления охлаждающего модуля (10) в виде корпуса с внутренним пространством (24) для размещения батарейных ячеек (22), причем корпус имеет между впускной и выпускной зонами один или несколько параллельных друг другу охлаждающих каналов (20) и выполняется, по меньшей мере, частично из одного или нескольких отрезков полого профиля (30). Технический результат - создание альтернативного способа изготовления охлаждающего модуля с одновременным снижением затрат. 4 н. и 28 з. п. ф-лы, 27 ил.

Изобретение относится к теплообменной технике и может использоваться в микроканальных теплообменниках. Микроканальный теплообменник состоит из жесткого корпуса, содержащего теплообменную матрицу, образованную из спаянных между собой тонких гладких теплопроводных пластин одинаковой конструкции, патрубков для подвода и отвода горячего и холодного теплоносителей, теплообменная матрица крепится к расположенным на входе и выходе теплоносителей пластинам с отверстиями, обеспечивающими подачу каждого из теплоносителей к коллекторным каналам горячего и холодного теплоносителей, расположенным противоположно друг другу, далее подачу теплоносителя к основным каналам горячего и холодного теплоносителей, при этом соседние пластины теплообменной матрицы по-разному ориентированы, что обеспечивает возможность подвода и отвода потока теплоносителя с разных сторон, при этом гладкие теплопроводные пластины спаяны между собой с помощью тонкой проволоки, образуя микроканалы. Технический результат - повышение эффективности микроканальных теплообменников. 1 з.п. ф-лы, 3 ил.
Наверх