Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом



Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом
Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом

 

H03M1/36 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2518997:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU)

Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат: расширение в несколько раз частотного диапазона обрабатываемых сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников входных напряжений ко входам компараторов напряжения. Для этого предложен сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом, который содержит N идентичных по архитектуре секций. Каждая из секций включает компаратор напряжения, первый вход которого соединен с первым источником входного напряжения через первый эталонный резистор, а второй вход компаратора напряжения подключен ко второму источнику входного противофазного напряжения через второй эталонный резистор, причем первый вход компаратора напряжения связан с первым источником опорного тока и первым паразитным конденсатором, второй вход компаратора напряжения связан со вторым источником опорного тока и вторым паразитным конденсатором. Первый источник опорного тока выполнен в виде первого токового зеркала, согласованного с первой шиной источника питания, и первого вспомогательного источника опорного тока, соединенного со входом первого токового зеркала, причем выход первого токового зеркала является выходом первого источника опорного тока, а второй источник входного противофазного напряжения связан со входом первого токового зеркала через первый корректирующий конденсатор. 2 з.п. ф-лы, 7 ил.

 

Предлагаемое изобретение относится к области измерительной и вычислительной техники, радиотехники, связи и может использоваться в структуре различных устройств обработки аналоговой информации, измерительных приборах, системах телекоммуникаций и т.п.

В современной технике широкое применение находят параллельные аналого-цифровые преобразователи (АЦП), обеспечивающие наибольшую скорость преобразования аналоговых сигналов (uвх) в цифровые сигналы [1-27]. С повышением частоты входного напряжения uвх в таких микроэлектронных АЦП возникают существенные погрешности преобразования, обусловленные влиянием паразитных конденсаторов, образуемых емкостями на подложку активных и пассивных компонентов [28-29]. Дальнейшее повышение быстродействия параллельных АЦП - одна из проблем современной информационно-измерительной техники, решение которой позволит осуществить практическую реализацию новых систем связи и телекоммуникаций с более высокими качественными показателями.

Наиболее близким по технической сущности заявляемому устройству является параллельный АЦП фиг. 1, описанный в патенте US 7.394.420, fig.3, fig.4. Анализу его предельного частотного диапазона (fв.max), а также попыткам увеличения fв.max за счет оптимизации абсолютных значений сопротивлений эталонных резисторов, посвящены статьи [28-29], в том числе соавтора настоящей заявки [29].

АЦП-прототип содержит N идентичных по архитектуре секций (фиг.1). Каждая из секций содержит компаратор напряжения 1, первый 2 вход которого соединен с первым 3 источником входного напряжения через первый 4 эталонный резистор, а второй 5 вход компаратора напряжения 1 подключен ко второму 6 источнику входного противофазного напряжения через второй 7 эталонный резистор, причем первый 2 вход компаратора напряжения 1 связан с первым 8 источником опорного тока и первым 9 паразитным конденсатором, второй 5 вход компаратора напряжения 1 связан со вторым 10 источником опорного тока и вторым 11 паразитным конденсатором.

Существенный недостаток АЦП-прототипа (фиг.1), схема одной из секций которого показана на фиг. 2, состоит в том, что его предельный частотный диапазон преобразования входных аналоговых сигналов в цифру (даже при реализации на сверхвысокочастотных транзисторах с fmax=200 ГГц техпроцесса SGB25H1, IHP, Германия [28, 29]) ограничен из-за уменьшения на высоких частотах коэффициента передачи сигнала со входов АЦП до входов компараторов напряжения.

Основная задача предлагаемого изобретения состоит в расширении в несколько раз частотного диапазона обрабатываемых сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников входных напряжений 3 и 6 ко входам компараторов напряжения 1.

Поставленная задача достигается тем, что в параллельном аналого-цифровом преобразователе с дифференциальным входом (фиг.1), каждая из N-секций которого (фиг.2) содержит компаратор напряжения 1, первый 2 вход которого соединен с первым 3 источником входного напряжения через первый 4 эталонный резистор, а второй 5 вход компаратора напряжения 1 подключен ко второму 6 источнику входного противофазного напряжения через второй 7 эталонный резистор, причем первый 2 вход компаратора напряжения 1 связан с первым 8 источником опорного тока и первым 9 паразитным конденсатором, второй 5 вход компаратора напряжения 1 связан со вторым 10 источником опорного тока и вторым 11 паразитным конденсатором, предусмотрены новые элементы и связи - первый 8 источник опорного тока выполнен в виде первого 12 токового зеркала, согласованного с первой 13 шиной источника питания, и первого 14 вспомогательного источника опорного тока, соединенного со входом первого 12 токового зеркала, причем выход первого 12 токового зеркала является выходом первого 8 источника опорного тока, а второй 6 источник входного противофазного напряжения связан со входом первого 12 токового зеркала через первый 15 корректирующий конденсатор.

На фиг.1 приведена схема АЦП - прототипа, который содержит N-параллельно включенных секций с одинаковой архитектурой (фиг.2), но разными абсолютными значениями сопротивлений эталонных резисторов 4 (7) и токов I8 (I10) источников опорных токов 8 (10).

На фиг. 2 приведена эквивалентная схема одной из секции АЦП фиг. 1, соответствующая АЦП-прототипу.

На фиг. 3 показана схема одной из секций предлагаемого АЦП, соответствующая пп. 1, 2 формулы изобретения.

На фиг. 4 приведена эквивалентная схема заявляемого АЦП в среде Cadence на моделях SiGe транзисторов (npn 200-n; техпроцесс SG25H1, IHP, Iк.тах = 4 мА. A high-performance 0.25 µm technology with npn-HBTs up to fT/fmax=180/220 GHz.), в которой учитываются паразитные емкости реальных токовых зеркал, емкости на подложку пассивных компонентов и входные емкости компараторов напряжения 1 на основе реальных дифференциальных каскадов.

На фиг. 5 показана логарифмическая амплитудно-частотная характеристика коэффициента передачи от источников входных напряжений 3 и 6 к дифференциальному входу компаратора №2 (каналы: 32, 48) схемы АЦП фиг. 4.

На фиг. 6 показана логарифмическая амплитудно-частотная характеристика коэффициента передачи от источников входных напряжений 3 и 6 к дифференциальному входу компаратора №2 (каналы: 32, 48) схемы АЦП фиг. 4. При этом в данной схеме:

- учитывается емкость на подложку эталонных резисторов 4 и 7;

- последовательно с каждым корректирующим конденсатором 15 и 18 Ск, включены дополнительные резисторы R=50 Ом;

- паразитная выходная емкость токовых зеркал 12 и 16 имеет сравнительно малое значение Сn=70 фФ;

- в схеме использованы реальные компараторы напряжения 1 (дифференциальные каскады) с паразитными емкостями их транзисторов.

На фиг. 7 показана логарифмическая амплитудно-частотная характеристика коэффициента передачи от источников напряжений 3 и 6 к дифференциальному входу компаратора №2 (каналы: 32, 48) схемы АЦП фиг. 4. При этом в схеме фиг. 4:

- учитывается емкость на подложку эталонных резисторов 4 и 7;

- последовательно с емкостью каждого корректирующего конденсаторов 15 и 18 (Ск) включены дополнительные резисторы R=50 Ом;

- паразитная выходная емкость токовых зеркал 12 и 16 имеет повышенное значение Сn=300 фФ;

- использованы реальные компараторы напряжений 1 (дифференциальные каскады) с паразитными емкостями его транзисторов.

Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом содержит N идентичных по архитектуре секций фиг. 3. Каждая из секций включает компаратор напряжения 1, первый 2 вход которого соединен с первым 3 источником входного напряжения через первый 4 эталонный резистор, а второй 5 вход компаратора напряжения 1 подключен ко второму 6 источнику входного противофазного напряжения через второй 7 эталонный резистор, причем первый 2 вход компаратора напряжения 1 связан с первым 8 источником опорного тока и первым 9 паразитным конденсатором, второй 5 вход компаратора напряжения 1 связан со вторым 10 источником опорного тока и вторым 11 паразитным конденсатором. Первый 8 источник опорного тока выполнен в виде первого 12 токового зеркала, согласованного с первой 13 шиной источника питания, и первого 14 вспомогательного источника опорного тока, соединенного со входом первого 12 токового зеркала, причем выход первого 12 токового зеркала является выходом первого 8 источника опорного тока, а второй 6 источник входного противофазного напряжения связан со входом первого 12 токового зеркала через первый 15 корректирующий конденсатор. По состоянию выходов компараторов напряжения судят о цифровом эквиваленте входного сигнала.

На фиг.3, в соответствии с п.2 формулы изобретения, второй 10 источник опорного тока выполнен в виде второго 16 токового зеркала, согласованного с первой 13 шиной источника питания, и второго 17 вспомогательного источника опорного тока, соединенного со входом второго 16 токового зеркала, причем выход второго 16 токового зеркала является выходом второго 10 источника опорного тока, а первый 3 источник входного напряжения связан со входом второго 16 токового зеркала через второй 18 корректирующий конденсатор.

На фиг.4, в соответствии с п.3 формулы изобретения, последовательно с каждым корректирующим конденсатором 15 и 18 включены дополнительные резисторы.

Рассмотрим работу аналоговых секций АЦП фиг.1, фиг.2 и фиг.3, включающих эталонные резисторы 4, 7, источники опорного тока 8, 10, компаратор напряжений 1.

В АЦП-прототипе фиг.1 быстродействие аналоговой секции фиг.2 (ее предельный частотный диапазон fв.max) определяется паразитными конденсаторами 9 и 11. Практически верхняя граничная частота (по уровню - 1 дБ) АЦП-прототипа при его реализации по SiGe технологии не превышает 2-7 ГГц (фиг.5, фиг.6), в то время как быстродействие компаратора 1, реализованного на СВЧ SiGe транзисторах [28, 29] с fT=200 ГГц, позволяет работать в более широком частотном диапазоне (20÷50 ГГц).

В заявляемом устройстве фиг. 3 за счет введения новых связей предельный диапазон рабочих частот аналоговой секции АЦП расширяется в 2-6 раз (фиг.5-фиг.7). Это позволяет обеспечить аналого-цифровое преобразование более высокочастотных сигналов.

Введение последовательно с корректирующими конденсаторами 18 и 15 корректирующих резисторов (фиг.4) позволяет оптимизировать неравномерность амплитудно-частотной характеристики аналоговой части секции АЦП, что создает условия для дальнейшего расширения частотного диапазона (фиг.6, фиг.7).

Таким образом, заявляемое устройство характеризуется существенными преимуществами в сравнении с прототипом по частотном диапазону обрабатываемых сигналов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6.437.724 fig.4

2. Патент US 6.882.294

3. Патент US 4.229.729 fig.1

4. Патент US 4.058.806 fig.2a

5. Патент US 4.831.379 fig.8

6. Патент US 5.598.161 fig.9

7. Патентная заявка US 2010/0231430 fig.11

8. Патент US 4.912.469 fig.5, fig.6

9. Патент US 6.437.724 fig.4

10. Патент US 5.175.550 fig.2

11. Патент US 6.847.320 fig.2

12. Патент US 6.882.294 fig.3

13. Патент DE 2009/002062 fig.3

14. Патент US 5.307.067 fig.1

15. Патент US 4.745.393 fig.1

16. Патент US 5.204.679 fig.1

17. Патент US 4.719.447 fig.1

18. Патент US 4.774.498 fig.13

19. Патент US 4.768.016 fig.1

20. Патент US 7.196.649 fig.1

21. Патент US 4.752.766 fig.5

22. Патент DE 2009/002062 fig.1

23. Патент US 5.231.399 fig.2

24. Патент US 4.578.715 fig.4

25. Патент US 4.831.379 fig.4

26. Патентная заявка US 2008/036536

27. Патент US 4.763.106 fig.1

28. Y.Borokhovych. 4-bit, 16 GS/s ADC with new Parallel Reference Network. / Y.Borokhovych, H.Gustat, C.Scheytt // COMCAS 2009-2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems

29. Серебряков А.И. Метод повышения быстродействия параллельных АЦП. / А.И.Серебряков, Е.Б.Борохович. // Твердотельная электроника. Сложные функциональные блоки РЭА: Материалы научно-технической конференции. - М.: МНТОРЭС им. А.С.Попова, 2012. - С.150-155.

1. Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом, каждая из N секций которого содержит компаратор напряжения (1), первый (2) вход которого соединен с первым (3) источником входного напряжения через первый (4) эталонный резистор, а второй (5) вход компаратора напряжения (1) подключен ко второму (6) источнику входного противофазного напряжения через второй (7) эталонный резистор, причем первый (2) вход компаратора напряжения (1) связан с первым (8) источником опорного тока и первым (9) паразитным конденсатором, второй (5) вход компаратора напряжения (1) связан со вторым (10) источником опорного тока и вторым (11) паразитным конденсатором, отличающийся тем, что первый (8) источник опорного тока выполнен в виде первого (12) токового зеркала, согласованного с первой (13) шиной источника питания, и первого (14) вспомогательного источника опорного тока, соединенного со входом первого (12) токового зеркала, причем выход первого (12) токового зеркала является выходом первого (8) источника опорного тока, а второй (6) источник входного противофазного напряжения связан со входом первого (12) токового зеркала через первый (15) корректирующий конденсатор.

2. Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом по п.1, отличающийся тем, что второй (10) источник опорного тока выполнен в виде второго (16) токового зеркала, согласованного с первой (13) шиной источника питания, и второго (17) вспомогательного источника опорного тока, соединенного со входом второго (16) токового зеркала, причем выход второго (16) токового зеркала является выходом второго (10) источника опорного тока, а первый (3) источник входного напряжения связан со входом второго (16) токового зеркала через второй (18) корректирующий конденсатор.

3. Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом по п.2, отличающийся тем, что последовательно с каждым корректирующим конденсатором (15) и (18) включены дополнительные резисторы.



 

Похожие патенты:

Изобретение относится к области автоматики и вычислительной техники, а именно к элементам систем цифрового управления, представляющим в виде двоичного кода точную информацию о текущем угловом положении подвижной части объекта регулирования.

Изобретение относится к радиотехнике. Техническим результатом является расширение полосы анализа сигналов и возможность проведения анализа в режиме реального времени.

Изобретение относится к области автоматики и робототехники и может быть использовано в следящих приводах с цифровыми датчиками угла (ЦДУ), работающих в диапазоне углов, больших чем ±180°, в которых задается знак направления движения.

Группа изобретений относится к аналого-цифровым преобразователям и может быть использована в устройствах преобразования энергии для силовой электроники. Техническим результатом является повышение быстродействия.

Изобретение относится к области измерительной и вычислительной техники, радиотехники и связи. Технический результат заключается в расширении в несколько раз предельного частотного диапазона обрабатываемых входных сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений от источников ко входам компараторов напряжения.

Изобретение относится к автоматике и вычислительной технике и может быть использовано при создании систем автоматического управления (САУ). Технический результат заключается в осуществлении работы в широком диапазоне температур в полях ионизирующего излучения, резервировании, кодовом управлении выходным током и радиационной стойкости с временем работы при изменении в широком диапазоне температур окружающей среды, возникновении катастрофических и параметрических отказов отдельных элементов источника и при изменении нагрузки в условиях действия ионизирующего излучения.

Изобретение относится к области электроники, а именно к цифроаналоговым преобразователям. Техническим результатом является упрощение конструкции и повышение быстродействия цифроаналогового преобразователя при сохранении точности преобразования за счет формирования двухполярного выходного сигнала.

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код.

Изобретение относится к области радиоизмерений и предназначено для контроля работы аналого-цифровых преобразователей без применения специальных тестовых сигналов.

Изобретение относится к аналого-цифровой измерительной технике для измерения аналогового сигнала. Техническим результатом изобретения является повышение точности измерения аналогового сигнала за счет измерения скорости изменения аналогового сигнала с предварительно установленным пороговым значением.

Изобретение относится к вычислительной технике и может быть использовано в качестве входного устройства цифровых вычислительных комплексов для регистрации быстропротекающих электрических процессов. Технический результат - улучшение эксплуатационных характеристик аналого-цифрового преобразователя (АЦП), а именно надежности работы и массогабаритных характеристик. Аналого-цифровой преобразователь содержит n-разрядный приоритетный шифратор, триггер Тг0, схему И И0, n-разрядный регистр, n триггеров Тг1, …, Тгn со схемами И И1, …, Иn, n-разрядный преобразователь код-напряжение, схему сравнения, шину запуска, n аналоговых компараторов напряжения K1, …, Kn, n блоков эталонных напряжений Uэт1, …, Uэтn, n-разрядный демультиплексор и генератор тактовых импульсов. 2 ил.

Изобретение относится к электронике и может быть использовано при разработке быстродействующих аналого-цифровых преобразователей (АЦП). Технический результат - повышение точности калибровки N-разрядного комбинированного АЦП путем уменьшения погрешности преобразования АЦП за счет снижения влияния рассогласования параметров элементов с помощью калибровки. N-разрядный комбинированный АЦП содержит входной параллельный М-разрядный АЦП1 и М-разрядный цифроаналоговый преобразователь (ЦАП1), использующие общий последовательный резистивный делитель, источник опорного напряжения Vref, устройство выборки и хранения (УВХ) разностного сигнала входа АЦП и выходного напряжения ЦАП и конвейерный (М-М+1)-разрядный АЦП2. При калибровке вычисляют и загружают в ЦАП2к код калибровки CR, а также коды CSi калибровки каждого сегмента, используемые во время нормальной работы как аддитивные поправки к выходному коду АЦП, при этом за счет единичного коэффициента передачи первого каскада конвейера АЦП2 формируется близкий к нулю сигнал. В АЦП, использующих УВХ и АЦП2 с двойной выборкой, ЦАП2к и источник Vref2 сдвоенные и формируют напряжения Vref2A и Vref2B индивидуально для каждого из двух семплеров А и В. 6 н. и 2 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к электронике и может быть использовано в системах обработки аналоговых сигналов и, в частности, в быстродействующих аналого-цифровых преобразователях (АЦП). Технический результат - уменьшение погрешности преобразования АЦП за счет устранения расслоения смещения нуля по семплерам путем введения калибровки смещения нуля индивидуально для каждого семплера. N-разрядный комбинированный АЦП включает входной параллельный М-разрядный АЦП1, М-разрядный цифроаналоговый преобразователь (ЦАП1), устройство выборки и хранения (УВХ) и конвейерный (N-М+1)-разрядный АЦП2. М-разрядные АЦП1 и ЦАП1 используют общий последовательный резистивный делитель. УВХ с двойной выборкой, состоящее из усилителя и двух семплеров, формирует разностный сигнал входного напряжения АЦП и выходного напряжения ЦАП. Весь аналоговый тракт АЦП выполнен дифференциальным. В АЦП реализована индивидуальная калибровка смещения нуля для разных семплеров, для чего используют два идентичных ЦАПа калибровки и коммутатор, подающий на усилитель УВХ сигнал калибровки, соответствующий семплеру, находящемуся в режиме хранения, от одного из ЦАПов калибровки. При калибровке на вход УВХ подают нулевой дифференциальный сигнал с синфазным уровнем, равным или близким к синфазному уровню входного сигнала. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области аналого-цифровых преобразователей. Техническим результатом является повышение точности и скорости преобразования. Микроконтроллерный АЦП с использованием переходного процесса в RC-цепи содержит первый резистор 1, второй резистор 2, третий резистор 3, четвертый резистор 4, конденсатор 5 и микроконтроллер 6. Сопротивления резисторов 2 и 3 равны. Резистор 1 и конденсатор 5 первыми выводами подключены к первому входу аналогового компаратора (АК) микроконтроллера 6, первые выводы резистора 2 и резистора 3 подключены ко второму входу АК микроконтроллера 6, вторые выводы резисторов 1, 2, 3 и конденсатора 5 подключены соответственно к первому, второму, третьему и четвертому дискретным выходам микроконтроллера 6, первый вывод резистора 4 подключен к источнику входного напряжения, второй вывод резистора 4 подключен ко второму выводу резистора 3. 1 ил.

Источник стабильного тока относится к автоматике и вычислительной технике и может использоваться в составе систем автоматического управления, работающих в экстремальных условиях и полях ионизирующего излучения. Достигаемый технический результат - обеспечение долговременной стабильности выходных параметров при работе непосредственно на нагрузку в широком диапазоне температур в полях ионизирующего излучения. Источник стабильного тока содержит последовательно включенные фильтр, трансформатор с включенным в первичную обмотку транзистором-прерывателем и выпрямляющим диодом во вторичной обмотке, после которого установлен фильтр нижних частот с измерительным шунтом в выходной токовой цепи, измерительные выходы которого подключены к преобразователю напряжения в частоту, выходная частота которого поступает через элемент гальванической развязки на вход частотно-импульсного модулятора, управляющего частотой переключения транзистора-прерывателя. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной и вычислительной техники, радиотехники, связи и может использоваться в структуре различных устройств обработки информации, измерительных приборах, системах телекоммуникаций. Техническим результатом является уменьшение времени установления выходного напряжения ЦАП. Цифроаналоговый преобразователь содержит блок коммутации весовых токов (1), токовый выход которого (2) связан с эталонным резистором (3), паразитный конденсатор (4), связанный с токовым выходом (2) блока коммутации весовых токов (1).С целью повышения быстродействия токовый выход (2) блока коммутации весовых токов (1) соединен со входом неинвертирующего усилителя напряжения (5) и токовым выходом (6) неинвертирующего усилителя тока (7), причем между выходом неинвертирующего усилителя напряжения (5) и токовым входом (8) неинвертирующего усилителя тока (7) включен элемент частотной коррекции (9). 2 з.п. ф-лы, 12 ил.

Изобретение относится к области измерительной и вычислительной техники, радиотехники, связи. Технический результатом является расширение в несколько раз предельного частотного диапазона обрабатываемых сигналов АЦП за счет снижения погрешности передачи входных дифференциальных напряжений ко входам компараторов напряжения. Сверхбыстродействующий параллельный аналого-цифровой преобразователь с дифференциальным входом содержит N идентичных по архитектуре секций. Каждая из секций включает компаратор напряжения (1), первый (2) вход которого соединен с первым (3) источником входного напряжения через первый (4) эталонный резистор, а второй (5) вход компаратора напряжения (1) подключен ко второму (6) источнику входного противофазного напряжения через второй (7) эталонный резистор, причем первый (2) вход компаратора напряжения (1) связан с первым (8) источником опорного тока и первым (9) паразитным конденсатором, второй (5) вход компаратора напряжения (1) связан со вторым (10) источником опорного тока и вторым (11) паразитным конденсатором. Первый (3) источник входного напряжения подключен к базе первого (12) дополнительного транзистора, коллектор которого соединен с шиной первого (13) источника питания, а эмиттер подключен к шине второго (14) источника питания через первый (15) токостабилизирующий двухполюсник и через первый (16) корректирующий конденсатор связан с первым (2) входом компаратора напряжения 1. 1 з.п., ф-лы, 8 ил.

Изобретение относится к электронике и может быть использовано в микроэлектронных системах обработки аналоговых сигналов и преобразовании аналоговой информации в цифровую, в частности при разработке аналого-цифровых преобразователей (АЦП) с малым энергопотреблением, многоканальных системах приема и обработки информации с многоэлементных приемников оптического сигнала. Технический результат заявленного изобретения заключается в уменьшении площади кристалла АЦП и уменьшении потребляемой мощности за счет уменьшения суммарной емкости набора конденсаторов. Технический результат достигается за счет введения дополнительных блоков взвешивающих конденсаторов деления с ключами, аналогичных основному блоку взвешивающих конденсаторов деления с ключами, при этом емкость наименьшего конденсатора каждого дополнительного блока не равна удвоенной емкости наибольшего конденсатора основного блока или предыдущего дополнительного блока взвешивающих конденсаторов деления с ключами, а выходы дополнительных блоков взвешивающих конденсаторов деления с ключами объединены с выходом основного блока взвешивающих конденсаторов деления с ключами. 2 ил.

Изобретение относится к области автоматики и вычислительной техники. Технический результат - упрощение конструкции устройства. Формирователь временных интервалов содержит блок регистров, блок коммутаторов, блок памяти, блок делителей частоты, блок формирователей команд, блок формирователей импульсов, генератор импульсов и делитель частоты, при этом формирователь команд блока содержит семь триггеров, два элемента ИЛИ и два инвертора, формирователь импульсов блока содержит триггер, делитель частоты и инвертор. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области измерения и может быть использовано при метрологических исследованиях навигационных приборов, содержащих вращающийся трансформатор. Техническим результатом является расширение функциональных возможностей за счет обеспечения измерения динамических характеристик. Существенным отличием предложенного изобретения является то, что в устройство для измерения навигационных приборов, в состав которых входит вращающийся трансформатор, содержащее коммутатор, дополнительно введены два канала преобразования, каждый из которых содержит генератор, реверсивный счетчик и последовательно соединенные цифроаналоговый преобразователь, фазовращатель, усилитель мощности, выход которого является выходом устройства для подключения обмоток вращающегося трансформатора проверяемого навигационного прибора, счетный вход реверсивного счетчика подключен к генератору, выход подключен к цифровому входу цифроаналогового преобразователя, вход опорного напряжения которого подключен к выходу коммутатора, вход которого подключен к источнику питания переменного тока. 1 ил.
Наверх