Способ получения азафуллерена c48n12 нитрацией β-нафтола разбавленной азотной кислотой



Способ получения азафуллерена c48n12 нитрацией β-нафтола разбавленной азотной кислотой
Способ получения азафуллерена c48n12 нитрацией β-нафтола разбавленной азотной кислотой
Способ получения азафуллерена c48n12 нитрацией β-нафтола разбавленной азотной кислотой
Способ получения азафуллерена c48n12 нитрацией β-нафтола разбавленной азотной кислотой

 


Владельцы патента RU 2523826:

Козеев Александр Алексеевич (RU)

Изобретение относится к способу получения азафуллерена C48N12, при котором взвесь β-нафтола в воде нитруют азотной кислотой с концентрацией 5-6% при температуре 96-98°С на водяной бане в течение 2÷2,5 часов в присутствии уксусной кислоты в количестве 25-30 мл/л в пересчете на ледяную уксусную кислоту, образовавшуюся реакционную массу отфильтровывают, измельчают, промывают водой от азотной кислоты до нейтральной среды и сушат при температуре 70-80°С, затем для получения азафуллерена C48N12 чистотой 96-98% подвергают селективной отмывке в аппарате типа Сокслет, после чего азафуллерен перекристаллизовывают, промывают и сушат при температуре 70-80°С. Изобретение обеспечивает получение азафуллерена C48N12 низкотемпературным синтезом в жидкой фазе. 9 з.п. ф-лы, 1 пр., 2 ил.

 

Область изобретения

Настоящее изобретение относится к области гетерофуллеренов, в частности к азотзамещенным фуллеренам - азафуллеренам.

Уровень техники

В последнее время нанокластеры углерода находят все большее применение в промышленности. В качестве широко известных углеродных нанокластеров можно указать сажу, наноалмазы, фуллерены, нанотрубки, графены.

Однако, если фуллерены относительно хорошо исследованы и по ним имеются тысячи публикаций, то гетерофуллерены - химические соединения, образованные замещением одного или нескольких углеродных атомов фуллеренов на атомы других веществ, например бора, серы, азота, - практически не изучены, а публикации по ним немногочисленны. Гетерофуллерены, в которых гетероатомом является атом азота, называются азафуллеренами (в некоторых литературных источниках - азофуллеренами).

«Одним из интересных представителей, синтезированных на основе фуллеренов молекул, является димер азафуллерена (C59N)2. Его особенностью является то, что в углеродном каркасе один атом углерода заменен атомом азота, причем такая замена приводит к изменению электронной структуры каркаса с четного числа электронов на нечетные, резко изменяя свойства молекулы. По этой причине мономер азафуллерена C59N может существовать только в газовой фазе после термического разложения димера в процессе сублимации. Являясь радикалом, азафуллерен может присоединять атомы, например, водорода, образуя гидроазафуллерены C59NHx. Изучение молекул азафуллеренов интересны в том отношении, что позволяет ответить на вопрос: как модификация фуллеренового каркаса влияет на те или иные физико-химические свойства фуллеренов». http://www.originweb.info/education/chemistry/fullerenes3.htm.

Исследователи из Института Науки о Материалах в Мадриде осуществили синтез триазафуллерена C57N3, в котором азафуллерен образуется на поверхности платины (Nature, 2008, 454, 865). Способ испанских исследователей заключается в использовании каталитической поверхности, способной вызывать самопроизвольное дегидрирование молекулы исходных соединений. Исходные вещества для этого синтеза - молекулы асфальтенов, с предварительно внедренными гетероатомами. Асфальтены наносят на активированную поверхность платины. Реакция проходит при 750 K. http://www.chemport.ru/datenews.php?news=1174.

Исследователям из университета Linköpingu в Швеции удалось получить аналоги фуллерена, в которых некоторые атомы углерода заменены на атомы азота. Эта молекула состоит из 48 атомов углерода и 12 атомов азота и является азафуллереном C48N12 (в оригинале Azofullereny). http://akademon.artin.cz/clanekDetail.asp?name=Azofullereny&source=1101.

Однако существующие методы получения азафуллеренов основаны на процессах пиролитической карбонизации, которая по сути является процессом термического разложения. «Пиролиз (от древнегреческого - огонь, жар и - разложение, распад) - термическое разложение органических и многих неорганических соединений. В узком смысле разложение органических природных соединений при недостатке воздуха (древесины, нефтепродуктов и прочего). В более широком смысле - разложение любых соединений на составляющие менее тяжелые молекулы, или элементы, под действием повышения температуры». http://ru.wikipedia.org/wiki/%CF%E8%F0%EE%EB%E8%E7.

В результате пиролитической карбонизации, например, асфальтенов, образуется углеродная фракция, которая может содержать и фуллерены, а газообразные продукты, также образующиеся при пиролитической карбонизации, в результате различных перегруппировок и конденсаций могут образовывать замещенные фуллерены, в частности азафуллерены. http://www.chemport.ru/datenews.php?news=1174.

Но главное, что не дает возможности получать азафуллерены существующими методами в промышленных масштабах, то, что азафуллерены, полученные такими методами, пока зафиксированы лишь спектрально, и в заметных количествах не выделены. http://www.modificator.ru/articles/fulleren_a.html.

Задачей данного изобретения является получение азафуллеренов не методами термического разложения, а низкотемпературным синтезом в жидкой фазе, основанным на реакциях циклизации и макроциклизации. Этот метод позволяет получать азафуллерен в промышленном масштабе, а не зафиксированным лишь спектрально.

Наиболее близким к заявляемому способу получения азафуллерена C48N12 является способ получения азафуллерена, известный из документа JP 2003300966 А, 21.10.2003.

Азафуллерену C48N12 могут быть присущи как реакции, характерные для третичных аминов, так и реакции нового типа, связанные с гиперароматизацией азафуллерена, характеризующейся большей степенью делокализации π-сопряженных электронов, чем делокализации π-электронов у обычных ароматических гетероциклических соединений. Однако химические свойства азафуллеренов (азотистых гетерофуллеренов), в частности азафуллерена C48N12, пока не изучены, и требуются целенаправленные исследования. Но химические свойства азафуллерена C48N12, в частности и свойства азафуллеренов, вцелом, могут значительно отличаться от свойств соединений, рассматриваемых в классической органической химии.

Сущность изобретения

Указанная задача решается тем, что предложен способ получения азафуллерена C48N12, при котором взвесь β-нафтола (синонимы β-нафтола: 2-нафтол, 2-окси-нафталин), в воде нитруют азотной кислотой нагреванием на водяной бане в присутствии уксусной кислоты, образовавшуюся реакционную массу, представляющую собой «сырой» азафуллерен C48N12, отфильтровывают, измельчают, промывают водой от азотной кислоты и сушат, затем для дополнительной очистки азафуллерена C48N12 «сырой» азафуллерен подвергают селективной отмывке в аппарате типа Сокслет растворителями, которые растворяют примеси, но, практически, не растворяют азафуллерен, например, трихлорэтиленом, после чего азафуллерен перекристаллизовывают, промывают и сушат.

Известно, что β-нафтол легко нитруется даже разбавленной азотной кислотой и при нитрации образует нитро-, динитро- и тринитронафтолы. В литературе имеются данные (Муляева Н.С., Русьянова Н.Д. Химические продукты коксования углей. Свердловск. 1967, стр.187), что β-нафтол в кислой среде склонен к полимеризации с образованием полинафтолов (ди- и три-нафтолов). При нитровании полинафтолов разбавленной азотной кислотой могут образовываться полинитрополинафтолы, образование которых может завершиться образованием квазисферической структуры фуллероидного типа.

Поэтому следует предположить, что происходит не только нитрация β-нафтола с образованием нитронафтолов, которые в данном синтезе являются побочными продуктами, но и полимеризация β-нафтола с одновременной нитрацией продуктов полимеризации β-нафтола с образованием полинитрополинафтолов (в данном способе гексанитротринафтола), которые после ряда промежуточных реакций образуют квазисферическую структуру фуллероидного типа азафуллерена C48N12.

Схема синтеза:

Азафуллерен относится к классу гетерофуллеренов. Термином «гетерофуллерены» называют молекулы фуллеренов, в которых один или несколько атомов углерода замещены атомами другого сорта, например атомами азота. http://www.informag.ru/bulletins/b007r/2207.html. Другие названия азафуллеренов - азотзамещенный фуллерен, азотистый гетерофуллерен. Следует отметить, что в литературе встречается как термин «азафуллерен», так и термин «азофуллерен».

Общее уравнение реакции, соответствующее такому механизму:

10Н7(ОН)+12HN3→C48N12+30·H2O+6CO2+6С

Из уравнения реакции видно, что часть избытка углерода при образовании азафуллерена C48N12 элиминируется в виде элементарного углерода, а именно на 1 моль образующегося гетерофуллерена образуется 6 молей элементарного углерода.

Азафуллерен C48N12 имеет температуру плавления около 190÷200°C. Цвет растворов азафуллерена C48N12 в органических растворителях - красно-коричневый.

Элементный анализ образца азафуллерена C48N12 показал содержание в нем: углерода С - 76,43 мас.%, азота N - 22,03 мас.%, водорода Н - 0,73 мас.% кислорода О - 0,81 мас.%. Наличие небольшого количества водорода и кислорода относится к примесям, а не к самому азафуллерену. Такое соотношение углерода к азоту соответствует брутто-формуле C4,05N1,00. А это, практически, совпадает с соотношением углерода к азоту в азафуллерене C48N12 (C4,00N1,00).

По данным масс-спектроскопии в спектре (см. Фиг 1) имеется интенсивная полоса с массой 744 АЕМ (АЕМ - атомные единицы массы), что полностью соответствует молекулярной массе азафуллерена C48N12, равной 744 АЕМ. Отсутствие сколь-нибудь значительного количества атомов водорода (так называемых «гидридов») в результатах элементного анализа, косвенно указывает на замкнутость структуры исследуемого образца, что является характеристикой всех соединений фуллероидного типа, в том числе и азафуллеренов.

Таким образом, предварительные исследования (элементный анализ и масс-спектр, снимок, сделанный просвечивающим электронным микроскопом (ПЭМ) (см. Фиг.2) подтверждают, что синтезированный продукт может быть азафуллереном C48N12. На ПЭМ-снимке кластерная структура азафуллерена аналогична структуре фуллерена С60.

Подробное описание изобретения

Для осуществления изобретения нитруют взвесь β-нафтола в воде азотной кислотой концентрацией 5-6%. Взвесь ставят на водяную баню и доводят до кипения бани, при этом температура реакционного раствора составляет 96-98°C. В качестве стабилизатора-ингибитора процесса нитрования используют уксусную кислоту, которую добавляют в раствор в количестве 25-30 мл/л в пересчете на ледяную уксусную кислоту.

Разбавленную азотную кислоту медленно, при тщательном перемешивании, осторожно вливают в реакционный раствор, находящийся на водяной бане.

Раствор моментально начинает темнеть, β-нафтол превращается в черную смолоподобную массу. Цвет раствора - темно-пурпурный. Раствор продолжают нагревать на водяной бане еще 2÷2,5 часа. При этом цвет раствора изменяется с темно-пурпурного до желто-коричневого. Продукты нитрации в виде черной смолы всплывают на поверхность. Смолоподобная масса постепенно густеет и перестает прилипать к стеклянной палочке. Цвет массы изменяется от черного до вишнево-коричневого. При охлаждении реакционного раствора масса застывает, становится хрупкой и оседает на дно. Этот хрупкий продукт синтеза представляет собой «сырой» азафуллерен C48N12, который легко можно извлечь из реакционного раствора, практически, одним комком. Реакционный раствор, желтого цвета, фильтруют от образовавшегося азафуллерена. Отфильтровавшийся азафуллерен измельчают и тщательно промывают водой от азотной кислоты до pH 7 и сушат при температуре 70-80°C. Оставшийся фильтрат, в основном, представляет собой раствор гидронитрата азафуллерена C48N12·mHNO3 и избыток азотной кислоты. Из фильтрата со временем выпадает некоторое количество гидронитрата азафуллерена в виде желто-оранжевых мелких кристаллов. Фильтрат при доведении в нем концентрации азотной кислоты до 5-6% может использоваться повторно.

«Сырой» азафуллерен C48N12 содержит некоторое количество различных нитропроизводных β-нафтола, которые образуются наряду с азафуллереном. Выход «сырого» азафуллерена по β-нафтолу составляет 70÷80% от теоретического.

Азафуллерен растворяется в органических растворителях: бензоле, толуоле, хлороформе, дихлорэтане, уксусной кислоте, уксусном ангидриде, пиридине.

Он после измельчения представляет собой мелкокристаллический дисперсный порошок темно-коричневого цвета с красноватым оттенком.

Для дополнительной очистки азафуллерена C48N12 «сырой» азафуллерен подвергают селективной отмывке в аппарате типа Сокслет растворителями, которые растворяют примеси, но, практически, не растворяют азафуллерен, например трихлорэтиленом.

Затем азафуллерен перекристаллизовывают, например, из бензола, предварительно отфильтровав бензольный раствор от частиц углерода, образовавшихся в процессе синтеза. После чего остатки бензола смывают спиртом и промывают водой, затем сушат при температуре 70-80°C. Окончательная очистка азафуллерена C48N12 требует специальных методов очистки.

Пример 1. Получение азафуллерена C48N12

В трехлитровую емкость (не обязательно из химического стекла) вносят 21,6 г β-нафтола, 70 мл ледяной уксусной кислоты (в качестве стабилизатора-ингибитора) и 2,0÷2,3 л воды. Взвесь ставят на водяную баню и доводят до кипения бани, при этом температура реакционного раствора составляет 96-98°C. В этих условиях β-нафтол большей частью растворяется за счет образования полинафтола.

В емкость объемом 1 л вносят 150 мл воды и 350 мл азотной кислоты HNO3 концентрацией 55%. Общий объем раствора становится равным примерно 2,8 л, а концентрация азотной кислоты в растворе ~5-6%.

Разбавленную азотную кислоту медленно, при тщательном перемешивании, осторожно вливают в реакционный раствор, находящийся на водяной бане.

Раствор моментально начинает темнеть, β-нафтол превращается в черную смолоподобную массу. Цвет раствора - темно-пурпурный. Раствор продолжают нагревать на водяной бане еще 2÷2,5 часа. При этом цвет раствора изменяется с темно-пурпурного до желто-коричневого. Продукты нитрации в виде черной смолы всплывают на поверхность. Смолоподобная масса постепенно густеет и перестает прилипать к стеклянной палочке. Цвет массы изменяется от черного до вишнево-коричневого. При охлаждении реакционного раствора масса застывает, становится хрупкой и оседает на дно. Этот хрупкий продукт синтеза представляет собой «сырой» азафуллерен C48N12, который легко можно извлечь из реакционного раствора, практически, одним комком. Реакционный раствор, желтого цвета, фильтруют от образовавшегося азафуллерена. Отфильтровавшийся азафуллерен измельчают и тщательно промывают водой от азотной кислоты до pH 7 и сушат при температуре 70-80°C. Для дополнительной очистки азафуллерена C48N12 «сырой» азафуллерен подвергают селективной отмывке в аппарате типа Сокслет трихлорэтиленом. Затем азафуллерен перекристаллизовывают из бензола, предварительно отфильтровав бензольный раствор от частиц углерода, образовавшихся в процессе синтеза. После чего остатки бензола смывают спиртом и промывают водой, затем сушат при температуре 70-80°C. Более глубокая очистка азафуллерена C48N12 требует специальных методов очистки. Азафуллерен после измельчения представляет собой мелкокристаллический дисперсный порошок темно-коричневого цвета с красноватым оттенком.

1. Способ получения азафуллерена C48N12, при котором взвесь β-нафтола в воде нитруют азотной кислотой нагреванием на водяной бане в присутствии уксусной кислоты, образовавшуюся реакционную массу вишнево-коричневого цвета, представляющую собой «сырой» азафуллерен C48N12, отфильтровывают, измельчают, промывают водой от азотной кислоты и сушат, затем для получения азафуллерена C48N12 чистотой 96-98% «сырой» азафуллерен подвергают селективной отмывке в аппарате типа Сокслет, после чего азафуллерен перекристаллизовывают, промывают и сушат.

2. Способ по п.1, при котором нитрование взвеси β-нафтола в воде проводят азотной кислотой концентрацией 5-6%.

3. Способ по п.1, при котором разбавленную азотную кислоту при тщательном перемешивании вливают во взвесь β-нафтола в воде, находящуюся на водяной бане.

4. Способ по п.1, при котором нитрование взвеси β-нафтола в воде проводят при температуре 96-98°C.

5. Способ по п.1, при котором уксусную кислоту используют в качестве стабилизатора-ингибитора в количестве 25-30 мл/л в пересчете на ледяную уксусную кислоту.

6. Способ по п.1, при котором нитрование взвеси β-нафтола в воде продолжают нагреванием раствора на водяной бане 2÷2,5 часа.

7. Способ по п.1, при котором отфильтровавшийся и измельченный «сырой» азафуллерен тщательно промывают водой от азотной кислоты до pH 7.

8. Способ по п.1, при котором промытый водой «сырой» азафуллерен сушат при температуре 70-80°C.

9. Способ по п.1, при котором для дополнительной очистки азафуллерена C48N12 «сырой» азафуллерен подвергают селективной отмывке в аппарате типа Сокслет растворителями, которые растворяют примеси, но, практически, не растворяют азафуллерен, например, трихлорэтиленом.

10. Способ по п.1, при котором для получения азафуллерена C48N12 чистотой 96-98% отмытый в аппарате типа Сокслет азафуллерен перекристаллизовывают, например, из бензола, предварительно отфильтровав бензольный раствор от частиц углерода, образовавшихся в процессе синтеза; затем с перекристаллизованного из бензола азафуллерена C48N12 остатки бензола смывают спиртом и промывают водой, затем сушат при температуре 70-80°C.



 

Похожие патенты:

Изобретение относится к производству металл-углерод содержащих тел. Описан способ производства металл-углерод содержащих тел, включающих ферромагнитные металлические частицы, капсулированные слоями графитового углерода, который включает пропитывание целлюлозных, целлюлозоподобных или углеводных тел или тел, полученных из них путем гидротермальной обработки, водным раствором по меньшей мере одного соединения металла, где металл или металлы выбраны из ферромагнитных металлов или сплавов, и последующую термическую карбонизацию пропитанных тел путем нагревания в инертной и практически лишенной кислорода атмосфере при температуре выше примерно 700°С с восстановлением по меньшей мере части по меньшей мере одного соединения металла до соответствующего металла или металлического сплава.
Изобретение относится к способу синтеза покрытий производных фуллеренов. Способ включает физическое распыление в вакууме мишени ионным пучком, перенос пара к ростовой поверхности подложек и наращивание покрытий заданного состава и определенной структуры.

Изобретение относится к химической и электротехнической промышленности и может быть использовано для модификации резин и каучуков, при производстве высокоемких конденсаторов и композитных материалов.

Изобретения могут быть использованы в аппаратах химической, химико-металлургической отраслях промышленности, а также в производстве особо чистых материалов. Неразъеёмная монолитная деталь аппарата, снабженная выступающими частями, изготовлена из углерод-углеродного композиционного материала на основе каркаса тканепрошивной структуры.

Изобретение относится к способу понижения содержания углерода в золе из топки, включающему операцию нагревания в топке ископаемого топлива в присутствии присадки - улучшителя топлива, в составе которой преобладают оксид железа и диоксид кремния.

Изобретение может быть использовано для извлечения наночастиц диоксида кремния и углерода из шламов газоочистки электротеримического производства кремния флотацией.
Изобретение может быть использовано в химической и химико-металлургической промышленности. Изготавливают пористую заготовку из углерод-углеродного композиционного материала (УУКМ) неполной, например половинной, толщины - внутреннюю оболочку.

Изобретение относится к области органической синтеза, а именно к способу получения функционально замещенных фуллеренов, которые могут найти применение в качестве донорно-акцепторных систем.

Изобретение относится к плазменному синтезу наноматериалов. .

Изобретение относится к нанотехнологии, а именно к производству углеродных нанотрубок, широко используемых в различных областях науки и техники. .

Изобретение относится к огнестойким теплозащитным покрытиям для поверхностей различной природы и формы, требующих тепло- и огнезащиты, применяемым в различных отраслях промышленности в качестве пожаробезопасного теплозащитного покрытия трубопроводов тепловых сетей, котлов и других тепловых аппаратов, для покрытия оборудования с целью защиты персонала от контактных ожогов горячими и холодными металлическими поверхностями, для холодильного оборудования, эксплуатируемого в помещениях с неблагоприятным влажностно-температурным режимом в качестве антиконденсатного и антикоррозионного покрытия, для наружной теплоизоляции зданий и сооружений и внутренней обработки помещений с целью предотвращения обмерзания и сырости стен.

Изобретение относится к способу получения полимерных материалов. Способ получения наномодифицированных полимерных материалов включает конденсацию паров мономера.

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов.
Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60; связующая добавка - остальное.

Изобретение относится к области получения нанодисперсных порошков неорганических материалов и соединений. Плазмохимические реакции инициируют импульсным микроволновым разрядом, воздействующим на исходные реагенты, в качестве которых используют смесь порошков титана и бора в атмосфере азота, при этом в качестве исходных реагентов используют порошок аморфного бора с размером частиц 1 мкм-100 мкм и порошок титана с размером частиц 1 мкм-100 мкм, причем используется микроволновой разряд мощностью от 50 кВт до 500 кВт и длительностью импульса от 100·10-6 с до 100·10-3 с, а рабочее давление азота составляет от 0,1 до 1 атмосферы.

Изобретение относится к технологии изготовления изделий сложной формы из металлов и сплавов, способных приобретать нано- и микрокристаллическую структуру с регламентированно минимизированным размером зерна в результате предварительной интенсивной пластической деформации заготовок.

Изобретение относится к технологии изготовления сверхбольших интегральных схем (СБИС) в части формирования многоуровневых металлических соединений. Способ формирования многоуровневых медных межсоединений СБИС по процессу двойного Дамасцена через двухслойную жесткую маску включает нанесение слоя изолирующего диэлектрика на пластину, в теле которого будут формироваться проводники многоуровневой металлизации интегральной схемы, нанесение поверх изолирующего диэлектрика нижнего слоя двухслойной жесткой маски двуокиси кремния и верхнего слоя двухслойной жесткой маски, формирование на верхнем слое двухслойной жесткой маски топологической маски из резиста, травление верхнего слоя двухслойной жесткой маски по топологической маске из резиста, удаление остаточного резиста с поверхности топологического рисунка, сформированного в верхнем слое двухслойной жесткой маски, травление нижнего слоя двухслойной жесткой маски двуокиси кремния по топологическому рисунку верхнего слоя двухслойной жесткой маски, вытравливание траншей и переходных контактных окон в слое изолирующего диэлектрика по топологическому рисунку в двухслойной жесткой маске, заполнение сформированных траншей и переходных контактных окон слоем металлизации и удаление избыточного объема нанесенного металла с поверхности пластин, при этом в качестве материала верхнего слоя жесткой маски используют слой вольфрама.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов с пониженной плотностью дефектов.
Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра применения.

Изобретение относится к области нанотехнологии композиционных материалов на основе мезопористых матриц, содержащих наноразмерные изолированные металлические частицы, и может быть использовано для получения магнитных материалов.
Изобретение относится к изоляционным покрытиям, наносимым на металлическую проволоку, и может быть использовано для покрытия проволок, используемых для изготовления сетчатых конструкций, например габионов. Покрытие содержит адгезионный подслой из термопластичного клея и функциональный слой из наноструктурированного композиционного материала на основе полиэтилена. При этом композиционный материал функционального слоя имеет матрицу из полиэтилена и дисперсно-распределенные в матрице частицы монтмориллонита, в количестве 0,1-2 мас.%. Технический результат - повышение физико-механических свойств покрытия. 11 з.п. ф-лы, 2 пр.
Наверх