Пластичная смазка с повышенной работоспособностью и способ ее получения

Настоящее изобретение относится к пластичной смазке на основе углеводородной дисперсионной среды и полимочевины, при этом она содержит в качестве углеводородной дисперсионной среды полиалкилбензол или его смесь с нефтяным маслом при следующем соотношении компонентов, мас.%: полимочевина - 6-15; дисперсионная среда - остальное, при этом дисперсионная среда имеет состав, мас.%: полиалкилбензол - 5-100; нефтяное масло - 0-95. Также настоящее изобретение относится к способу получения пластичной смазки, который включает добавление аминов и изоцианатов при температуре 50-150°С к дисперсионной среде, причем в качестве дисперсионной среды используют полиалкилбензол или его смесь с нефтяным маслом, полученную путем добавления полиалкилбензола к нефтяному маслу. Техническим результатом настоящего изобретения является улучшение противоизносных и антифрикционных свойств смазки в интервале температур от минус 50 до плюс 150 ºС, позволяющей использовать ее в качестве и многоцелевой, и низкотемпературной смазки с длительным сроком действия. 2 н.п. ф-лы, 2 табл., 1 ил.

 

Изобретение относится к области нефтепереработки и нефтехимии, в частности к пластичным смазкам, предназначенным для использования в узлах трения машин и механизмов, работающих в широком интервале температур, в том числе и низкотемпературных, высоких нагрузок и скоростей, в контакте с агрессивными средами, например перегретым водяным паром, окислительными агентами и т.п.

Известно, что полимочевина как загуститель лучше всего загущает масла, состоящие полностью или частично из ароматических соединений (содержание загустителя 6-10%), а многие синтетические масла, например полисилоксаны, загущает только в большой концентрации (25-30%), а полиальфаолефины фактически не поддаются загущению (см. автореферат диссертации Борисенко Л.И, Львов, 1991 г. - «Рецептурно-технологические факторы и свойства смазок на производных мочевины»). Поэтому при разработке полимочевинных смазок с улучшенными реологическими свойствами, особенно на синтетических маслах, приходится использовать в их составе ароматические соединения или эфиры - как в чистом виде, так и в виде смесей. Добавление ароматических соединений в дисперсионные среды позволяет улучшить реологические свойства полимочевинных смазок: предел прочности при сдвиге, коллоидную стабильность, пенетрацию. В то же время использование таких соединений требует всестороннего изучения их свойств, т.к. многие из них, особенно тяжелые фракции, могут привести к нежелательному явлению - закоксовыванию смазки в узле трения и выходу подшипников из строя.

Наиболее близким аналогом заявляемой смазки является смазка, содержащая в качестве дисперсионной среды нефтяное или синтетическое масло и полимочевину, в которую для улучшения реологических свойств добавлен экстракт нефтяной в количестве 1-10% по отношению к маслу (дисперсионной среде). Смазку получают путем смешения нефтяных или синтетических масел с экстрактом нефтяным и добавления к ним аминов и изоцианатов при температуре 50-150°С (см. RU 2283859 C10M 115/08, 16.06.2005).

Недостатком этой смазки является то, что используемый ароматический компонент - экстракт нефтяной, улучшая в основном реологические свойства смазки, в то же время сужает температурный интервал ее использования, т.к. он застывает при температуре от минус 10°С до плюс 10°С, поэтому дальнейшее его увеличение (более 10%) в составе смазки приведет к дальнейшему снижению температуры использования в низкотемпературной области. Как правило, большинство используемых смазок имеет следующие температурные пределы применения: многоцелевые от минус 20°С (минус 40°С) до плюс 130°С (плюс 160°С); низкотемпературные от минус 50°С (минус 60°С) до плюс 100°С (плюс 120°С). С использованием экстракта нефтяного достичь таких температурных интервалов использования невозможно.

Задачей изобретения является улучшение эксплуатационных свойств смазки.

Техническим результатом изобретения является улучшение противоизносных, антифрикционных свойств смазки в интервале температур от минус 50 до плюс 150°С, позволяющей использовать ее в качестве и многоцелевой, и низкотемпературной смазки с длительным сроком действия.

Указанный технический результат достигается заменой экстракта нефтяного в смазке-аналоге на полиалкилбензол при процентном содержании его в дисперсионной среде от 5 до 100%. Пластичная смазка на основе углеводородной дисперсионной среды и полимочевины содержит в качестве углеводородной дисперсионной среды полиалкилбензол или его смесь с нефтяным маслом при следующем соотношении компонентов, мас.%:

полимочевина 6-15
дисперсионная среда остальное

при этом дисперсионная среда имеет состав, мас.%:

полиалкилбензол 5-100
нефтяное масло 0-95

Способ получения пластичной смазки включает добавление аминов и изоцианатов при температуре 50-150°С к дисперсионной среде, причем в качестве дисперсионной среды используют полиалкилбензол или его смесь с нефтяным маслом, полученную путем добавления полиалкилбензола к нефтяному маслу.

Загуститель - полимочевину изготавливают известным способом - путем реакции аминов и изоцианатов в расчетном соотношении.

Полиалкилбензол согласно ТУ 2414-040-04689375-95 представляет собой побочный продукт фтористо-водородного алкилирования бензола моноолефинами нормального строения С10-С14, содержащий в основном различные диалкилбензолы с примесью моноалкилбензолов и дифенилалканов. В качестве полиалкилбензола могут использовать полиалкилбензол ПАБ-С, полиалкилбензол ПАБ-Т.

Предпочтительно использовать полиалкилбензол ПАБ-С, имеющий следующие характеристики: вязкость кинематическая при 100°С - 4,5 мм2/с; температура вспышки в открытом тигле - 204°С; температура застывания - минус 52°С.

Полиалкилбензол ПАБ-Т имеет следующие характеристики: вязкость кинематическая при 100°С - 3,5 мм2/с; температура вспышки в открытом тигле - не ниже 175°С; температура застывания - не выше минус 30°С.

В качестве нефтяных масел возможно использовать как остаточные, так и дистиллятные, например цилиндровые масла Ц-52, Ц-38, масло для прокатных станов П-40, авиационное масло МС-20, индустриальное масло И-50А, компрессорное масло КС-19, веретенное масло НЦ и другие масла, полученные из нефти.

Новизной предлагаемого технического решения является использование в составе вместо экстракта нефтяного полиалкилбензола, что позволяет улучшить противоизносные и антифрикционные свойства смазки с увеличением времени работы в узлах трения в широком температурном диапазоне от минус 50°С до плюс 150°С.

Пластичную смазку получают следующим образом. К нефтяным маслам добавляют полиалкилбензол или используют его индивидуально в количестве 5-100%. Затем в полученную дисперсионную среду добавляют расчетные количества аминов и изоцианатов при температуре 50-150°С.

Пластичная смазка, полученная таким образом, по отношению к прототипу имеет улучшенные показатели по износу, определяемому площадью изнашиваемого ролика в мм2, и антифрикционным свойствам, определяемым косвенно по температуре в зоне трения. Трибологические свойства полученных образцов смазок по сравнению с прототипом определялись в МГТУ им. Н.Э.Баумана по запатентованной методике (см. а.с. №2378637) на машине трения Тимкена-Айшингера.

Отобранные по этой методике лучшие образцы (ПМО низкотемпературная с 100% полиалкилбензола, ПМО многоцелевая на минеральном масле с добавлением 50% полиалкилбензола и прототип (ПМО термостойкая) исследовались на долговечность на стенде «закрытый подшипник» в исследовательском центре Европейской подшипниковой компании (ООО «ИЦ ЕПК»).

Базой сравнения служит полимочевинная смазка, предлагаемая крупнейшей мировой компанией по производству подшипников SKF для данного узла трения. Марка смазки SKF LGHP2. По этой методике определяют срок службы смазки (долговечность в часах) до выхода подшипника из строя и температура в зоне трения (по мнению немецких исследователей, чем меньше температура в зоне трения, тем больше срок службы смазки в подшипнике (см. каталог фирмы Клюбер Лабрикейшн, С.18)).

Полученные трибологические характеристики лабораторных (см., табл.1) и стендовых (см. фиг.1) испытаний, подтвержденные опытным путем, не являются очевидными в свете известных теоретических представлений, особенно для низкотемпературной смазки на чистом полиалкилбензоле. Подтверждением синергизма заявляемой смазки (полиалкилбензол + полимочевина) является тот факт, что ни один из других используемых в настоящее время загустителей (мыльные - оксистеарат лития, комплексный кальциевый; неорганические - бентонит, аэросил) при загущении полиалкилбензола не дает композиции, выдерживающей испытания по методике МГТУ им. Н.Э.Баумана, а срок работы не стенде «закрытый подшипник» предлагаемой композиции ПМО низкотемпературной и ПМО многоцелевой превосходит многократно известные мыльные многоцелевые смазки: Литол-24 - 1000 час, ЦИАТИМ-201 - 170 час, ОКБ-122-7 - 310 час, ФИОЛ-2у - 480 час, ЛЗ-31 - 1650 час (см., тематический обзор «Пути повышения работоспособности пластичных смазок» М., ЦНИИТЭнефтехим, 1988 г.), в то время как предлагаемые составы, отработав более 2500 час, не утрачивают работоспособности.

Для иллюстрации предлагаемого технического решения готовят образцы пластичной смазки известным способом - путем реакции октадециламина, анилина и полиизоцианата в растворе дисперсионной среды. Для получения заявленной смазки подготавливают дисперсионную среду, для чего берут полиалкилбензол или добавляют его к маслу И-50А в расчетном количестве. При температуре 150°С добавляют к дисперсионной среде амины и изоцианаты в таком количестве, чтобы содержание загустителя - полимочевины в смазке составило 10 мас.%. Все образцы содержат одинаковое количество загустителя, чтобы эффект был проиллюстрирован более наглядно.

Характеристики сырьевых компонентов следующие:

Масло И-50А:

- вязкость кинематическая при 50°С - 95 мм2/с;

- температура вспышки в открытом тигле - 242°C;

- температура застывания - минус 16°C.

Остаточный компонент (остаточное нефтяное масло):

- вязкость кинематическая при 100°С - 20 мм2/с;

- температура вспышки в открытом тигле - 250°С;

- температура застывания - минус 15°С.

ПАБ-С:

- вязкость кинематическая при 50°C - 13-14 мм2/с;

- температура вспышки в открытом тигле - 204°C;

- температура застывания - минус 52°C.

Октадециламин:

- температура плавления - 37-45°C;

- содержание аминных групп - 5,5-6,6%.

Анилин:

- температура кипения - 184°C;

- содержание аминных групп - 5,5-6,6%.

Полиизоцианат:

- содержание изоцианатных групп - 29-34 мас.%;

- температура плавления минус 10°C.

Состав и характеристика полученных смазок при различных соотношениях компонентов дисперсионной среды представлены в табл.1. Рабочими считались композиции, имеющие предел прочности при 50°С более 100 Па (при пределе прочности меньше 100 Па смазки вытекают из подшипника).

Таблица 1
Компонент 1 2 3 4 5 6 (прототип)
Дисперсионная среда 90 90 90 90 90
Полимочевина 10 10 10 10 10
Состав дисперсионной среды, мас.%:
Масло И-50А 97 95 50 25 0 -
Остаточный компонент - - - - - 95
Экстракт нефтяной - - - - - 5
Полиалкилбензол 3 5 50 75 100 -
Предел прочности при сдвиге, Па, при температуре 50°C 80 120 410 430 460 440
Температура каплепадения, °C 187 203 226 233 244 240

Как видно из таблицы 1, замена ароматического компонента, улучшающего реологические свойства смазок, - экстракта нефтяного на полиалкилбензол фактически не изменяет указанные свойства смазок, а трибологические характеристики (см., табл.2) изменяются существенно. Образец №1 не проходит из-за низкого предела прочности. В таблице 2 представлены результаты испытаний на машине трения Тимкена-Айшингера образцов смазок №№1-6 из таблицы 1.

Таблица 2
Смазка, образец Площадь износа, мм2 Температура в зоне трения, °C
1 Не испытывалась
2 6,4 55
3 5,3 47
4 4.8 44
5 4,4 39
6 (прототип) 9,0 60
Импортная смазка 10,1 62
SKF LGHP2

Как видно из таблицы 2, предлагаемые образцы превосходят по трибологическим характеристикам смазку прототип в 1,5-2,0 раза по износу, а температура саморазогрева в зоне трения при добавлении полиалкилбензола снижается с 60°С до 39°С.

Образцы №3 (ПМО многоцелевая), №5 (ПМО низкотемпературная) и №6 (прототип - ПМО термостойкая) были испытаны на стенде «закрытый подшипник» по сравнению с импортной полимочевинной смазкой SKF LGHP2. Результаты промежуточных испытаний представлены на графике. При наработке 2500 часов температура саморазогрева в этих условиях испытаний составляла 53°C - у образца №5, 58°C - у указанной в таблице 2 импортной смазки, 61°C у образца №3 и 68°C у прототипа. Более низкая температура в зоне трения у заявленных образцов, чем у прототипа, позволяет прогнозировать большую долговечность их при эксплуатационных испытаниях, а для образца №5 (ПМО низкотемпературной) большую долговечность, чем у той же импортной смазки.

Таким образом, предлагаемый состав смазки позволяет улучшить ее эксплуатационные свойства, что подтверждают данные проведенных испытаний, например, увеличить противоизносные свойства в 1,5-2,0 раза по сравнению с прототипом, а также увеличить антифрикционные свойства смазки в интервале температур от минус 50 до плюс 150°C.

Выявленные преимущества предлагаемого состава полученной смазки перед прототипом, а также известной импортной смазкой, открывает широкие перспективы ее использования как в качестве многоцелевой, так и в качестве низкотемпературной смазки с длительным сроком действия.

1. Пластичная смазка на основе углеводородной дисперсионной среды и полимочевины, отличающаяся тем, что она содержит в качестве углеводородной дисперсионной среды полиалкилбензол или его смесь с нефтяным маслом при следующем соотношении компонентов, мас.%:

полимочевина 6-15
дисперсионная среда остальное

при этом дисперсионная среда имеет состав, мас.%:
полиалкилбензол 5-100
нефтяное масло 0-95

2. Способ получения пластичной смазки, включающий добавление аминов и изоцианатов при температуре 50-150°C к дисперсионной среде, отличающийся тем, что получают смазку по п.1, а в качестве дисперсионной среды используют полиалкилбензол или его смесь с нефтяным маслом, полученную путем добавления полиалкилбензола к нефтяному маслу.



 

Похожие патенты:
Настоящее изобретение относится к антифрикционной смазке для узлов трения на основе литиевого мыла стеариновой кислоты и минерального масла, при этом она дополнительно содержит полиэтиленовый воск и суспензию титаната калия при следующем соотношении компонентов, мас.%: литиевое мыло стеариновой кислоты 5,0-12,0; полиэтиленовый воск 1,0-7,0; суспензия титаната калия 1,0-15,0; минеральное масло - остальное до 100%, причем суспензия титаната калия имеет следующий состав (мас.%): порошок титаната калия 60,1-70,0, минеральное масло - остальное до 100%.

Изобретение относится к электротехнике и может быть использовано при ошиновке энергоемких технологических установок, электролизеров химической промышленности, цветной металлургии, силовой преобразовательной техники.
Настоящее изобретение относится к композиции рабочей жидкости для холодильной машины, при этом она содержит масло для холодильных машин, содержащее смесь по меньшей мере двух сложных эфиров, выбранных из группы сложных эфиров по меньшей мере одного многоатомного спирта, и жирной кислоты с содержанием C5-C9 жирной кислоты 50-100% мол., фторпропеновый хладагент и/или трифторйодметановый хладагент (варианты).
Настоящее изобретение относится к компрессорному маслу, содержащему базовое нефтяное масло и полиметилсилоксан, при этом оно дополнительно содержит 4,4'-динонилдифениламин, пентаэритритовый эфир 3,5-ди-трет-бутил-4-гидроксифенилпропионовой кислоты, 1,2,3-бензотриазол, сложный эфир диалкилдитиофосфорной кислоты и смесь сложных аминов, а в качестве базового масла оно содержит гидрированный остаточный компонент с содержанием ароматических углеводородов 19,0-22,0%, при следующем соотношении компонентов, % мас.: 4,4'-динонилдифениламин 0,95-1,0; пентаэритритовый эфир 3,5-ди-трет-бутил-4-гидроксифенил пропионовой кислоты 0,55-0,65; 1,2,3-бензотриазол 0,045-0,055; сложный эфир диалкилдитиофосфорной кислоты 0,055-0,065; смесь алифатических и ароматических аминов 0,055-0,065; полиметилсилоксан 0,004-0,005; базовое масло - гидрированный остаточный компонент до 100.
Настоящее изобретение относится к смазочной композиции, содержащей полисилоксановую жидкость, нефтяное масло марки МС-14, церезин марки 80, литиевое мыло стеариновой или 12-оксистеариновой кислоты, при этом она дополнительно содержит биоцид на основе 2-октил-3(2Н)-изотиазолона при следующем соотношении компонентов, мас.%: полисилоксановая жидкость - 56-59; церезин марки 80 - 16-20; литиевое мыло стеариновой или 12-оксистеариновой кислоты - 5,5; биоцид на основе 2-октил-3(2Н)-изотиазолона - 1,0; нефтяное масло - остальное.

Изобретение относится к способу селективного получения смазки. Смазка имеет вязкость 4,0 сСт при 100°C, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°C и вязкость при -40°C менее 3000 сСт.

Изобретение относится к устройству термогравитационной очистки турбинных и трансформаторных масел от механических примесей и воды, содержащему первую емкость, систему отвода масла из первой емкости, систему подачи масла в первую емкость, включающую ламинирующее поток масла устройство, расположенное в первой емкости выше уровня ее донной части.

Настоящее изобретение относится к высокотемпературной смазочной композиции, содержащей присадку в виде ультрадисперсного порошка углекислого кальция с размером частиц не более 0,1 мкм, олеиновую кислоту и базовую основу, при этом размер частиц углекислого кальция не превышает 0,1 мкм, соотношение компонентов в высокотемпературной смазочной композиции, мас.%: Ультрадисперсный порошок углекислого кальция   с размером частиц не более 0,1 мкм 7,0÷10,0 Олеиновая кислота 1,0÷2,0 Базовая основа Остальное Техническим результатом настоящего изобретения является повышение антифрикционных свойств смазочной композиции и возможность использования в интервалах высоких температур (130-400°C).

Настоящее изобретение относится к применению ионных жидкостей для улучшения защиты против окислительной и термической деструкции смазочной композиции, состоящей из смеси из a) от 82,5 до 95 мас.% базового масла или смеси базового масла на основе синтетических, минеральных или природных масел, которые применяют отдельно или в комбинации, b) от 0,1 до 7,5 мас.% ионной жидкости и c) от 4,9 до 10 мас.% присадки или смеси присадок.
Настоящее изобретение относится к способу подготовки металлических обрабатываемых изделий для холодной штамповки путем нанесения слоя смазочного материала (=покрытия) или на металлическую поверхность, или на металлическую поверхность, с предварительно нанесенным покрытием, отличающемуся тем, что слой смазочных материалов образуется при контактировании поверхности с водной композицией смазочных материалов, которая имеет содержание по меньшей мере двух восков с явно различающимися свойствами, содержание органического полимерного материала, содержащего иономеры и неиономерные соединения, причем иономеры в основном состоят из иономерных сополимеров совместно с соответствующими ионами, а неиономерные соединения выбраны из олигомеров, полимеров или/и сополимеров на основе акриловой кислоты/метакриловой кислоты, амида, амина, арамида, эпоксида, этилена, имида, сложного полиэфира, пропилена, стирола, уретана, их сложного(-ных) эфира(-ов) или/и их соли(-ей), причем массовое соотношение общего содержания по меньшей мере двух восков и общего содержания одного или нескольких иономеров или/и одного или нескольких неиономерных соединений в композиции смазочных материалов находится в области от 0,01:1 до 8:1, а также содержание по меньшей мере одного водорастворимого, водосодержащего и/или связывающего воду оксида или/и силиката, причем покрытие, образованное из композиции смазочных материалов, на протяжении температурного интервала от 40 до 260°C имеет в общей сложности по меньшей мере две области плавления или/и точки плавления, из которых по меньшей мере две отстоят друг от друга по меньшей мере на 30°C.

Изобретение относится к составам смазочно-охлаждающих жидкостей, используемых при обработке металлов резанием. .
Изобретение относится к смазочно-охлаждающим жидкостям (СОЖ) и может быть использовано для приготовления рабочих растворов СОЖ, используемых для обработки металлов резанием на металлообрабатывающих предприятиях.
Изобретение относится к смазочно-охлаждающим жидкостям (СОЖ) и может быть использовано для приготовления рабочих растворов СОЖ, используемых для обработки металлов резанием на металлообрабатывающих предприятиях.
Изобретение относится к рабочим жидкостям для гидравлических систем, в том числе для гидравлических систем запорной арматуры газовых магистралей. .
Изобретение относится к области нефтепереработки и нефтехимии, в частности к пластичным смазкам, предназначенным для использования в узлах трения машин и механизмов, работающих в условиях повышенной температуры, высоких нагрузок и скоростей и в контакте с агрессивными средами, например перегретым водяным паром, окислительными агентами и т.п.

Изобретение относится к области производства смазочных изделий, которые могут быть использованы для лубрикации пар трения «колесо - рельс» железнодорожного транспорта и грузоподъемных механизмов.

Изобретение относится к области создания смазочных композиций, используемых на железнодорожном транспорте для снижения износа рельсовых путей, гребней колес локомотивов и подвижного состава.

Изобретение относится к низкотемпературным приборным маслам на основе модифицированных олигоэтилсилоксанов, которые могут быть использованы в широком диапазоне температур от минус 75°С до 200°С в различных областях современной техники.

Изобретение относится к смазочно-охлаждающим технологическим средствам, а именно к составам смазочно-охлаждающих жидкостей, используемых при механической обработке металлов.

Изобретение относится к смазочно-охлаждающим технологическим средствам, а именно к составам смазочно-охлаждающих жидкостей, используемых при механической обработке металлов.

Изобретение относится к способу получения мочевиновой консистентной смазки, который осуществляют в устройстве, использующем экструдер и содержащем несколько реакционных зон, смонтированных в ряд и связанных по текучей среде.
Наверх