Способ очистки воды


 


Владельцы патента RU 2525177:

Общество с ограниченной ответственностью "БИНАКОР-ХТ" ООО "БИНАКОР-ХТ" (RU)

Изобретение может быть использовано в области водоочистки подземных и поверхностных вод от железа и для получения питьевой воды для небольших населенных пунктов, сельскохозяйственных комплексов. Способ очистки воды включает прокачивание очищаемой воды в режиме кавитации через волновое гидродинамическое устройство, в которое подают воздух при объемном соотношении Ж:Г=[18-25]:1. Из волнового гидродинамического устройства поток жидкости подают в контактную камеру, в которой собственная частота колебаний двухфазной среды вода-воздух совпадает с частотой звуковых колебаний, генерируемых волновым гидродинамическим устройством. Затем очищаемую воду фильтруют от нерастворимых соединений трехвалентного железа. Изобретение позволяет снизить содержание остаточного железа ниже норм ПДК без использования химических реагентов, сократить показания индекса коли до 0, технически упростить процесс. 3 пр.

 

Изобретение относится к области водоочистки подземных и поверхностных вод от железа, сложных органических соединений, солей жесткости и сероводорода и может быть использовано для получения питьевой воды для небольших населенных пунктов, отдельных объектов и сельскохозяйственных комплексов. Данный способ обработки воды также позволяет разрушить устойчивые к химическим окислителям микроорганизмы.

Известен способ безреагентного умягчения и обезжелезивания воды (RU 2009135612, C02F 1/64, 1/74, опубл. 27.03.2011) путем насыщения ее воздухом, включающий ее обработку в гидроимпульсном генераторе и кавитационном реакторе, где процесс происходит путем столкновения двух гидродинамических импульсных кавитирующих струй. Обрабатываемая вода в гидроимпульсном генераторе проходит через эжекторы, где интенсивно смешивается с кислородом воздуха, окисляется и поступает в накопительную емкость, в которой продолжается процесс образования соединений трехвалентного железа и их коагуляция. Далее образующиеся хлопья выпадают в осадок, который отфильтровывают и сбрасывают в канализацию.

К недостаткам предложенного способа относится необходимость многократной обработки жидкости для достижения норм ПДК по железу.

Наиболее близким по технической сущности и достигаемому результату является способ (RU 2333154, C02F 1/34, 1/78, 103/04, 103/10, опубл. 10.09.2008), где обрабатываемую воду прокачивают через гидродинамический излучатель в режиме кавитации, в который подают газовую фазу, состоящую из смеси воздуха с озоном. Концентрация озона составляет не менее 10 г/мЗ. Газовая фаза подается в гидродинамический излучатель с помощью компрессора. Далее обработанную воду подвергают фильтрованию для извлечения нерастворимых взвесей.

Недостатком данного способа является необходимость использования озона и дополнительного оборудования для его производства и эжектирования внутрь устройства.

Задачей настоящего изобретения является упрощение технологии окисления двухвалентного железа до норм питьевой воды без использования химических реагентов.

Поставленная задача достигается за счет того, что в способе очистки воды, включающем прокачивание очищаемой воды в режиме кавитации через волновое гидродинамическое устройство, в которое подают газовую фазу, подачу потока жидкости из волнового гидродинамического устройства в контактную камеру и последующее фильтрование очищаемой воды от образовавшихся нерастворимых соединений, причем в качестве газовой фазы используется воздух при объемном соотношении Ж:Г=[18-25]:1, причем в контактной камере происходит дополнительная волновая обработка жидкости за счет того, что частота звуковых колебаний, генерируемая волновым гидродинамическим устройством, совпадает с собственной частотой колебаний двухфазной среды вода-воздух в контактной камере.

В результате проведенных исследований установлено, что при волновой обработке двухфазной системы вода-воздух в контактной камере наиболее эффективный режим виброперемешивания происходит при оптимальных объемном соотношении Ж:Г в обрабатываемой воде, равном 18-25:1 и частоте внешнего воздействия 970 - 980 Гц.

Основанный на этом принципе способ очистки воды с помощью волнового гидродинамического устройства приводит к эффективному насыщению воды пузырьками воздуха, который вместо озона эжектируется с заданным расходом непосредственно в рабочую камеру волнового гидродинамического устройства за счет разряжения, возникающего по оси тангенциально закрученного потока жидкости. Расход воздуха, эжектируемого в волновое устройство, регулируется игольчатым вентилем. При этом геометрические размеры волнового гидродинамического устройства рассчитаны таким образом, что частота звуковых колебаний, генерируемая волновым гидродинамическим устройством, совпадает с собственной частотой колебаний двухфазной среды вода-воздух в контактной камере. При этом существенно увеличивается скорость массообменных процессов, повышается дисперсность, происходит интенсивное направленное движение газовых пузырьков, что внешне напоминает бурное "кипение" во всем объеме жидкости. В дальнейшем обработанная вода из контактной камеры поступает в накопительную емкость и пропускается через фильтр.

Предлагаемый способ очистки воды от железа иллюстрируется следующими примерами:

Пример 1

Берут артезианскую воду, содержащую двухвалентное железо в концентрации 1 мг/л. Прокачивают очищаемую воду центробежным насосом в режиме кавитации через волновое гидродинамическое устройство, где она смешивается с воздухом, в контактную камеру. Соотношение подаваемого воздуха к жидкости составляет 1:25. После контактной камеры жидкость фильтруют от образовавшихся соединений трехвалентного железа. После фильтрации воды содержание железа в ней составило менее 0,1 мг/л, что ниже норм СанПиН 2.1.4.1175-02 (<0.3 мг/л).

Пример 2

Берут воду, содержащую двухвалентное железо в концентрации 8 мг/л. Прокачивают очищаемую воду центробежным насосом в режиме кавитации через волновое гидродинамическое устройство, где она смешивается с воздухом в контактную камеру с последующей циркуляцией в замкнутом цикле через центробежный насос, волновое гидродинамическое устройство и контактную камеру. Соотношение подаваемого воздуха к жидкости составляет 1:18. После контактной камеры жидкость фильтруется от образовавшихся соединений трехвалентного железа. После фильтрации воды содержание железа в ней составило менее 0,1 мг/л.

Пример 3

Берут речную воду, содержащую микрофлору, соответствующую индексу коли 2200. Многократного прокачивают очищаемую воду центробежным насосом в режиме кавитации через волновое гидродинамическое устройство без добавления воздуха.

После обработки воды в волновом гидродинамическом устройстве индекс коли снизился до 0.

Как видно из приведенных примеров, предложенный способ очистки воды позволяет снизить содержание остаточного железа ниже норм ПДК без использования химических реагентов, сократить показания индекса коли на 100 процентов, технически упростить процесс за счет отсутствия дополнительного оборудования.

Предложенный способ очистки воды также может быть применен в области водоочистки подземных и поверхностных вод от сложных органических соединений, солей жесткости и сероводорода.

Способ очистки воды, включающий прокачивание очищаемой воды в режиме кавитации через волновое гидродинамическое устройство, в которое подают газовую фазу, подачу потока жидкости из волнового гидродинамического устройства в контактную камеру и последующее фильтрование очищаемой воды от образовавшихся нерастворимых соединений, отличающийся тем, что частота звуковых колебаний, генерируемая волновым гидродинамическим устройством, совпадает с собственной частотой колебаний двухфазной среды в контактной камере, а в качестве газовой фазы используется воздух при объемном соотношении Ж:Г=[18-25]:1.



 

Похожие патенты:

Изобретение может быть использовано для кристаллизационной очистки питьевой воды от примесей, в том числе от тяжелых изотопов дейтерия. Устройство содержит корпус (5) с находящимся внутри него герметичным сосудом изменяющегося объема (10), в верхней части которого расположен фильтр (4) для отделения кристаллов тяжелой воды, выше которого расположено отверстие (3) для выхода легкой воды.

Изобретение относится к области очистки природных вод и может быть использовано для получения питьевой воды. Способ очистки природных вод включает окисление, нейтрализацию и двухстадийную фильтрацию.
Изобретение относится к комплексной обработке воды окислителем персульфатом натрия и ионами тяжелых металлов, в частности серебра, меди, цинка, и может быть использовано для обеззараживания оборотной воды бассейнов и доочистки сточных вод предприятий.

Изобретение относится к очистке воды, в частности к комплексной очистке воды. Исходную воду предварительно пропускают через модуль центробежных фильтров 3 с электромагнитными элементами, после чего подают в накопительную емкость 4 с одновременной подачей в воду хлоросодержащего препарата, полученного в электролизере 15 электролизом поваренной соли, далее воду подают на батарею половолоконных ультрафильтров 8, после чего осуществляют окончательную обработку воды на фотокаталитической колонке 11 на основе нанокристаллического диоксида титана и ультрафиолетовым излучением в бактерицидном модуле 16.
Изобретение относится к прикладной электрохимии и может быть использовано в медицине, а также в косметологии для стерилизации и обеззараживания. Способ активации воды заключается в ее электролизе между двумя электродами - анодом и катодом, разделенными между собой пористой диафрагмой, между которыми подано напряжение.

Изобретение относится к химической промышленности, энергетике и может быть использовано для очистки промышленных и бытовых стоков. Аппарат вихревого слоя содержит сменный картридж (2) из немагнитного материала со вставками из ферромагнитного материала, установленный в активной зоне трубы (4).

Изобретение может быть использовано для подготовки воды в котельных установках и теплообменных аппаратах с целью устранения накипеобразования и разрушения образовавшейся ранее накипи.

Изобретение относится к промышленной очистке и обеззараживанию воды и может быть использовано в области хозяйственно-бытового водоснабжения для удаления примесей из природных, преимущественно подземных, вод.
Изобретение относится к композиции, предназначенной для получения катионообменного волокнистого материала, используемого в процессах водоподготовки и при очистке промышленных сточных вод.

Изобретение относится к адсорбционной очистке сточных вод. Предложен способ уменьшения концентрации бария в воде.

Изобретение может быть использовано для очистки поверхностных сточных вод и нефтезагрязненных производственных стоков. Для осуществления способа очищаемую воду предварительно обрабатывают флокулянтом с гидрофобизирующими свойствами. Затем вода последовательно проходит стадии осаждения песка и крупных частиц, тонкой механической очистки от взвешенных веществ, сорбции свободных и эмульгированных нефтепродуктов, дополнительной сорбции растворимых нефтепродуктов на сорбенте с прикрепленной микрофлорой. Предварительное введение флокулянта с гидрофобизирующими свойствами снижает нагрузку на сорбент, что позволяет уменьшить его объем. Проведение стадии тонкой механической очистки проводят в слое загрузки, составляющем 25-35% от общей высоты загрузки, выполненном из цилиндрических колец диаметром 10-40 мм с соотношением длины к диаметру (1-2):1, засыпанных в навал. Дополнительная сорбция растворимых нефтепродуктов проводится на сорбенте с прикрепленной микрофлорой с подачей кислорода воздуха. Доза флокулянта с гидрофобизирующими свойствами составляет 0,5-2,5 мг на 1 л обрабатываемых сточных вод. Подачу кислорода воздуха осуществляют с расходом 1-5 объемов воздуха на 1 объем сорбента. Способ обеспечивает удаление взвешенных частиц в уплотненный осадок меньшего объема за счет снижения его влажности. Подача воздуха способствует более эффективной регенерации сорбента с прикрепленной микрофлорой, что позволяет продлить срок его службы. 1 н. и 2 з.п. ф-лы, 1 ил., 5 табл., 4 пр.

Изобретение относится к способам извлечения тяжелых металлов и может быть использовано для выделения, например, ионов меди, цинка, кобальта или никеля из водных растворов. Способ предусматривает извлечение ионов тяжелых металлов из водных растворов экстракцией. В качестве экстрагента используют 0,1% водный раствор гуминовых кислот, выделенных из термически обработанного растительного опада, а в качестве разбавителя - изоамиловый спирт. Процесс ведут при значениях рН=7-9 с последующей реэкстракцией органической фазы 2М соляной кислотой и определением содержания ионов металла в водной фазе комплексонометрически. Технический результат - упрощение процесса, возможность использования доступного экстрагента, полученного из растительных отходов, а также повышение степени извлечения ионов тяжелых металлов из растворов, возможность возвращения ионов тяжелых металлов обратно в водный раствор. 1 ил.

Изобретение может быть использовано для очистки водопроводной воды в бытовых условиях от вредных примесей, в том числе от тяжелых изотопов дейтерия. Устройство содержит корпус (1) с находящейся внутри него герметичной емкостью изменяющегося объема (14), состоящую из верхнего цилиндра меньшего диаметра (5), нижнего цилиндра большего диаметра (10) и находящейся между ними гибкой оболочки (9). Верхняя часть цилиндра меньшего диаметра (5) содержит полость (4) и фильтр (2), выше которого расположено отверстие для выхода легкой воды (3). Объем полости (4) связан центральным каналом (7) с объемом гибкой оболочки (9) и каналами (8) - с объемом цилиндра большего диаметра (10), в котором расположены направляющие (11), жестко связанные с нижней частью цилиндра большего диаметра (10). Предложенное бытовое устройство обеспечивает простое и надежное получение водопроводной воды, очищенной от тяжелых изотопов дейтерия. 1 ил.

Изобретение относится к очистке сточных вод, содержащих ионы тяжелых металлов и органические вещества, и может быть использовано в промышленности для получения воды для технических нужд. Способ очистки гальваностоков от ионов тяжелых металлов включает смешение гальваностоков, содержащих ионы тяжелых металлов, с реагентом-осадителем, содержащим жирные кислоты. В качестве реагента-осадителя используют сточные воды рыбоперерабатывающих и мясоперерабатывающих пищевых производств с содержанием жира 200-700 мг/л, предварительно доведенные до pH 9,0 кальцинированной содой. Смесь отстаивают для коагуляции до полного осаждения при комнатной температуре и отделяют осадок. Изобретение позволяет упростить и повысить эффективность способа очистки гальваностоков от ионов тяжелых металлов и одновременно утилизировать жиросодержащие промышленные стоки пищевых производств. 1 з. п. ф-лы, 2 табл.

Изобретение относится к очистке природных и сточных вод от механических примесей, и может быть использовано в системах очистки сточных вод в системе жилищно-коммунального хозяйства, а также в системах очистки природных питьевых вод городов и поселений. Устройство содержит трубопроводы, насосы и отстойник в виде прямоугольного короба, разделенный на секции вертикальными перегородками. Короб разделен не менее чем на четыре изолированные секции, соединенные между собой последовательно трубопроводами с насосами. Во второй, третьей и четвертой секциях на верхней стенке короба дополнительно закреплены вертикальные перегородки с нижним переливом. В каждой секции установлен вертикально фильтрующий элемент в виде цилиндрического перфорированного стакана со сквозными отверстиями с возможностью перемещения при помощи эксцентрикового механизма, на верхней части фильтрующего элемента жестко закреплена цилиндрическая крышка с центральным отверстием. На противоположных вертикальных перегородках каждой секции под крышкой жестко закреплены опорные элементы с установленными на них пружинами сжатия, контактирующими с крышкой. Фильтрующий элемент каждой секции соединен через трубопровод и насос с последующей секцией. В первой - третьей секциях фильтрующий элемент выполнен в виде цилиндрического перфорированного стакана со сквозными отверстиями, на боковой поверхности стакана первой, второй и третьей секций отверстия расположены по спирали, на боковой поверхности стаканов второй и третьей секций между отверстиями на поверхности навита проволока, на боковой поверхности стакана третьей секции между отверстиями жестко закреплены валики-выступы, а фильтрующий элемент четвертой секции выполнен из пластин, закрепленных по диаметру на верхней крышке и образующих щелевидные зазоры с навитой по спирали поверх зазоров проволокой. 1 з.п. ф-лы, 1 ил.

Заявляемое изобретение относится к химии высокомолекулярных соединений, нанотехнологий и фотохимии и касается разработки фотополимеризующейся композиции для получения полимерного материала, обладающего трехмерной нанопористой структурой с гидрофобной поверхностью пор, одностадийного способа его получения и пористого полимерного материала с селективными сорбирующими свойствами и одностадийного формирования на его основе водоотделяющих фильтрующих элементов с заданной геометрией и требуемой механической прочностью, применяемых в устройствах для очистки органических жидкостей, преимущественно углеводородных топлив, масел, нефтепродуктов, от эмульгированной воды и механических примесей. Фотополимеризующаяся композиция содержит олигоэфиракрилат, светочувствительный компонент, в качестве которого используют 1,1,7-триметилбицикло[2.2.1]гептан-2,3-дион (камфорхинон) или орто-хинон или их смесь, восстанавливающий агент, например, амин, функционализирующий мономер винилового ряда, отверждающийся по радикальному механизму, менее реакционноспособный по сравнению с олигоэфиракрилатом и образующий гидрофобный полимер, и неполимеризационноспособный компонент, растворяющий мономеры композиции и ограниченно совместимый с конечным полимером. На основе композиции разработан способ одностадийного получения полимерного нанопористого материала с функционализированной поверхностью пор, а также способы одностадийного получения изделий - водоотделяющих фильтрующих элементов с заданной геометрией и повышенной механической прочностью. Технический результат - получен нанопористый полимерный материал, селективные сорбирующие свойства которого подтверждены экспериментально. Одностадийным способом фотополимеризации впервые получены нанопористые полимерные водоотделяющие фильтрующие элементы с заданной геометрией и повышенной механической прочностью. Селективно-сорбирующие свойства фильтрующих элементов экспериментально доказаны на примере очистки бензола от воды. 8 н. и 7 з.п. ф-лы, 1 табл., 8 ил., 6 пр.
Изобретение относится к биохимии. Предложен способ очистки воды и мерзлотной почвы от нефти и нефтепродуктов. Способ включает использование бактериальной суспензии на основе клеток непатогенного штамма бактерий Pseudomonas panipatensis ВКПМ В-10953 с титром 1·109 микробных клеток/см3. Изобретение обеспечивает высокую степень очистки почв и воды от нефти и нефтепродуктов в широком диапазоне температур (от +8°С до +30°С). 3 табл., 4 пр.

Изобретение относится к области переработки отходов, в частности к системам фильтрации жидких отходов, установленным на транспортных средствах. Транспортное средство имеет средство извлечения 2 для извлечения жидких отходов, находящихся в контейнере 9 для жидких отходов в качестве обрабатываемого раствора. Устройство оснащено системой фильтрации 1 для фильтровальной обработки извлеченного обрабатываемого раствора. Концентрированный раствор, выпускаемый из микрофильтрационного аппарата системы фильтрации 1, попадает в аппарат 10 карбонизационной обработки для карбонизации. Система фильтрации 1 и аппарат 10 карбонизационной обработки приводятся в действие средством подачи электропитания 4. Обработанная жидкость с помощью средства подачи 3 для подачи жидкости, обработанной в системе фильтрации 1, передается в тот же или другой контейнер завода или другого подобного объекта. Средство управления 5 управляет работой системы фильтрации 1 и аппаратом 10 карбонизационной обработки. Устройство дополнительно оснащено приводным устройством для транспортного средства, включающим двигатель и приводной механизм. Обеспечивается минимизация выбросов загрязняющих веществ заводом, повышение эффективности очистки жидких отходов, 2 з.п., 3 ил.
Изобретение может быть использовано в металлургии благородных металлов, в том числе при обезвреживании сбросных цианистых растворов, образующихся при извлечении золота из коренных руд. Способ включает добавление к сбросным цианистым растворам соединений железа (2+) и обработку электроимпульсами высокого напряжения с удельным расходом энергии не более 100 кДж/моль. В качестве соединений железа (2+) используют пирит в количестве 10-100 кг на 1 т раствора. Полученную смесь обезвреженного раствора и пирита после электроимпульсной обработки подают на флотацию золотосодержащей сульфидной руды. Предлагаемый способ позволяет снизить расход электроэнергии на обезвреживание цианистых растворов и сократить потери золота со сбросом. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к фильтрующим устройствам для очистки жидкости и может найти применение в бытовых условиях для доочистки водопроводной воды и других жидкостей бытового назначения. Устройство фильтрационное состоит из двух рабочих зон, по меньшей мере одного средства фиксации, по меньшей мере одного регулирующего элемента. Верхняя рабочая зона выполнена с возможностью регулирования значения жесткости фильтруемой жидкости на протяжении всего ресурса в виде контейнера с внутренним пространством, заполненным фильтрующим материалом, выполненным с двумя группами распределителей потоков фильтруемой жидкости. Регулирующий элемент представляет собой канал, расположенный в верхней рабочей зоне, и взаимосвязанный с ним в процессе фильтрации жидкости клапан средства фиксации. Технический результат: обеспечение равномерного умягчения фильтруемой жидкости на протяжении всего ресурса работы устройства с одновременным сохранением фильтрующей способности. 14 з.п. ф-лы, 10 ил.
Наверх