Способ определения прочности сцепления покрытия с основой


 


Владельцы патента RU 2528575:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет (RU)

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой. Технический результат достигается тем, что на основу наносят покрытие в виде «сидячей» капли, прикладывают к нему усилие и по величине разрушающей нагрузки определяют адгезионную прочность сцепления как отношение разрушающей нагрузки к площади отрыва покрытия, при этом на локальном участке покрытия формируют «сидячую» каплю из припоя с впаянной в нее гибкой тягой, а усилие на отрыв или на срез прикладывают к гибкой тяге, после отрыва «сидячей» капли с покрытием от основы оценивают площадь отрыва покрытия. Технический результат изобретения заключается в повышении достоверности оценки адгезионной прочности сцепления покрытия с основой, а также в расширении возможности способа.

 

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой.

Известен аналогичный способ [1], в котором прочность сцепления покрытия с подложкой определяют отрывом от покрытия штифта, который вставлен в коническое отверстие матрицы заподлицо с рабочей поверхностью матрицы. При этом реализуется схема испытаний на «чистый отрыв» без заметного наличия изгибающих и срезающих составляющих в фиксируемом усилии отрыва.

Недостатком данного аналога является низкая достоверность получаемых результатов из-за высокой вероятности разрушения покрытия по периметру штифта, а также вследствие наличия трения покоя между штифтом и матрицей. Кроме того, данный способ ограничен оценкой прочности сцепления покрытия с основой только на «отрыв» и только на специальных образцах.

В качестве прототипа выбран способ [2], в котором на подложке формируют покрытие, прикладывают к нему сдвигающее усилие и по величине разрушающей нагрузки определяют адгезионную прочность соединения, причем с целью повышения достоверности определения адгезионной прочности соединений спаянных, склеенных или обожженных материалов, формирование покрытия осуществляют методом "сидячей" капли, сдвигающее усилие создают с помощью пластины с отверстием, в котором располагают каплю, диаметр которого выбирают в 5-10 раз больше исходного диаметра капли, а величину Т сдвигающего усилия выбирают из условия T/F≅150 МПа, где F - площадь контакта капли с подложкой.

Недостатком данного аналога является низкая достоверность получаемых результатов из-за наличия неоднородности поля сдвигающих напряжений в стыке покрытия с подложкой вследствие точечного приложения сдвигающих усилий. Кроме того, данный способ ограничен оценкой прочности сцепления покрытия с основой только на «срез» и только на специальных образцах.

Технический результат изобретения заключается в повышении достоверности оценки адгезионной прочности сцепления покрытия с основой, а также в расширении возможности способа.

Технический результат достигается тем, что на основу наносят покрытие в виде «сидячей» капли, прикладывают к нему усилие и по величине разрушающей нагрузки определяют адгезионную прочность сцепления как отношение разрушающей нагрузки к площади отрыва покрытия, при этом на локальном участке покрытия формируют «сидячую» каплю из припоя с впаянной в нее гибкой тягой, а усилие на отрыв или на срез прикладывают к гибкой тяге, после отрыва «сидячей» капли с покрытием от основы оценивают площадь отрыва покрытия.

Способ реализуется по следующим этапам.

- На выбранном участке поверхности детали (или образца) ножом наносят риски в виде «решетки» с размером ячейки 1…3 мм. Данные надрезы используются в качестве концентраторов для формирования отрываемого участка покрытия. Это позволяет упростить оценку площади отрыва покрытия путем подсчета оторванных ячеек.

- Облуживают поверхность полученной решетки припоем. Облуживание выполняют путем размещения на поверхности покрытия, смазанной жидким флюсом, кусочка припоя и его разогрева в пламени газовой горелки, что исключает механическое воздействие на покрытие. Если поверхность покрытия не облуживается, то на покрытие наносят тонкий слой материала, имеющего способность к облуживанию (медь, олово, серебро и др.). Чем больше ожидаемая прочность сцепления покрытия с основой, тем тверже выбирают марку припоя.

- Берут гибкую тягу и облуживают один конец припоем той же марки, что и в предыдущем пункте. В качестве гибкой тяги может быть использован стальной трос диаметром 1…2 мм или металлическая цепь с размером звена 1…2 мм.

- Подводят облуженный конец гибкой тяги к облуженному участку покрытия и, разогревая место контакта газовой горелкой, припаивают гибкую тягу к покрытию. При этом в зоне спая формируется «сидячая» капля, в которую впаяна гибкая тяга. Если требуется оценка прочности сцепления покрытия с основой на отрыв, то гибкую тягу припаивают нормально к поверхности покрытия. Если требуется оценка прочности сцепления покрытия с основой на срез, то гибкую тягу располагают касательно к поверхности покрытия.

- Прикладывают монотонно возрастающую нагрузку к свободному концу гибкой тяги вдоль его оси, т.е. нормально к поверхности покрытия при оценке прочности сцепления покрытия на «отрыв» и касательно к поверхности покрытия при оценке прочности сцепления покрытия на «срез». Нагружение выполняют до отрыва покрытия и фиксируют нагрузку отрыва.

- Определяют площадь отрыва методом планиметрирования или путем подсчета оторванных от основы ячеек, сформированных надрезами, сформированными в первом пункте.

- Рассчитывают прочность сцепления покрытия с основой, как отношение разрушающей нагрузки к площади отрыва покрытия.

Пример. Определяли прочность сцепления серебряного покрытия с медной основой на отрыв. Нанесли на плоском участке поверхности с покрытием надрезы в виде «решетки» с размером ячейки 1 мм, сформированной тремя продольными и тремя поперечными надрезами.

Нанесли на поверхность решетки флюс ЛТИ-120 и облудили ее припоем ПОС-61. Один из концов стального троса диаметром 1 мм облудили тем же припоем. Подвели облуженный конец троса нормально к поверхности и припаяли его к покрытию в пламени газовой горелки. Начали нагружать свободный конец троса, создавая отрывающее усилие в месте пайки. При достижении нагрузкой величины 70 Н произошел отрыв троса с покрытием от основы. При этом произошел отрыв 1 ячейки площадью 1 мм2. Расчетное значение прочности сцепления серебряного покрытия с основой составило 70 МПа.

Используемая литература

1. А.с. №1809370. Образец для определения прочности сцепления покрытия с подложкой / Тимашев С.А., Фоминых В.В., Фоминых Е.В., Филимонов Б.В.. Опубл. 15.04.1993 г.

2. Патент РФ №2019817. Способ определения адгезионной прочности / Борисенко А.А. Опубл. 15.09.1994 г.

Способ определения прочности сцепления покрытия с основой, заключающийся в том, что на основу наносят покрытие в виде «сидячей» капли, прикладывают к нему усилие и по величине разрушающей нагрузки определяют адгезионную прочность сцепления как отношение разрушающей нагрузки к площади отрыва покрытия, отличающийся тем, что на локальном участке покрытия формируют «сидячую» каплю из припоя с впаянной в нее гибкой тягой, а усилие на отрыв или на срез прикладывают к гибкой тяге, после отрыва «сидячей» капли с покрытием от основы оценивают площадь отрыва покрытия.



 

Похожие патенты:

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой. Технический результат достигается тем, что на основу наносят покрытие, прикладывают к нему усилие и по величине разрушающей нагрузки определяют адгезионную прочность сцепления как отношение разрушающей нагрузки к площади отрыва покрытия, при этом перед нанесением покрытия к поверхности основы прижимают толкатель, после нанесения покрытия снимают усилие прижима толкателя к поверхности основы, не оказывая, при этом, механического воздействия на покрытие, и прикладывают к толкателю усилие на отрыв, одновременно измеряя величину приложенного усилия, а после испытания толкатель меняют на новый.

Способ измерения адгезии льда на сдвиг к другим материалам относится к области исследования адгезионной прочности льда к различным материалам и может использоваться при создании антиобледенительных материалов.

Изобретение относится к области проведения испытаний по оценке прочности клеевого соединения материалов в ракетной технике. Предлагаемый способ определения прочности клеевого соединения резиноподобного покрытия с основой из твердого ракетного топлива включает использование двух жестких элементов, обеспечивающих приложение растягивающей нагрузки, один из которых приводят в контакт с покрытием посредством клея, адгезия которого к покрытию заведомо больше адгезии исследуемого клеевого соединения покрытия к основе, а второй подвергают взаимодействию с основой.

Изобретение относится к ракетной технике, а именно к способу определения адгезионной прочности скрепления бронепокрытия с зарядом твердого ракетного топлива. Способ включает изготовление от забронированного натурного заряда или его «спутника» «образца-диска» с центральным отверстием, выполнение по образующей диска путем нарезания фрезой параллельных прорезей рабочих площадок, равномерно распределенных по забронированной поверхности, приклеивание к ним державок для приложения отрывной нагрузки и испытание «образца-диска» на разрывной машине.

Изобретение относится к испытательной технике, а именно к устройствам для определения адгезионной и когезионной прочности сцепления в продольных слоях газотермических покрытий.

Изобретение относится к области ракетной техники, а именно к способу оценки адгезионной прочности бронепокрытия зарядов ТРТ ракетных двигателей твердого ракетного топлива и других ракетных устройств.

Изобретение относится к способам контроля качества клееных материалов и может быть использовано при контроле качества клеевого соединения неразрушающим методом. .

Изобретение относится к измерительной технике и может использовано для определения уровня адгезионного взаимодействия частиц наполнителя с полимерной матрицей и объемных механических характеристик композиционных материалов при растяжении.

Изобретение относится к испытательной технике, а именно к устройствам для определения прочности сцепления покрытий с основами. .

Изобретение относится к области испытания материалов, а именно к способам определения адгезии пленки к подложке, и предназначено для исследования адгезионных свойств адгезивов для склеивания пленок, в том числе тончайших пленочных материалов и нанопленок.

Изобретение относится к устройствам для измерения показателей фрикционных и адгезионных свойств фильтрационной корки и может найти свое применение в нефтегазовой отрасли. Устройство для измерения показателей фрикционных и адгезионных свойств фильтрационной корки содержит стол-основание, электродвигатель, узел замера тягового усилия, установленные на столе-основании уровень и основание для размещения груза. На основании для размещения груза шарнирно закреплена направляющая плита, с возможностью поворота вокруг своей оси, на боковой поверхности которой выполнен паз, обеспечивающий перемещение размещенного в пазу узла замера тягового усилия. Узел замера тягового усилия соединен с одной стороны при помощи нити со шкивом электродвигателя, расположенным на противоположном конце направляющей плиты, с другой - с металлическим грузом, расположенным на фильтрационной корке, закрепленной фиксаторами на основании для размещения груза. Технический результат − обеспечение измерения показателей как фрикционных, так и адгезионных свойств фильтрационной корки, возможность оценки вклада фрикционных и адгезионных сил в суммарную силу сопротивления движению колонн в скважине. 2 ил.

Изобретение относится к способу и устройству для определения адгезионной прочности теплозащитных покрытий для образцов. Для определения адгезионной прочности теплозащитного покрытия на сдвиг на подложку, выполненную в виде наружных поверхностей двух соосно установленных с поджатием по стыку цилиндров, наносят покрытие в форме кольца, перекрывающего их стык. После отверждения покрытия прикладывают к цилиндрам усилие в противоположных направлениях до разрушения покрытия. Покрытие выполняют в виде металлического подслоя в составе теплозащитного покрытия. Подслой наносят несимметрично по длине относительно стыка цилиндров. После поперечного разрушения подслоя цилиндры повторно устанавливают с поджатием по стыку и на разрушенный подслой дополнительно наносят плазменным способом керамический слой теплозащитного покрытия в форме кольца. После отверждения керамического покрытия нагревают цилиндры в диапазоне температур горячей части газового тракта силовой установки и повторно прикладывают осевое усилие в противоположных направлениях до сдвига керамического слоя с подслоя одного из цилиндров и устанавливают фактическое усилие сдвига. Технический результат - уменьшение трудоемкости, повышение точности определения адгезионной прочности теплозащитного покрытия и обеспечение возможности испытания покрытия на образцах в условиях, идентичных работе деталей в горячих частях газовых трактов силовых установок. 2 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытий с подложкой. Способ определения прочности сцепления покрытия с кремниевой подложкой заключается в том, что покрытие с внешним серебряным слоем соединяют с деталями оснастки разрывной машины и разрывают покрытие. На покрытие с внешним серебряным слоем дополнительно наносят слой меди с последующей термообработкой в вакууме при температуре +200-+280°C с выдержкой 30-60 минут. Слой меди склеивают с деталями оснастки разрывной машины. Слой меди наносят гальваническим методом или методом высокотемпературного испарения в вакууме. Слой меди наносят толщиной 1-2 мкм. Слой меди склеивают с деталями оснастки разрывной машины клеем на основе эпоксидной смолы. Технический результат - повышение точности определения прочности сцепления покрытия с кремниевой подложкой путем снижения вероятности разрушения адгезионного слоя, расположенного между серебряным покрытием и клеем, при определении прочности сцепления покрытия с кремниевой подложкой при испытании на разрывной машине. 4 з.п. ф-лы, 1 табл.

Изобретение относится к конструкции прибора, предназначенного для количественного определения липкости препрега, представляющего собой композиционный материал, полученный путем пропитки армирующей волокнистой основы равномерно распределенными полимерными связующими. Прибор содержит платформу, на которой размещается испытуемый образец препрега, цилиндрический ролик, установленный с возможностью качения по образцу препрега вдоль платформы, и индикатор, фиксирующий пробег ролика вдоль платформы, в контакте с образцом, до момента его остановки, а также стартовую площадку, которая примыкает к платформе со стороны исходного положения ролика до запуска его на платформу и выполнена регулируемой по углу ее наклона по отношению к платформе, и управляемый ограничительный упор, обеспечивающий неподвижное положение ролика на стартовой площадке, при этом в платформе имеется герметизированная емкость, заполняемая жидким теплоносителем и служащая для обогрева образца препрега до заданной температуры по всей его площади. Достигается повышение точности и надежности измерений, а также упрощение конструкции и эксплуатации. 2 з.п. ф-лы, 4 ил.

Изобретение относится в способам оценки прочности сцепления металлических покрытий с основой из металлов и сплавов и может быть использовано в различных отраслях машиностроения, где применяются газотермический и газодинамический методы нанесения покрытий для придания поверхности повышенных физико-механических характеристик. Способ оценки адгезионной прочности порошковых металлических покрытий со стальной поверхностью заключается в нанесении покрытия на металлическую подложку и отрыве покрытия от подложки, определения максимальной нагрузки, необходимой для отрыва слоя покрытия, и по ее величине вычисления значения адгезии. Причем в качестве подложки используют цилиндрический образец, на образующую поверхность которого наносят покрытие в виде кольцевого пояска. Затем производят механическую обработку торцов покрытия на образце до получения опорных площадок с последующей обработкой одного из торцов покрытия путем снятием внутренней фаски размером 0,5×45°. Далее устанавливают образец в матрицу с цилиндрическим отверстием, так, чтобы обработанный торец покрытия с фаской был обращен в сторону отверстия в матрице. При этом отрыв покрытия от подложки осуществляют путем продавливания цилиндрического образца сквозь цилиндрическое отверстие в матрице. Техническим результатом является упрощение оценки прочности сцепления наносимых металлических покрытий с основой и тем самым повышение надежности и ресурса машиностроительной продукции. 1 ил., 3 табл.

Изобретение относится к процессам обработки металлов давлением и определения адгезионной составляющей силы трения. Способ определения оценки эффективности смазочных материалов с учетом величины силы выталкивания заготовки из полости матрицы заключается в измерении сил выдавливания и выталкивания образца с нанесенным на него эталонным и исследуемым смазочным материалом. И расчетным путем определяется эффективность смазочного материала. Техническим результатом является оценка экранирующей способности смазочных материалов. 4 ил., 1 табл.

Изобретение относится к области испытания материалов. Отличительной особенностью заявленного способа определения адгезии пленки является то, что наблюдают за образованием купола в ходе процесса подачи равномерного внутреннего давления, форму основания (контура отрыва) купола принимают как эллиптическую с учетом анизотропных особенностей адгезива и анизотропии материала пленки, проводят измерение текущей высоты подъема купола и текущих размеров большой и малой полуосей основания купола, определяют механическое напряжение отрыва по формуле, по вычисленным значениям механического напряжения отрыва судят об адгезионных свойствах пленки к подложке. Техническим результатом является повышение точности определения параметров адгезии. 1 з.п. ф-лы, 4 ил., 2 табл., 1 пр.

Изобретение относится к области ракетной и измерительной техники и может быть использовано при выходном контроле на предприятии-изготовителе корпуса ракетного двигателя и входном контроле на предприятии-изготовителе твердотопливного заряда. Сущность: осуществляют зондирование контролируемой зоны сигналами ультразвуковых колебаний, регистрацию прошедших через указанную зону ультразвуковых колебаний, по параметрам которых судят о качестве адгезионного соединения в контролируемой зоне. При этом предварительно последовательно в каждую из зон манжетного раскрепления, смещенных относительно друг друга на 45-60°, вводят силовой элемент, посредством которого осуществляют перемещение каждой зоны раскрепляющей манжеты, примыкающей к вершине замка манжетного раскрепления, путем приложения нагрузки, обеспечивающей моделирование силового воздействия заряда на контролируемую зону. Технический результат: обеспечение достоверного определения состояния контролируемой зоны. 5 ил.

Изобретение относится к области исследования материалов, а именно к устройствам для испытания смазок/масел жидких или полужидких составов. Знание адгезионных характеристик и качеств таких видов смазочных сред является весьма важным для различных двигателей, систем смазывания механического оборудования, космических систем и ответственных подвижных узлов специальной техники, работающих в условиях сильно изменяющихся температур как положительных, так и отрицательных. Устройство контроля адгезии жидких смазочных материалов содержит привод вращения образца с тестируемой смазкой, типовые приборы контроля температуры, скорости вращения вала мотора и весы. Причем с целью контроля адгезионных свойств легко текучих смазочных материалов не только в обычных условиях температур, но и при более высоких или низких, в качестве тестируемого образца содержит горизонтально расположенную тарелку, в которой находится контролируемый смазочный материал (масло/смазка). При этом тарелка по своему наружному краю имеет кольцевой буртик высотой не более двух миллиметров, поверхность которого полого наклонена к дну тарелки в сторону центра. Техническим результатом является создание устройства/прибора для контроля адгезионных свойств легкотекучих смазочных материалов не только в обычных условиях температур, но и при более высоких или низких. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий, находящихся в условиях циклического нагружения, связанных, прежде всего, с эрозионной стойкостью поверхности. Сущность: осуществляют воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценивают результаты воздействия. Воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны. Технический результат: расширение возможностей контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий на образцах. 5 ил.
Наверх