Способ повышения гамма-процентного ресурса изделия

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Способ состоит в том, что выполняют контроль изделия (или группы однотипных изделий) имеющимися (штатными) средствами неразрушающего контроля. Определяют по выявленным несплошностям фактический гамма-процентный ресурс изделия на конец эксплуатации. Сравнивают фактический ресурс с требуемыми значениями гамма-процентного ресурса. Определяют требования к достоверности метода неразрушающего контроля для достижения требуемого значения гамма-процентного ресурса. Подбирают метод неразрушающего контроля с требуемыми характеристиками достоверности. Выполняют контроль изделия новыми подобранными средствами неразрушающего контроля. Выполняют ремонт всех выявленных дефектов (трещин, непроваров, неоднородностей и других дефектов) материала изделия по результатам двух контролей. Достигается гарантированное обеспечение требуемого уровня надежности. 1 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к способам испытаний, в частности для оценки и повышения показателей долговечности изделия, точнее - гамма-процентного ресурса изделия. Изобретение может применяться в транспорте, атомной и традиционной энергетике, авиации, судостроении, нефтехимии, нефте-, газо- и продуктопроводах, сельскохозяйственных машинах и других областях техники и машиностроения.

Уровень техники

Из уровня техники известно большое число способов определения гамма-процентного ресурса. Гамма-процентный ресурс - это ресурс, в течение которого изделие не достигнет предельного состояния с вероятностью γ, выраженной в процентах (ГОСТ 53480-2009 Надежность в технике. Термины и определения).

Существующие методы оценки гамма-процентного ресурса изделия основаны на формально-математических подходах, в которых не учитываются реальные оставшиеся в изделии дефекты. Например, в рамках существующих теорий надежности фактический уровень гамма-процентного ресурса изделия определяют по результатам математической обработки так называемого потока отказов однотипных изделий, находящихся в эксплуатации (Острейковский В.А. «Эксплуатация атомных станций», Москва, Энергоатомиздат, 1999 г., раздел 3.5: «Методы анализа несплошностей оборудования АЭС»). Недостаток таких подходов состоит в том, что находящиеся в эксплуатации изделия должны повредиться или разрушиться, прежде чем можно будет оценить их фактический уровень надежности и безопасность. По результатам эксплуатации определяют слабые места (места разрушения) элемента конструкции и разрабатывают технологии повышения ресурсоспособности этих мест (что не всегда и не сразу дает желаемый результат).

В качестве прототипа выбран способ определения качестве изделий, раскрытый в патенте RU 2243586 C1 (опубликован 27.12.2004). Данный способ позволяет определять остаточную дефектность. Однако данный способ не позволяет определять параметры надежности изделия, в частности гамма-процентный ресурс, и их изменение в ходе эксплуатации изделия. В результате данный способ не позволяет обосновывать применение тех или иных методов доработки изделия и повышать тем самым показатели надежности изделия.

Раскрытие изобретения

Задача, которую решает данное изобретение, состоит в повышении эксплуатационных качеств изделий за счет обоснованного применения методов неразрушающего контроля.

Технический результат, на достижение которого направлено данное изобретение, заключается в том, что оно позволяет подобрать технологию (методы и средства) неразрушающего контроля, которая гарантировано обеспечит требуемый уровень гамма-процентного ресурса изделия в ходе эксплуатации. Дополнительными техническими результатами являются упрощение испытаний и повышение достоверности.

Способ повышения гамма-процентного ресурса изделия до заданного уровня состоит в том, что:

- выполняют контроль имеющимися (штатными) средствами неразрушающего контроля изделия (или группы однотипных изделий);

- определяют по выявленным несплошностям его фактический гамма-процентный ресурс на конец эксплуатации,

- сравнивают фактический ресурс с требуемыми значениями гамма-процентного ресурса,

- определяют требования к достоверности неразрушающего контроля для достижения требуемого значения гамма-процентного ресурса,

- подбирают средства неразрушающего контроля с требуемыми характеристиками достоверности контроля,

- выполняют контроль изделия новыми средствами неразрушающего контроля,

- выполняют ремонт всех выявленных дефектов (трещин, непроваров, неоднородностей и других дефектов) материала изделия по результатам двух контролей.

Краткое описание чертежей

На ФИГ.1 представлены кривые остаточной дефектности в координатах (логарифм вероятности Рα существования в изделии дефекта глубиной α - размер дефекта а) до начала эксплуатации и в конце эксплуатации при разных технологиях (методы и средства) неразрушающего контроля.

На ФИГ.2 изображена схематизация дефекта в трубопроводе эллипсом с полуосями a и с.

На ФИГ.3 показана совокупность дефектов критических и допустимых размеров.

На ФИГ.4 показана гистограмма выявленных в изделии дефектов, кривые исходной и остаточной дефектности.

На ФИГ.5 показан график зависимости вероятности обнаружения дефектов Рвод от линейного размера дефекта a.

Осуществление изобретения

Предельные состояния изделий (механических изделий), как правило, связаны с дефектами металла (или другого конструкционного материала), из которого изготовлено изделие. В соответствии с существующими правилами и нормами в технике устанавливаются допустимые размеры несплошностей, превышение которых запрещено. Такие несплошности называются дефектами. Дефекты, в случае их обнаружения методами неразрушающего контроля, устраняются ремонтом. В процессе эксплуатации несплошности и дефекты материала изделия могут развиваться и увеличиваться в размере, приводя к окончательной поломке или разрушению изделия. Для своевременного выявления опасных несплошностей применяют неразрушающий контроль.

Считается, что после проведения неразрушающего контроля и ремонта по его результатам всех выявленных дефектов в изделии отсутствуют дефекты. При этом считается, что надежность и безопасность изделия в эксплуатации обеспечена (см., например, нормативные документы в области атомной энергетики: «Правила устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок» ПНАЭГ-7-008-89, «Оборудование и трубопроводы атомных энергетических установок. Сварные соединения и наплавки. Правила контроля» ПНАЭГ-7-010-89, Госатомнадзор России, Энергоатомиздат, 1991 г.).

На самом деле в настоящее время в технике практически отсутствуют методы и средства неразрушающего контроля, гарантированно, со 100%-ной достоверностью выявляющие все дефекты. Поэтому всегда имеется определенная вероятность пропуска дефекта, в том числе и дефекта, представляющего опасность (то есть развитие которого во время эксплуатации приведет к повреждению изделия или его разрушению). Известно (например, Аркадов Г.В., Гетман А.Ф., Родионов А.Н. Надежность оборудования и трубопроводов АЭС и оптимизация их жизненного цикла, М., Энергоатомиздат, 2010.; Гурвич А.К. «Надежность дефектоскопического контроля как надежность комплекса «Дефектоскоп-оператор-среда», Дефектоскопия, 1992 г., №3, с.5-13), что практически во всех случаях неразрушающего контроля имеется существенная вероятность пропуска дефекта больших размеров, существенно превышающих допустимые размеры. На практике оказывается, что практически всегда после неразрушающего контроля и устранения выявленных дефектов в изделии еще остаются дефекты. Именно эти оставшиеся дефекты в конечном итоге и определяют надежность и долговечность изделия.

Повышение гамма-процентного ресурса изделия настоящим изобретением предлагается осуществлять с использованием неразрушающего контроля (например, ультразвукового, вихретокового, радиографического и других методов) изделия или группы изделий (деталей, элементов конструкций и т.п.) и ремонта изделия по результатам контроля.

Схема осуществления способа выглядит следующим образом:

- выполняют контроль изделия (или группы однотипных изделий) имеющимися (штатными) средствами неразрушающего контроля;

- определяют по выявленным несплошностям фактический гамма-процентный ресурс изделия на конец эксплуатации;

- сравнивают фактический ресурс с требуемым значением гамма-процентного ресурса;

- определяют требования к достоверности метода неразрушающего контроля для достижения требуемого значения гамма-процентного ресурса;

- подбирают метод неразрушающего контроля с требуемыми характеристиками достоверности;

- выполняют контроль изделия новыми подобранными средствами неразрушающего контроля;

- выполняют ремонт всех выявленных дефектов (трещин, непроваров, неоднородностей и других дефектов) материала изделия по результатам двух контролей.

Определение гамма-процентного ресурса осуществляют следующим образом: определяют дефектность изделия путем неразрушающего контроля, определяют вероятность выявления дефектов путем неразрушающего контроля и определяют вероятностную кривую остаточной дефектности изделия.

Для конкретного изделия или группы m однотипных изделий определяют критические размеры χкр дефектов в режиме эксплуатации и допустимые в эксплуатации размеры [χ]д.э. дефектов, результаты контроля представляют в виде гистограммы в координатах (Nобн, χ), Nобн - число обнаруженных при контроле дефектов, χ - характеристический размер дефекта. При контроле m однотипных изделий результаты контроля суммируют и представляют в виде одной гистограммы.

Определяют вероятность обнаружения дефектов Рвод, определяют исходную дефектность Nисх=f(χ), определяют остаточную дефектность Nост=φ(χ) как разность Nисх и Nобн.

Остаточную дефектность разделяют на достоверную часть χ≤χд и вероятностную часть χ>χд, где χ - характеристический размер дефекта, χд - размер дефектов на границе между достоверной и вероятностной частями. Полученную вероятностную часть остаточной дефектности принимают за начальную кривую остаточной дефектности, которая сдвигается вправо на графике в координатах (lgPa; χ), где Ра - вероятность существования в изделии дефекта размером χ, за счет развития дефектов в эксплуатации. Величину развития дефекта определяют расчетным путем в зависимости от механизма и условий эксплуатации.

Полученную новую кривую принимают за конечную кривую остаточной дефектности, и по ней определяют значения гамма-процентного ресурса по критериям либо появления недопустимого в эксплуатации дефекта, либо по критерию разрушения, при этом в первом случае используют уравнение:

γt([χ]д.э.)=[1-Ррд.э.)]×100%, а во втором случае уравнение

γtкр)=[1-Ppкр)]×100%.

Способ построения вероятностной кривой остаточной дефектности описан, например, в патенте RU 2243586 C1 (опубликован 27.12.2004).

По кривой остаточной дефектности определяют фактический гамма-процентный ресурс на конец срока эксплуатации изделия (или на любой другой заданный срок эксплуатации tк), для чего определяют с использованием известных методов механики разрушения (например, см. монографию Аркадов Г.В., Гетман А.Ф., Родионов А.Н., 2010 г.) положение кривой остаточной дефектности на конец срока эксплуатации tк и по этой кривой определяют гамма-процентный ресурс по формуле:

γtкр)=[1-Ppкр)]×100%,

где Ppкр) - вероятность существования в изделии дефекта критического размера χкр на конец времени эксплуатации tk, a χ - обобщенная геометрическая характеристика дефекта, которой может быть его площадь, линейный размер a или с, объем дефекта и т.п.

Сравнивают фактический гамма-процентный ресурс γtкр) с требуемыми значениями гамма-процентного ресурса [γtкр)]. В случае если γtкр)≤[γtкр)], то выполняют действия для его повышения до требуемого уровня [γtкр)] следующим образом.

Определяют требования к достоверности неразрушающего контроля Рвод (в области размеров дефектов, близких к критическим размерам), необходимые для достижения требуемого значения гамма-процентного ресурса [γtкр)] по формуле:

Рводкр-Δχt)=1-{Pa норм{(χкр-Δχt), t]}/{Pa исх[(χкр-Δχt), t]}, в которой:

Δχt - подрост дефекта за время эксплуатации tк до критического размера χкр определяется методами механики разрушения в зависимости от условий эксплуатации изделия и механизмов роста дефекта;

P a исх[(χкр-Δχt), t] - вероятность существования дефектов с размерами (χкр-Δχt) на конец срока эксплуатации tk в случае контроля штатными методами неразрушающего контроля;

P a норм[(χкр-Δχt), t] - вероятность существования дефектов с размерами (χкр-Δχt), обеспечивающая на конец срока эксплуатации tk требуемый гамма-процентный ресурс в случае контроля специально подобранными методами неразрушающего контроля. В исходном состоянии (т.е. при t=0) P a норм[(χкр-Δχt), t=0]=1-[γtкр)]/100.

Далее подбирают средства неразрушающего контроля (оборудование и методы) с требуемыми характеристиками достоверности контроля, например, путем изготовления тест-образца со скрытыми дефектами и определения на нем вероятности выявления дефектов с применением различных существующих средств и методов неразрушающего контроля.

После этого выполняют контроль изделия новыми средствами неразрушающего контроля, по итогам повторного контроля выполняют ремонт всех выявленных дефектов (трещин, непроваров, неоднородностей и других дефектов) материала изделия по результатам двух контролей.

Выше описан способ повышения гамма-процентного ресурса по критерию разрушения изделия. Однако этот же способ применяется и для гамма-процентного ресурса по критериям появления недопустимого в эксплуатации дефекта [χ]д.э или появления течи. В этом случае вместо χкр используют [χ]д.э или χ=s, соответственно (где s - толщина стенки сосуда или трубопровода давления).

ФИГ.1 иллюстрирует тот факт, что определенная описанным выше способом кривая остаточной дефектности принимается за исходную (то есть на момент оценки, например, до начала эксплуатации и до ремонта по результатам штатного неразрушающего контроля) остаточную дефектность (кривая 1 на фиг.1). Эта кривая в случае ремонта выявленных штатным методом неразрушающего контроля сместится в положение 2 (кривая 2 на ФИГ.1). Эта кривая за время эксплуатации tк (за счет того, что дефекты подрастут) сдвинется вправо (ФИГ.1, кривая 3). Новую кривую остаточной дефектности принимают за конечную кривую остаточной дефектности в случае ремонта дефектов, выявленных штатным неразрушающим контролем. По этой кривой можно определить вероятность достижения дефектом критического размера a кр, которая на ФИГ.1 равна 10-4. Цифрой 4 на ФИГ.1 обозначена кривая остаточной дефектности, которую надо обеспечить новыми средствами неразрушающего контроля, чтобы гамма-процентный ресурс достиг требуемого (нормативного) значения 99,999% (этому значению соответствует вероятность разрушения на конец срока эксплуатации Рра=0,00001 (точка f на ФИГ.1).

На ФИГ.2 показана схематизация плоских дефектов и их линейные размеры a и с.

Совокупность дефектов критических размеров (кривая 3), допустимых в эксплуатации размеров (кривая 2), а также допустимые размеры несплошностей при изготовлении (кривая 1) изображены на ФИГ.3.

Результаты неразрушающего контроля, представленные в виде гистограммы, и кривые остаточной дефектности и исходной (до неразрушающего контроля) дефектности представлены на ФИГ.4 (кривые 1, 2 и 3 соответственно).

На ФИГ.5 показаны характеристики штатного (кривая 1) и нового (кривая 2) методов неразрушающего контроля.

Изобретение иллюстрируется следующим примером.

Имеется трубопровод внутренним диаметром D=800 мм толщиной стенки S=34 мм из перлитной стали. Критические размеры дефектов в поперечных сварных швах представлены на ФИГ.3 (кривая 3). Допустимые в эксплуатации дефекты определили с использованием уравнений механики разрушения и коэффициентов запаса прочности (кривая 2 на ФИГ.3). Нормы дефектов при изготовлении представлены на ФИГ.3 кривой 1.

По результатам штатного неразрушающего контроля, который характеризуется вероятностью выявления дефектов Рвод в соответствии с кривой 1 на ФИГ.5, определили, что вероятность достижения критического дефекта на конец срока эксплуатации равна 0,0001 (точка d на ФИГ.1), что соответствует γtкр)=(1-0,0001)*100%=99,990% при требуемом (нормативном) значении [γtкр)]=99,9990%.

Необходимо повысить гамма-процентный ресурс на конец проектного или заданного срока эксплуатации трубопровода до величины [γtкр)].

В результате неразрушающего контроля штатным методом и средствами до начала эксплуатации (после изготовления и монтажа) были выявлены несплошности (дефекты), которые представлены в виде гистограммы на ФИГ.4.

При этом в качестве характеристического размера дефекта выбрана ширина дефекта в направлении толщины стенки, а точнее - малая полуось эллипса a, которыми схематизировали все выявленные дефекты.

При соотношении a/с≈0,5 (соотношение, при котором дефекты имеют максимальную скорость и первыми могут достигнуть критических значений во время эксплуатации) критическому размеру дефекта соответствует a кр=28 мм, [a]д.э=11 мм, [a]изг.=1,15 мм (фиг.2).

Несмотря на то что максимальный размер выявленного дефекта составил a макс.=13 мм, ось абсцисс содержит критический размер a=28 мм.

По результатам контроля вероятностные части остаточной дефектности до начала эксплуатации и ремонта выявленных дефектов (кривая 1 на ФИГ.1), после ремонта выявленных штатным методом неразрушающего контроля дефектов до начала эксплуатации (кривая 2 на ФИГ.1) и на конец срока эксплуатации (кривая 3 на ФИГ.1). Определяют соответствующие вероятности разрушения (точки этих кривых для a кр). Способ определения (построения) вероятностных частей остаточной дефектности описан в патенте RU 2243586 C1 (опубликован 27.12.2004).

Во время эксплуатации дефекты будут расти. Механизм роста может быть различным в зависимости от условий эксплуатации. В нашем случае превалирует рост дефектов под действием циклических нагрузок. В этом случае используем уравнение типа:

d a d N = C ( Δ K 1 1 R ) m ,

в котором:

С и m - постоянные, зависящие от материала и условий эксплуатации;

R - коэффициент асимметрии цикла, для цилиндра давления равен 0;

ΔK1 - размах коэффициента интенсивности напряжений.

Коэффициент интенсивности напряжений при неоднородном распределении напряжений в районе трещины определяют по уравнению:

К1=Y*σкр*(a/1000)0,5,

где

Y=(2-0,82(a/c))/[1-(0,89-0,57(a/c)0,5)3(a/c)l,5]3,25,

σ к р = 0,61 σ A + 0,39 σ B + [ 0,11 ( a / c ) 0,28 ( a / s ) ( 1 ( a / c ) 0,5 ) ] ( σ A σ B ) , ( 5 )

σA - напряжение в вершине трещины;

σB - напряжение на поверхности детали в корне трещины.

Для частного случая Y = 1 ,12 π .

Интегрируя приведенное выше выражение, его можно представить в виде:

N = a 0 a k 1 / C ( Δ K 1 1 R ) m d a

Подставляя в выражение предыдущие выражения и решая его относительно конечного размера трещины a к, можно определить подрост трещины Δa N под воздействием N циклов нагружения.

Определяя указанным способом подрост дефектов для верхней, средней и нижней частей начальной кривой остаточной дефектности для числа циклов нагружения на конец проектного срока эксплуатации, получим конечную кривую остаточной дефектности (кривая 3 на ФИГ.1).

При этом начальный дефект размером 25,7 мм за срок эксплуатации дорастет до дефекта критического размера, то есть величина подроста составит Δa N=2,3 мм (точка с переместится в точку d).

По конечной кривой остаточной дефектности (кривая 3 на ФИГ.1) определяем гамма-процентный ресурс трубопровода по критерию разрушения (разрыва) - точка d на кривой 3 ФИГ.1 (гамма-процентный ресурс по критерию обнаружения недопустимого дефекта здесь не рассмотрен, однако действия в этом случае аналогичные)

γt([χ]д.э.)=1-Рр(a д.э.) и γtкр)=1-Рр(a кр),

или, для представления вероятностей в процентах, величины γt необходимо умножить на 100%. Проводя указанные вычисления, окончательно получаем:

гамма-процентный ресурс на конец проектного срока эксплуатации по критерию разрушения трубопровода

γtкр)=1-Рр(a кр)×100%=1-(1*Е-4)×100%=99,990%,

что ниже требуемого (нормативного) значения [γtкр)]=99,9990%.

Для обеспечения требуемого значения гамма-процентного ресурса необходимо снизить остаточную дефектность до положения кривой 4 на ФИГ.1, на которой точка е соответствует величине a=25,7 мм и вероятности Ра-10-5. За время эксплуатации tk точка е переместится в точку f за счет подроста во время эксплуатации до величины критического размера 28 мм. Это означает, что разрушение произойдет с вероятностью 10-5.

Снизить остаточную дефектность до положения кривой 4 на ФИГ.1 можно, если провести контроль изделия методами и средствами неразрушающего контроля, которые обеспечивают вероятность выявления дефектов в районе a=25,7 мм на уровне:

Рводкр-Δχt)=1-{Pa норм{(χкр-Δχt), t=0]}/[Pa исх[(χкр-Δχt), t=tk]}=

=1-(0,00001/0,0002)=(1-1/20)=1-0,05=0,95,

то есть вероятность Pa норм[(χкр-Δχt), t=0] соответствует точке е на ФИГ.1, а вероятность Pa исх[(χкр-Δχt), tк] - точке k; вероятность обнаружения дефектов должна соответствовать кривой 2 на ФИГ.5.

Для подбора средств неразрушающего контроля (методы и технические средства) с требуемыми характеристиками достоверности контроля используют (изготавливают) тест-образец со скрытыми дефектами и определяют на нем вероятности выявления дефектов с применением различных существующих средств и методов неразрушающего контроля.

После подбора необходимых средств неразрушающего контроля выполняют повторный контроль изделия новыми средствами неразрушающего контроля и производят ремонт изделия по результатам двух неразрушающих контролей.

Проконтролированное и отремонтированное описанным выше изделие (трубопровод) будет иметь гамма-процентный ресурс не ниже 99,9990%, а в действительности еще более высокое значение, так как в описанном варианте не учтено положительное влияние на надежность штатного метода неразрушающего контроля и ремонта по его результатам.

Для того чтобы учесть влияние штатного неразрушающего контроля, необходимо в качестве исходной кривой остаточной дефектности принять кривую 2 на ФИГ.1, то есть кривую до начала эксплуатации, но для отремонтированного трубопровода по результатам штатного контроля. В этом случае требования к достоверности контроля снизятся и составят для a=25,7 мм:

Рводкр-Δχt)=1-{Pa норм[(a крa t), t=0]}/{Pa исх после штатн НК[a крa t), t=0]}=1-(0,00001/0,0001)=(1-1/10)=1-0,1=0,90.

После ремонта всех выявленных дефектов гамма-процентный ресурс трубопровода будет удовлетворять нормативным требованиям.

1. Способ повышения гамма-процентного ресурса изделия до заданного уровня, состоящий в том, что определяют гамма-процентный ресурс γtкр) изделия по результатам штатного неразрушающего контроля, сравнивают полученное значение с заданным значением [γtкр)], и в случае γtкр)≤[ γtкр)] проводят действия, направленные на повышение гамма-процентного ресурса:
- определяют подрост дефекта Δχt за время tк эксплуатации изделия до выбранного критерия достижения гамма-процентного ресурса, например, критического размера χкр;
- на конец срока эксплуатации tk определяют вероятность P a и с х [ ( χ к р Δ χ t ) , t k ] существования в изделии дефектов с размерами (χкр-Δχt) для случая применения штатных методов неразрушающего контроля;
- определяют вероятность P a н о р м [ ( χ к р Δ χ t ) , t ] существования в изделии дефектов с размерами (χкр-Δχt), которая обеспечивает на конец срока эксплуатации tk изделия требуемый гамма-процентный ресурс для случая применения подобранного метода неразрушающего контроля; при этом в исходном состоянии, т.е. в момент t=0, вероятность P a н о р м [ ( χ к р Δ χ t ) , t = 0 ] определяют по формуле P a н о р м [ ( χ к р Δ χ t ) , t = 0 ] = 1 [ γ t ( χ к р ) ] / 100 ;
- на основе полученных значений определяют вероятность Рвод обнаружения дефектов для случая применения подобранного метода неразрушающего контроля, которая необходима для достижения требуемого значения гамма-процентного ресурса [γtкр)] по формуле:
P в о д ( χ к р Δ χ t ) = 1 { P a н о р м { ( χ к р Δ χ t ) , t = 0 ] } / [ P a и с х [ ( χ к р Δ χ t ) , t ] } ;
- подбирают метод неразрушающего контроля, удовлетворяющий полученному значению Рвод;
- выполняют контроль изделия подобранным методом неразрушающего контроля;
- выполняют ремонт всех дефектов материала изделия, выявленных по результатам двух контролей.

2. Способ по п.1, отличающийся тем, что в качестве характеристического размера χ дефекта выбирается линейный размер дефекта, или комбинация линейных размеров дефекта, или площадь дефекта, или объем дефекта.



 

Похожие патенты:

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя.

Изобретение относится к средствам испытания устройств на ударные нагрузки и может быть использовано для проведения испытаний защитных устройств, в том числе бамперов, транспортного средства.

Изобретение относится к области испытания автомобиля. Проводят серию измерений уровня шума автомобиля, движущегося по мерному участку в режиме разгона, производят запись полученных значений, получают диаграмму значений записанного уровня шума автомобиля и определяют значение его скорости при пересечении микрофонной линии.

Изобретение относится к способу определения крутильной податливости гидромеханической трансмиссии. Способ включает нагружение слоя грунта траками гусеничного трактора с гидромеханической трансмиссией, неподвижно зафиксированного посредством силоизмерительного устройства, плавное увеличение нагрузки, регистрацию значения касательного усилия грунтозацепа трака на грунт, измерение деформации грунта, построение графика зависимости деформации грунта от касательного усилия грунтозацепа трака на грунт, определение по точке излома прямой графика предельного касательного усилия грунтозацепа трака на грунт, регистрацию угла поворота ведущей звездочки трактора, построение графика зависимости угла поворота ведущей звездочки трактора от касательного усилия грунтозацепа трака на грунт.

Изобретение относится к области обеспечения надежности и безопасности сосудов и трубопроводов давления во время их эксплуатации. Определяют критические размеры трещин в режиме нормальной эксплуатации.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Гамма-процентный ресурс изделия определяют по результатам ультразвукового, вихретокового, радиографического и прочих методов неразрушающего контроля дефектов материала изделия или группы изделий.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Гамма-процентный ресурс изделия определяют по результатам ультразвукового, вихретокового, радиографического и прочих методов неразрушающего контроля дефектов материала изделия или группы изделий.

Изобретение относится к методам испытаний, в частности к методам неразрушающего контроля. Определяют дефектность изделия методом неразрушающего контроля (критические размеры χкp дефектов в режиме эксплуатации и допустимые в эксплуатации размеры [χ]d.э.

Изобретение относится к наземным имитационным испытаниям космических аппаратов (КА), а именно многозвенных маложестких механических систем изделий космической техники.

Изобретение относится к электрическим испытаниям электрооборудования на восприимчивость к электромагнитному воздействию. Способ испытаний микропроцессорной системы управления двигателем автотранспортного средства на восприимчивость к электромагнитному воздействию, в котором испытуемую систему управления в составе транспортного средства подвергают импульсному воздействию электромагнитного излучения с помощью генератора грозового разряда.

Изобретение относится к области контроля транспортных средств. Устройство обнаружения ускорения содержит блок (20) устранения компонента вибрации для устранения компонента вибрации кузова транспортного средства, содержащегося в сигнале (Gsen-f) датчика ускорения (G), прошедшем через фильтр (13), при переходе из остановленного состояния в состояние движения, и блок (21) коррекции нулевой точки для коррекции положения нулевой точки сигнала (Gsen-f) G-датчика, прошедшего через фильтр (13), с использованием значения коррекции (Gd) на основе сигнала (Gsen-r) G-датчика, в котором устранен компонент вибрации транспортного средства. Достигается точность коррекции ошибки дрейфа. 4 з.п. ф-лы, 8 ил.

Изобретение относится к испытанию машин, в частности к устройствам для экспериментального исследования процесса слива масла из картерных полостей машин. На одной из боковых граней корпуса канистры выполнено окно в виде прямоугольника. Канистра противоположной гранью корпуса установлена на основании под сливной пробкой таким образом, что струя масла при его истечении из сливного отверстия после отвинчивания пробки не выходит за пределы окна. Корпус канистры дополнительно оснащен экраном и измерительной линейкой. Экран выполнен в виде полосы, один конец которой опущен в полость корпуса канистры, а другой ее конец находится вне полости корпуса канистры и возвышается над ним настолько, что экран в продольной плоскости образует некоторый угол с линией горизонта. Измерительная линейка жестко присоединена к поверхности экрана. Техническим результатом изобретения является моделирование вылета струи масла из картерных полостей машин. 1 ил.

Изобретение относится к области диагностики дефектов технических систем. Устройство содержит, по меньшей мере, один датчик шума. Датчик шума соединен с блоком временной дискретизации и с выходом блока коммутации каналов. Блок коммутации каналов соединен с фиксатором состояний. Фиксатор состояний обрабатывает гармоники. Фиксатор состояний соединен с определителем образа состояния. Выход определителя образа состояния соединен с блоком фиксации динамики состояния. Блок фиксации динамики состояния соединен с монитором, на котором отображаются данные о текущем и предшествующих состояниях объекта. Массив амплитуд гармоник сигнала с фиксатора поступает в определитель образа состояния. В блоке определителе образа состояния осуществляется сравнение полученного массива с аналогичными массивами из базы образов состояний, причем с учетом доверительных интервалов и требований надежности оценки. Если полученный массив не имеет аналогов в базе данных, он заносится в базу данных под условным именем с необходимым доверительным интервалом. Достигается повышение точности оценки технического состояния механизмов транспортных и стационарных систем. 1 з.п. ф-лы, 10 ил.

Изобретение относится к области машиностроения, а именно к стендам для диагностирования тормозов транспортных средств. Стенд содержит две подвижные в продольном направлении опоры с горизонтальной контактной поверхностью для установки колес испытываемой оси, раздельный привод подвижных опор посредством стальных канатов, наматываемых на тяговые барабаны, расположенные на одном приводном валу, вращающемся в установочных подшипниках посредством двигателя и вариатора, шариковые направляющие для перемещения подвижных опор в продольном направлении. Стенд также содержит устройство, сигнализирующее о начале движения подвижных опор, устройство для определения усилия на тормозной педали и ее автоматического привода, полимерное покрытие, датчики веса, начала движения и силы на каждой опоре, датчики угловых скоростей колес, сигналы от которых через усилитель и аналого-цифровой преобразователь поступают на обработку в компьютер, барабан со стальным канатом для возвращения подвижных опор в исходное рабочее положение, платформу, на которой расположены шариковые направляющие одной из подвижных опор, имеющую возможность перемещаться в поперечном направлении на направляющих скольжения посредством ходовой винтовой передачи, и роликовые опоры для полноприводных автотранспортных средств. Достигается повышение качества измерения параметров торможения для получения достоверного диагноза технического состояния тормозов. 2 ил.

Группа изобретений относится к области диагностики, в частности к вибродиагностике, и может быть использована для выявления наличия дефектов в узлах и агрегатах автомобиля. Способ заключается в том, что виброакустический сигнал усиливают, фильтруют, дискретизируют по времени. Затем на каждом очередном шаге дискретизации определяют суммарное значение результатов нелинейных интегральных преобразований функцией y(x)=sin(x)*x2 следующих друг за другом N отсчетов виброакустического сигнала, сравнивают полученное значение с пороговым уровнем Δ. В случае превышения порогового уровня формируется сигнал о наличии дефекта. Устройство содержит последовательно соединенные вибродатчик с усилителем, фильтр, блок дискретизации, блок нелинейных интегральных преобразований, блок определения суммарного значения отсчетов, компаратор. Генератор тактовых импульсов соединен со вторым входом блока дискретизации и вторым входом блока определения суммарного значения отсчетов. Формирователь порогового уровня соединен со вторым входом компаратора, который является выходом схемы. Технический результат заключается в повышении достоверности выявления наличия дефектов. 2 н. п. ф-лы, 3 ил.

Изобретение может быть использовано в топливных системах двигателей внутреннего сгорания транспортных средств. Транспортное средство содержит топливную систему (31), имеющую топливный бак (32) и бачок (30), диагностический модуль, имеющий контрольное отверстие (56), датчик (54) давления, клапан-распределитель (58), насос (52) и контроллер. Диагностический модуль связывает топливную систему с атмосферой для обеспечения первой конфигурации, в которой клапан-распределитель (58) находится в первом положении, соединяющем по текучей среде бачок (30) и атмосферу с незадействованными насосом (52) и отверстием (56). Диагностический модуль связывает топливную систему с атмосферой для обеспечения второй конфигурации, в которой клапан-распределитель (58) находится в первом положении, а отверстие (56) соединяет по текучей среде бачок (30) и атмосферу с задействованным насосом (52). Диагностический модуль связывает топливную систему с атмосферой для обеспечения третьей конфигурации, в которой клапан-распределитель (58) находится во втором положении, а отверстие (56) соединяет по текучей среде бачок (30) и атмосферу с задействованным насосом (52), при этом отверстие (56) обеспечивает независимый проток из бачка (30) в атмосферу по сравнению с клапаном-распределителем, когда модуль находится во втором и третьем положениях. Контроллер выполнен с возможностью измерения контрольного давления на отверстии (56) для выдачи динамически установившегося порогового значения, изолирования топливной системы в состояние низкого давления, измерения нескольких давлений в системе и выдачи кода в ответ на сравнение указанных нескольких давлений с динамически установившемся пороговым значением. Раскрыты варианты выполнения транспортных средств. Технический результат заключается в улучшении точности диагностирования. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к испытаниям транспортных средств. Способ заключается в том, что определяют по величинам среднего расхода топлива двигателя и реализуемой средней скорости движения коэффициент суммарного сопротивления движению Ψj. Корректируют длины мерного участка Sн через сравнение в виде разностей нормативных значений уровня нагружения Wjн с фактически реализованными по выражению . Корректируют средний расхода топлива при заданной скорости движения, приведенного к нормативному значению Ψjн по выражению . По полученным значениям , соответствующим каждого заезда, по контрольным точкам с использованием линейного интерполирования получают кривую топливной характеристики ГУн, РГн и Мн условно установившегося движения для каждой стандартной грунтовой дороги. Контрольный расход топлива определяют по ординатам на скоростях: 35 км/ч на грунтовой дороге удовлетворительного состояния, 25 км/ч на разбитой грунтовой дороге и 17,5 км/ч на размокшей грунтовой дороге в распутицу. Технический результат заключается в повышении точности определения топливных характеристик условно установившегося движения, контрольного расхода топлива и запаса хода транспортного средства. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области транспортного машиностроения и может быть использовано для исследования динамических процессов в тяговом приводе. Стенд для моделирования динамических процессов в тяговом приводе локомотива с электропередачей содержит дизель-генераторную установку с преобразователем частоты, электродвигатель, вал якоря которого фрикционно связан с валом, несущим маховик, имитирующим массу поезда, посредством колесной пары с колесами различных диаметров, электрическую нагрузочную машину, вал якоря которой связан с валом, несущим маховик. Маховик снабжен лентой из фрикционного материала, охватывающей его внешнюю поверхность, связанную с якорем электромагнита нагружающего устройства, управление которым осуществляется системой, состоящей из датчиков моментов электродвигателя и сопротивления, сравнивающего устройства, исполнительного устройства, переключателя, задатчика времени, источника тока, токовой уставки, датчика вращения. Изменение момента сопротивления вращению маховика приводит к изменению режима работы привода, возникновению боксования и, как следствие, автоколебательным процессам. Технический результат заключается в возможности определять области боксования и режимов автоколебаний при имитации различного профиля железнодорожного пути. 2 ил.

Изобретение относится к области измерительной техники, к диагностированию автомобилей. Способ диагностирования величины осевого зазора в шаровом шарнире автомобиля достигается за счет использования двух вибродатчиков. Первый вибродатчик фиксирует вибрации, возникающие непосредственно в диагностируемом сопряжении головки шарового шарнира и полимерного вкладыша. Второй вибродатчик, установленный на рычаге подвески сопряженным с диагностируемым шаровым шарниром на расстоянии 10-15 см от первого вибродатчика, фиксирует вибрации в рычаге подвески. Их сравнительный анализ позволяет более точно выявить гармоники и частотные составляющие сигналов, характерные для зазора в сопряжении шарового шарнира. Достигается упрощение процесса диагностирования шаровых шарниров автомобилей, а также получение информации при диагностировании, позволяющей судить о величине зазора в шаровом шарнире и о его остаточном ресурсе. 4 ил.

Изобретение относится к области транспортного машиностроения. Испытательный стенд для исследовательских и доводочных работ по оценке влияния внешнего воздействия дождя на виброакустику автомобиля содержит установку имитации дождя, состоящую из четырех регулируемых по высоте телескопических стоек с установленным на них дождевальным устройством, устройство подачи воды с расходомером и запорной арматурой, измерительную и анализирующую виброакустическую аппаратуру, установленную в салоне исследуемого ТС, размещенного под дождевальным устройством. Дождевальное устройство выполнено в виде открытого корпуса с дном, перфорированным сквозными отверстиями. Установка имитации дождя выполнена с возможностью перемещения посредством колес со стопорным механизмом, закрепленных на регулируемых телескопических стойках. Стенки открытого корпуса дождевального устройства образованы скрепленными между собой фигурными планками с угловым и Z-образным профилем. Дно открытого корпуса, перфорированное сквозными отверстиями, выполнено в виде съемной панели. Достигается повышение качества исследовательских и доводочных работ за счет реализации возможности исследования влияния внешнего воздействия дождя на виброакустический комфорт в условиях свободного звукового поля внешней среды. 2 з.п. ф-лы, 5 ил.
Наверх