Способ получения модифицированного олигомерно-сернистого битума


 


Владельцы патента RU 2530127:

Журавлев Сергей Сергеевич (RU)
Умаханов Мурад Ильясович (RU)
Лобанов Виктор Владимирович (RU)

Изобретение относится к области нефтепереработки, в частности к способу получения модифицированного олигомерно-сернистого битума. Для получения модифицированного битума осуществляют подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-25 мм рт.ст. Полученный гудрон с содержанием парафино-нафтеновых углеводородов 12-23 об.% подают в буферную емкость, где смешивают его с 10-30% битумного компаунда, поступающего из верхней части окислительного реактора, и 5-15% от массы сырья пластифицирующей добавки, представляющей собой продукт взаимодействия 15,0-15,5 мас.% стирола, 2,4-4,0 мас.% пероксида циклогексанона, 3,1-6,0 мас.% стирольного раствора кобальтовых солей синтетических жирных кислот C7-C9, переокисленного битума - остальное. Далее подают полученную смесь с температурой не ниже 170°C в среднюю часть окислительного реактора под решетчато-клапанную тарелку, куда одновременно с сырьем подают воздушную массу в объеме до 160 м3/т сырья, при этом реакцию окисления в зоне первичного окисления ведут при температуре 215-230°C в течение 8-35 мин в пленочном режиме с последующим ее понижением. Полученный в результате окисления битум поступает в нижнюю кубовую часть окислительного реактора, куда одновременно подают расплав серы в количестве 3-60% от массы битума, причем температуру в кубовой части поддерживают 160-190°C, затем отводят полученный модифицированный олигомерно-сернистый битум из нижней части окислительного реактора. Полученный битум обладает улучшенными адгезионными и когезионными свойствами, имеет широкий интервал пластичности и более низкую температуру хрупкости. 1 табл.

 

Изобретение относится к области нефтепереработки, в частности к способу получения битума, более конкретно к способу получения модифицированного олигомерно-сернистого битума.

Наиболее распространенным способом получения битума является процесс окисления тяжелых остатков нефтепереработки.

Качество получаемого битума определяется природой и соотношением компонентов тяжелого остатка, которые зависят от состава исходной нефти, условий процесса ее разделения на дистиллятные фракции и тяжелый остаток, условий окисления тяжелого остатка, количества и природы добавок, вводимых как в окисляемое сырье, так и в окисленный продукт.

Известен способ получения битума, включающий вакуумную перегонку мазута с получением утяжеленного гудрона, смешение утяжеленного гудрона с модифицирующими добавками и окисление подготовленного гудрона кислородом воздуха при повышенной температуре с получением целевого продукта. При этом, при вакуумной перегонке мазута получают утяжеленный гудрон с содержанием парафиновых углеводородов не более 2% мас. и парафино-нафтеновых углеводородов не менее 20% мас., и окислению подвергают 80-90% подготовленного гудрона при температуре 240-270°C. Оставшееся количество подготовленного гудрона вводят в целевой продукт. В качестве модифицирующих добавок используют концентраты полициклических ароматических углеводородов, являющихся продуктами переработки нефти (RU 2235109, опублик. 2004 г.).

Недостатком данного способа является трудность в его управлении, что не может обеспечить стабильного качества получаемых продуктов. Другим недостатком известного способа является то, что получаемые продукты обладают недостаточной стабильностью при старении, а именно эти показатели, в конечном счете, определяют качество дорожного покрытия. Кроме того, трудности в регламентировании давления в колонне вакуумной ректификации приводит к образованию значительных количеств карбенов и карбоидов за счет протекания неуправляемых термических процессов, ухудшающих качество битума.

Известен способ получения битума, включающий вакуумную перегонку мазута с получением утяжеленного гудрона при остаточном давлении верха колонны 20-30 мм рт. ст., разделение полученного утяжеленного гудрона на два потока, первый из которых поступает в колонну окисления, а второй - смешивается с полученным в этой колонне окисленным гудроном с образованием товарного битума. Массовое соотношение окисленного продукта и утяжеленного гудрона варьируется от 90:10 до 70:30 до получения продукта с глубиной проникания иглы при 25°C 40-200·0,1 мм, в зависимости от марки товарного битума. Температура окисления поддерживается на уровне 220-230°C. Окисление производят до получения продукта, характеризующегося глубиной проникания иглы при 25°C 35-45·0,1 мм (RU 2476580, опублик. 27.02.2013 г.).

Битум, полученный описанным способом, имеет недостаточно высокие показатели по остаточной пенетрации, а также по температуре хрупкости после прогрева, которая характеризует морозоустойчивость асфальтобетонной смеси, и по растяжимости после прогрева, которая обеспечивает прочность и водостойкость асфальтобетонной смеси.

Ближайшим техническим решением к заявленному способу является способ получения битума, включающий вакуумную перегонку мазута при остаточном давлении верха колонны 30-50 мм рт. ст. с получением утяжеленного гудрона, смешение полученного утяжеленного гудрона с сырьевыми органическими добавками, представляющими собой продукты переработки нефти, в соотношении от 80:20 до 98:2, окисление полученной смеси кислородом воздуха при температуре 230-270°C до получения продукта, характеризующегося глубиной проникания иглы при 25°C 35-45·0,1 мм. Затем окисленный продукт компаундируют со смесью утяжеленного гудрона и сырьевой органической добавки, которая именуется подготовленным гудроном, в соотношении от 80:20 до 90:10 до получения продукта с глубиной проникания иглы при 25°C 50-200·0,1 мм (RU 2276181, опублик. 2006 г.).

Недостатком данного способа является невозможность обеспечения оптимального содержания ароматических углеводородов в составе товарного битума. Ароматические углеводороды, входящие в состав сырья окисления, являются весьма реакционно способными веществами и активно окисляются в окислительной колонне. В потоке же подготовленного гудрона, поступающего на компаундирование с продуктом окисления для получения товарного битума, содержится лишь около 30% мас. ароматических углеводородов, в связи с чем с компаундирующим потоком неизбежно введение в состав битума нецелевых компонентов, снижающих качество товарного продукта.

Задачей изобретения является разработка способа получения модифицированного олигомерно-сернистого битума, отличающегося повышенными эксплуатационными характеристиками, в частности улучшенными адгезионными и когезионными свойствами, с широким интервалом пластичности и более низкой температурой хрупкости.

Поставленная задача решается описываемым способом получения модифицированного олигомерно-сернистого битума, включающим следующие стадии:

- подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-25 мм рт.ст. с получением гудрона,

- подачу полученного гудрона в буферную емкость и смешение его с 10-30% битумного компаунда, поступившего из верхней части окислительного реактора, и 5-15% от массы сырья пластифицирующей добавки, представляющей собой продукт взаимодействия 15,0-15,5% мас. стирола, 2,4-4,0% мас. пероксида циклогексанона, 3,1-6,0% мас. стирольного раствора кобальтовых солей синтетических жирных кислот C7-C9, переокисленный битум - остальное,

- подачу полученной смеси с температурой не ниже 170°С в среднюю часть окислительного реактора под решетчато-клапанную тарелку, куда одновременно с сырьем подают воздушную массу в объеме до 160 м3/т сырья и реакцию окисления в зоне первичного окисления ведут при температуре 215-230°С в течение 8-35 мин в пленочном режиме с последующим понижением температуры,

- подачу расплава серы в количестве 3-60% от массы битума в нижнюю кубовую часть окислительного реактора, куда из средней части окислительного реактора одновременно поступает полученный структурированный олигомерный битум, при этом температуру в кубовой части поддерживают 160-190°C,

- отбор полученного модифицированного олигомерно-сернистого битума из нижней части окислительного реактора.

Отличие заявляемого технического решения от известного заключается в том, что при подготовке сырья вакуумную перегонку мазута осуществляют при остаточном давлении верха вакуумной колонны в пределах 15-25 мм рт.ст., полученный гудрон предварительно смешивают с 10-30% битумного компаунда, поступившего из верхней части окислительного реактора, и 5-15% от массы сырья пластифицирующей добавки, представляющей собой продукт взаимодействия 15,0-15,5% мас. стирола, 2,4-4,0% мас. пероксида циклогексанона, 3,1-6,0% мас. стирольного раствора кобальтовых солей синтетических жирных кислот C7-C9, переокисленный битум - остальное, подготовленную таким образом смесь затем подают в среднюю часть окислительного реактора под решетчато-клапанную тарелку, куда одновременно с сырьем подают воздушную массу в объеме до 160 м3/т сырья, при этом реакцию окисления ведут при температуре 215-230°C в течение 8-35 мин в пленочном режиме, далее температуру смеси понижают, полученный структурированный олигомерный битум поступает в нижнюю кубовую часть окислительного реактора, куда одновременно подают расплав серы в количестве 3-60% от массы битума, при этом температуру в кубовой части поддерживают 160-190°C.

Поддержание такого технологического параметра как остаточное давление верха вакуумной колонны в пределах 15-25 мм рт.ст. при вакуумной перегонке исходного мазута дает возможность повысить содержание парафино-нафтеновых углеводородов в гудроне до 12-23% об., а также увеличить концентрацию смол.

Проведение процесса окисления предварительно подготовленного сырья, содержащего смесь гудрона, 10-30% битумного компаунда, поступившего из верхней части окислительного реактора, и 5-15% от массы сырья пластифицирующей добавки указанного выше состава, при температуре 215-230°C в зоне первичной реакции в пленочном режиме с последующим ее понижением позволяет получить наноструктурированный олигомерный битум.

Косвенным подтверждением наличия наноструктур в олигомерном битуме является однородность его структуры и цвета, увеличение вязкости, резкое изменение физических параметров (КиШ; Дуктильность; Тхр; и др).

Олигомерный битум - принципиально новый продукт с новой природой химизма его образования. Олигомерные битумы получаются в процессе окисления тяжелых нефтяных остатков с одновременной полимеризацией мономера до стирололигомерных соединений, образующих полимерные связи с высоко конденсированными петрольно-бензольными и спирто-бензольными смолами и асфальтенами, содержащимися в подготовленном гудроне, на наноуровне, с образованием пространственной поликонденсационной системы из двух или нескольких низкомолекулярных веществ, сшитых коагуляционным каркасом с асфальтеновым комплексом битума.

Полученный таким образом структурированный олигомерный битум поступает в кубовую нижнюю часть окислительного реактора, куда одновременно подают расплав серы в количестве 3-60% от массы битума.

Температуру в кубовой части реактора поддерживают 160-190°C, время нахождения реагентов в зоне реакции до 30-40 мин.

За счет внутреннего устройства реактора реакция окисления происходит в пленочном режиме, что увеличивает скорость реакции.

Затем битум поступает в кубовую часть реактора и после охлаждения до температуры менее 140°C его откачивают в товарную емкость.

Указанная совокупность признаков позволяет получить модифицированный олигомерно-сернистый битум, отличающийся повышенными эксплуатационными характеристиками, в частности улучшенными адгезионными и когезионными свойствами, с широким интервалом пластичности и более низкой температурой хрупкости.

Сущность заявленного способа заключается в следующем.

Мазут, разогретый до температуры 340-400°C, подвергают вакуумной перегонке при остаточном давлении верха вакуумной колонны 15-25 мм рт.ст.

Для создания вакуума применяют двухступенчатый вакуумный гидроциркуляционный агрегат, способный создать в колоннах остаточное давление в пределах 15-25 мм рт.ст., что повышает ИТК сырья до 490-520°C, а это, в свою очередь, позволяет осуществить необходимый отбор фракций на уровне от Tн.к=220-240°C до Tк.к. 490-510°C.

Глубокий уровень отбора газойлевых фракций поддерживается за счет уменьшения парциального давления паров жидкости путем использования механизма пленочного испарения тяжелых нефтяных остатков в вакуумной колонне.

Отобранный из куба колонны гудрон содержит:

Парафино-нафтеновые углеводороды - 12,0-23,0% об.

Твердые парафины - не более 2%

Смолы- 31,0-33,0%

Асфальтены - 8,1-10,3%

и обладает следующими физико-химическими характеристиками:

Вязкость условная при 80 С при истечении из отверстия диаметром 5 мм >35 сек.

Плотность при 20°C 0,97-1,00 г/см

Температура размягчения по КиШ не ниже 35°C.

Полученный гудрон подают в буферную емкость, где его смешивают с 10-30% битумного компаунда, поступившего из верхней части окислительного реактора, расположенной над клапанной тарелкой.

Количество битумного компаунда может измеряться как в масс.%, так и в об.%, поскольку плотности гудрона и битумного компаунда лежат приблизительно в одном интервале значений, а следовательно, как массовое, так и объемное из соотношение будет примерно одним и тем же.

Одновременно с сырьем в буферную емкость подают пластифицирующую добавку в количестве 5-15% от массы подаваемого сырья.

Пластифицирующая добавка представляет собой продукт взаимодействия 15,0-15,5% мас. стирола, 2,4 - 4,0% мас. пероксида циклогексанона, 3,1-6,0% мас. стирольного раствора кобальтовых солей синтетических жирных кислот C7-C9, переокисленный битум - остальное.

Подготовленное таким образом сырье с температурой не ниже 170°C подают в среднюю часть окислительного реактора под решетчато-клапанную тарелку, куда одновременно подают воздушную массу в объеме до 160 м3/т сырья.

Под воздействием кислорода воздуха происходит реакция окисления. Температура реакции в зоне первичного окисления достигает 215-240°C, время нахождения реагентов в зоне реакции 8-35 мин.

За счет внутреннего устройства реактора реакция окисления происходит в пленочном режиме, что увеличивает скорость реакции окисления с максимальным использованием кислорода воздуха.

За счет высокой скорости реакции и небольшого времени пребывания в зоне реакции идет образование наноагрегатных кластеров асфальтенов с размером не более 40-100 нм по всему объему продукта.

В результате окисления тяжелых нефтяных остатков кислородом воздуха в присутствии пластифицирующей добавки происходит сшивание отдельных сеток битумных кластерных наноагрегатов асфальтенов в более крупную сеть, т.е. олигомерные соединения добавки связывают отдельные кластерные наноструктурированные решетки в более крупные агрегативные наносоединения, в результате чего образуется множество укрупненных, но не сшитых между собой наноагрегативных объемных структур.

Полученный таким образом структурированный олигомерный битум поступает в кубовую нижнюю часть окислительного реактора, куда одновременно подают расплав серы в количестве 3-60% от массы битума.

Температуру в кубовой части реактора поддерживают 160-190°C, время нахождения реагентов в зоне реакции до 30-40 мин.

Образующиеся в результате окисления тяжелых нефтяных остатков битумные наноагрегатные кластеры асфальтенов взаимодействуют с расплавленной серой, при этом происходит сшивание отдельных сеток кластерных наноагрегатов в более крупную сеть, в результате чего образуется по всему объему множество укрупненных сшитых между собой наноагрегативных объемных структур. Установлено, что образующиеся соединения структурированного олигомерно-сернистого битума имеют высокие прочные валентные связи с наиболее термодинамически устойчивыми полисульфидами с двумя атомами серы.

При этом в системах сера-стирол имеет место образование набора олигомерных продуктов с молекулярной массой несколько тысяч а.е. и серой в виде моно-, ди- и тетрасульфидных фрагментов. Органическая составляющая олигомеров представлена стирольными фрагментами, с образованием ряда циклических продуктов с различным содержанием серы.

Затем полученный модифицированный олигомерно-сернистый битум поступает в кубовую часть реактора и после охлаждения до температуры менее 140°C его откачивают в товарную емкость.

С целью поддержания различных скоростей реакции реакционная часть реактора условно разделена решетчато-клапанной тарелкой на две, сообщающиеся между собой, части. За счет работы этой тарелки происходит компаундирование продуктов окисления и олигомеризации между зонами как в одну, так и в другую сторону и перераспределение потоков воздуха по зонам реактора окисления. При этом в средней зоне получают переокисленный битум, а в нижней зоне - модифицированный олигомерно-сернистый битум.

Температурные режимы обеих частей колонны поддерживают путем включения в процесс охлаждающих контуров, а также системой орошения верхней части колонны.

В зоне переокисления над решетчато-клапанной тарелкой происходит конденсация легких масляных фракций и асфальтогенных кислот за счет орошения верха реактора с последующим их растворением в жидких продуктах реакции, что ведет к уменьшению размеров наноагрегативных соединений асфальтенов, которые равномерно распределяются по всему объему реактора.

Показатели качества полученного модифицированного олигомерно-сернистого битума различных марок при КиШ ≤56 приведены в таблице.

Таблица
Показатели Модифицированные олигомерно-сернистые битумы
БНДМ-70/90 БНДМ-80/100 БНД-90/130
1 Глубина проникновения
При 25°C 70-90 80-100 90-130
При 0°C ≥40 ≥40 ≥40
2 Температура размягчения по кольцу и шару, °C 52-56 50-54 49-54
3 Температура хрупкости, °C, не выше -30 -30 -30
4 Растяжимость, см, не менее
При 25°C 100 100 120
При 0°C 3,5 4,5 5,0

Как следует из представленных данных, полученный модифицированный олигомерно-сернистый битум обладает улучшенными адгезионными и когезионными свойствами, имеет широкий интервал пластичности и более низкую температуру хрупкости.

Улучшенные адгезионные свойства модифицированного олигомерно-сернистого битума - это адгезия синтетического клея, где в качестве элементов сцепления с минеральным веществом выступает вся масса, вся внутренняя структура битума, его когезионная природа, состоящая из полисульфидных образований наноструктурированного олигомерного битума.

Способ получения модифицированного олигомерно-сернистого битума, отличающийся тем, что осуществляют подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-25 мм рт. ст. с получением гудрона с содержанием парафино-нафтеновых углеводородов 12-23 об.%, смешивают полученный гудрон в буферной емкости с 10-30% битумного компаунда, поступающего из верхней части окислительного реактора, и 5-15% от массы сырья пластифицирующей добавки, представляющей собой продукт взаимодействия 15,0-15,5 мас.% стирола, 2,4-4,0 мас.% пероксида циклогексанона, 3,1-6,0 мас.% стирольного раствора кобальтовых солей синтетических жирных кислот С79, переокисленного битума - остальное, подают полученную смесь с температурой не ниже 170°С в среднюю часть окислительного реактора под решетчато-клапанную тарелку, куда одновременно с сырьем подают воздушную массу в объеме до 160 м3/т сырья, при этом реакцию окисления в зоне первичного окисления ведут при температуре 215-230°C в течение 8-35 мин в пленочном режиме с последующим ее понижением, полученный в результате окисления структурированный олигомерный битум поступает в нижнюю кубовую часть окислительного реактора, куда одновременно подают расплав серы в количестве 3-60% от массы битума, причем температуру в кубовой части поддерживают 160-190°C, затем отводят полученный модифицированный олигомерно-сернистый битум из нижней части окислительного реактора.



 

Похожие патенты:

Изобретение может быть использовано в области получения углеродных материалов, используемых в атомной энергетике, авиационной и космической технике, машиностроении.
Изобретение относится к способам получения пека-связующего для электродных материалов и может быть использовано в электродной промышленности. Проводят обработку воздухом смеси каменноугольного пека с нефтяным пеком или с тяжелыми нефтяными остатками в поле гидроударно-кавитационных импульсов.

Изобретение относится к области нефтепереработки, в частности к способу получения битума путем окисления. Способ включает обработку исходного сырья с получением целевого продукта и последующим его компаундированием с получением дорожного битума.

Изобретение относится к области нефтехимического аппаратостроения, а именно к установкам для получения олигомерного наноструктурированного битума. Установка содержит приемную емкость нефтяного сырья, соединенную через нагревательное устройство с вакуумной колонной, один выход которой по линии отвода отходящих газов соединен с системой обработки отходящих газов, а другой - по линии отвода сырья соединен через буферную емкость с насадочно-тарельчатой окислительной колонной, снабженной патрубками подвода воздуха, один выход которой по линии отвода отходящих газов соединен с системой обработки отходящих газов, а другой - по линии отвода готового битума соединен с емкостью для целевого продукта.
Изобретение относится к области нефтепереработки, в частности к способу получения олигомерного битума. Для получения олигомерного битума осуществляют подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-18 мм рт.ст., полученный гудрон с содержанием парафино-нафтеновых углеводородов 12-23 мас.% подают в буферную емкость, где смешивают его с 10-30% битумного компаунда из окислительного реактора.

Изобретение предназначено для получения различных видов битумов и производных продуктов на их основе, например водно-битумных эмульсий, и может быть использовано в нефтеперерабатывающей и химической отраслях промышленности, в строительстве, в том числе дорожном.
Изобретение относится к сульфоаддукту нанокластеров углерода, представляющему собой растворимую в полярных растворителях фракцию продукта взаимодействия размолотого каменноугольного пека с серной кислотой с последующим отмыванием непрореагировавшей кислоты водой.

Изобретение относится к области нефтепереработки. .

Изобретение относится к области нефтехимического аппаратостроения, а именно к установкам вторичной переработки нефти, и может быть использовано при получении окисленных нефтяных битумов, применяемых в различных отраслях промышленности.

Изобретение относится к области нефтепереработки, в частности к способу получения битума. .
Изобретение относится к огнестойкой резиновой смеси и может быть использовано в нефтедобывающей, нефтеперерабатывающей, горнодобывающей и резинотехнической промышленности.
Изобретение относится к морозостойкой резиновой смеси и может быть использовано в автомобильной и резинотехнической промышленности для изготовления уплотнительных деталей, эксплуатирующихся в условиях низких температур.
Изобретение относится к резиновой промышленности и может быть использовано для изготовления резинотехнических изделий. Резиновая смесь на основе бутадиен-метилстирольного каучука включает серу, дифенилгуанидин, сульфенамид Ц, технический углерод, оксид цинка, стеариновую кислоту, в качестве противостарителя и модификатора 2-(диметиламинометил)-4-метил-6-(1,7,7-триметилбицикло[2.2.1]гепт-экзо-2-ил)фенол 2-4 мас.ч.
Изобретение относится к резиновой промышленности и может быть использовано для изготовления резинотехнических изделий. Резиновая смесь на основе бутадиен-метилстирольного каучука включает серу, дифенилгуанидин, ускоритель вулканизации, технический углерод, оксид цинка, стеариновую кислоту, противостаритель и модификатор.
Изобретение относится к резиновой смеси, в частности для шин транспортного средства. Резиновая смесь включает от 30 до 100 весовых частей на 100 весовых частей каучука, по меньшей мере, одного диенового каучука, от 20 до 200 весовых частей на 100 весовых частей каучука, по меньшей мере, одного наполнителя, от 0 до 200 весовых частей на 100 весовых частей каучука дополнительных добавок, серосодержащую систему вулканизации, включающую в себя свободную серу, донор серы и силан с концентрацией серы, обусловленной данными ингредиентами, между 0,025 и 0,08 моль на 100 весовых частей каучука, из которых элементарная сера составляет от 0 до 70%, донор серы составляет от 5 до 30%, и силан составляет от 20 до 95%, и 0,1-10 весовых частей на 100 весовых частей каучука, по меньшей мере, одного ускорителя вулканизации.
Изобретение относится к резиновой промышленности и может быть использовано при изготовлении резиновых износостойких изделий конструкционного назначения, работающих в условиях интенсивного изнашивания, низких температур и агрессивных сред.

Изобретение относится к шинной промышленности и может быть использовано для протектора летних и всесезонных шин. Резиновая смесь включает, мас.ч.: растворный бутадиен-стирольный каучук с добавлением масла TDAE с низким содержанием полициклических ароматических углеводородов 90-100, каучук цис-бутадиеновый линейной структуры с высоким содержанием цис-звеньев на неодимовом катализаторе 10-20, натуральный каучук 5-8, серу нерастворимую 2-3, вулканизующую группу 3-8, кремнекислотный наполнитель с удельной поверхностью 165 м2/г 70-80, стабилизатор на основе микрокристаллического воска 1-2, противостарители 3-5, технологическую добавку 1-3, связующий агент - бис-[3-(триэтокси)-силилпропил]-тетрасульфид 10-15.

Изобретение относится к резиновой смеси на основе комбинации натурального и синтетического цис-бутадиенового каучуков, содержащей кремнекислотный наполнитель, и может быть использовано в шинной промышленности для протектора с зимним рисунком нешипуемых шин.

Изобретение относится к пневматической шине и слоистому пластику в качестве внутреннего несущего материала. Пневматическая шина содержит слоистый пластик, состоящий из пленки термопластичной смолы или термопластичной эластомерной композиции, и слоя каучуковой композиции.
Изобретение относится к резиновой промышленности, в частности к разработке эластомерных материалов уплотнительного назначения с высоким уровнем морозостойкости и низким значением остаточной деформации сжатия.

Изобретение может быть использовано при изготовлении носителей катализаторов, сорбентов, электрохимических конденсаторов и литий-ионных аккумуляторов. Взаимодействуют при 700-900 °C соль кальция, например, тартрат кальция или тартрат кальция, допированный переходным металлом, являющаяся предшественником темплата, и жидкие или газообразные углеродсодержащие соединения или их смеси в качестве источника углерода.
Наверх