Способ определения усилия натяжения вантового элемента моста

Изобретение относится к метрологии, в частности к способам неразрушающего контроля мостовых сооружений. Способ предполагает возбуждение свободных колебаний вантового элемента путем приложения импульсного воздействия в месте его прикрепления к анкерному устройству. Осуществляют измерение колебаний датчиком-акселерометром, передачу измерительной информации в измерительный блок и далее в программный модуль, где происходит их обработка. При этом усилие определяется на основе первых трех кратных зафиксированных частот собственных колебаний вантового элемента. При расчетах продольного усилия в вантовом элементе учитываются такие параметры, как погонная масса вантового элемента, масса антивандальной оболочки, собственная частота колебаний вантового элемента, длина вантового элемента, длина анкерного устройства. По усредненному значению вычисленных усилий оценивают усилие натяжения ванта моста. Технический результат – повышение точности измерений. 2 ил., 1 табл.

 

Предлагаемое изобретение относится к способам неразрушающего контроля напряженно-деформированного состояния мостовых сооружений и может быть использовано для контроля и диагностики усилий натяжения вантовых элементов мостов, в том числе и элементов внешнего армирования.

Известен способ измерения усилий в растянутых или сжатых стержнях (см. патент СССР №118648), отличающийся тем, что, с целью обеспечения возможности проведения измерения в реальных условиях, величину усилия определяют по разности фаз между возбуждающей силой и колебаниями контролируемого стержня.

Недостаток данного способа заключается в том, что для определения усилия натяжения стержня требуется вибратор с генератором, возбуждающий вынужденные колебания диагностируемого элемента с определенной частотой.

Известен также способ определения натяжения вант по частоте собственных колебаний (см. Овчинников И.Г., Солохин В.Ф., Раткин В.В., Дядькин С.Н. «Автодорожный мост через реку Обь у г. Сургута: особенности проектирования и строительства»: учебное пособие, Саратов, СГТУ, 2002. - С. 74-75), принятый в качестве прототипа. В известном способе измерительные датчики (пьезорезистивные акселерометры) крепились по одному к каждой ванте вблизи звеньев заделки специально изготовленными скобами. Колебания каждой ванты возбуждались поочередно многократным приложением импульсного воздействия вручную через капроновый шнур длиной около 15 м. Для измерения колебаний использовалась виброизмерительная аппаратура. Далее производилась компьютерная обработка результатов измерения свободных затухающих колебаний: визуализация переходного процесса по сигналу датчика; визуализация отклика конструкции в диапазоне частот 8-12-го низших тонов; идентификация преобладающих собственных тонов и определение для каждого из них порядкового номера (n), частоты (fn); выбор 3-10-го тонов с близкими величинами fn/n и определение по выбранному числу (k) тонов усредненной частоты 1-го тона в виде ; определение усилия натяжения ванты по формуле При этом время возбуждения, регистрации колебаний и обработки результатов для каждой ванты составляет около 5 мин.

Недостатком данного способа является то, что он не учитывает включение анкера и антивандальной оболочки в колебательный процесс, что приводит к снижению точности и достоверности определения усилий, а также тот факт, что для измерений необходим специальный автомобиль с оборудованием, делающий процесс трудозатратным и длительным - определение усилий во всех вантовых элементах (с учетом передвижения специального автомобиля, установки и снятия оборудования) занимает несколько дней, в течение которых ситуация на мосту, а следовательно, и усилия натяжения вантовых элементов меняются.

Задача, на решение которой направлено изобретение, состоит в повышении точности и достоверности измерений за счет учета включения анкера и антивандальной оболочки в колебательный процесс и снижении трудозатрат при определении усилий натяжения вантовых элементов за счет использования малогабаритного измерительного комплекса, исключающего необходимость применения оборудования значительных размеров.

Способ определения усилия натяжения вантового элемента моста заключается в том, что в контролируемом месте устанавливают измерительный датчик, возбуждают свободные колебания вантового элемента путем импульсного воздействия и измеряют его частоты собственных колебаний, по которым определяют усилие натяжения, импульсное воздействие осуществляют в месте прикрепления вантового элемента к анкерному устройству, фиксируют не менее трех кратных частот собственных колебаний вантового элемента, определяют для каждой из первых трех кратных зафиксированных частот собственных колебаний (если частот собственных колебаний, присутствующих в спектре частот вантового элемента, больше трех) усилие натяжения вантового элемента по формуле

,

где N - продольное усилие в вантовом элементе, Н; m - погонная масса вантового элемента, кг/м; М - масса антивандальной оболочки, кг; fn - собственная частота колебаний вантового элемента, Гц; n - порядковый номер формы колебаний вантового элемента; Lp - расчетная длина вантового элемента, м, равная сумме длины собственно вантового элемента (от пассивного до активного анкерного устройства) и расчетной длины анкерного устройства (от точки закрепления вантового элемента до места шарнирного прикрепления анкерного устройства к конструкции); и по усредненному значению этих усилий в виде судят об усилии натяжения вантового элемента.

Реализуется способ следующим образом. В месте закрепления вантового элемента с анкерным устройством устанавливается датчик-акселерометр (датчик вибрации, м23) малогабаритного измерительного комплекса «Тензор МС» разработки НИЛ «Мосты» СГУПС, в основе которого лежат пьезорезистивные чувствительные элементы. Импульсным воздействием вручную (например, периодическими однократными толчками анкера) возбуждают свободные колебания вантового элемента, которые фиксируются высокочувствительным датчиком-акселерометром (см. фиг. 1) и передаются в измерительный блок и далее в программный модуль, где происходит их обработка. В полученном после обработки спектре частот (см. фиг. 2) определяют порядковый номер (n) зафиксированных частот собственных колебаний вантового элемента (fn). Определяют усилие по формуле

для первых трех кратных (если частот собственных колебаний, присутствующих в спектре частот вантового элемента, больше трех), зафиксированных частот собственных колебаний (см. фиг. 2). Вычисляют среднее значение усилия натяжения в вантовом элементе по формуле .

На фиг. 1 представлена виброграмма колебаний вантового элемента, записанная на одном из вантовых элементов главного пролета Бугринского моста через р. Обь в г. Новосибирске, где 1 - фоновые колебания, 2 - переходный процесс колебаний при однократном воздействии испытателя на анкер; на фиг. 2 приведен спектр частот, зафиксированный измерительным комплексом «Тензор MG» (программное обеспечение основано на быстром преобразовании Фурье).

Пример реализации способа. Определение усилий натяжения в вантовых элементах производилось при строительстве главного пролета Бугринского моста в г. Новосибирске. В месте прикрепления вантового элемента к пассивному анкерному устройству (установленному на затяжке арочного пролетного строения) устанавливали датчик-акселерометр измерительного комплекса «Тензор МG» (№ в госреестре средств измерений 38532-08, свидетельство об утверждении типа средств измерений RU.C.34.007.A №32603/1). Периодическими однократными толчками анкера вручную возбуждали свободные колебания вантового элемента, которые фиксировались высокочувствительным датчиком и передавались в измерительный блок, откуда поступали в программный модуль, где происходила их обработка. В полученном после обработки спектре частот определяли порядковый номер (n) зафиксированных частот собственных колебаний (fn) вантового элемента. Определяли усилие для первых трех кратных (если частот собственных колебаний, присутствующих в спектре частот вантового элемента, больше трех) зафиксированных частот собственных колебаний. Вычисляли среднее значение усилия натяжения в вантовом элементе в виде . В таблице приведены значения усилий в нескольких диагностируемых элементах, определенных с помощью разработанного способа, и значения усилий, определенные по способу-прототипу.

В сравнении с прототипом данный способ имеет следующие преимущества: учет включения анкера и антивандальной оболочки в колебательный процесс и, как следствие, повышение точности и достоверности при определении усилий натяжения до 10%, а также снижение трудоемкости процесса сбора данных, поскольку нет необходимости в эксплуатации специального автомобиля с оборудованием, находящегося непосредственно на мосту во время сбора данных.

Способ определения усилия натяжения вантового элемента моста, заключающийся в том, что в контролируемом месте устанавливают измерительный датчик, возбуждают свободные колебания вантового элемента путем импульсного воздействия и измеряют его частоты собственных колебаний, по которым определяют усилие натяжения, отличающийся тем, что импульсное воздействие осуществляют в месте прикрепления вантового элемента к анкерному устройству, фиксируют не менее трех кратных частот собственных колебаний вантового элемента, определяют для каждой из первых трех кратных зафиксированных частот усилие натяжения вантового элемента по формуле

,

где N - продольное усилие в вантовом элементе, Н;

m - погонная масса вантового элемента, кг/м;

М - масса антивандальной оболочки, кг;

fn - собственная частота колебаний вантового элемента, Гц;

n - порядковый номер формы колебаний вантового элемента;

Lp - расчетная длина вантового элемента, м, равная сумме длин собственно вантового элемента и расчетной длины анкерного устройства,

и по усредненному значению этих усилий судят об усилии натяжения вантового элемента.



 

Похожие патенты:

Настоящее изобретение относится к строительству шахтной системы, в частности к устройству и способу определения натяжения на направляющем канате висячих подмостей при строительстве шахты.

Изобретение относится к контролю и диагностике преднапряженных железобетонных балок и пролетных строений мостов. Способ заключается в воздействии сосредоточенной динамической ударной нагрузкой на балку после преднапряжения арматуры, измерении основной частоты колебаний, определении аналитической величины собственной частоты колебаний конструкции с учетом прогнозируемой расчетной величины напряжения в середине пролета в верхней сжатой фибре балочной конструкции, силы предварительного натяжения в арматуре, модуля упругости, расчетной длины арматуры, расстояния от нейтральной оси до сжатой фибры, силы Эйлера.

Изобретение относится к железнодорожным ручным тормозам. Железнодорожный ручной тормоз содержит пустотелый корпус, создающую силу цепь, отходящую от корпуса и соединенную с рычажной тормозной системой вагона, и цепной барабан.

Изобретение относится к силоизмерительной технике, в частности к способам определения натяжений протяженных изделий, например металлических проводов и тросов, оптоволоконных кабелей, полимерных канатов, арматуры и др.

Изобретение относится к области опто-акустических измерений натяжений упругих материалов. Способ контроля равномерного натяжения и выравнивания плоских упругих материалов заключается в механическом измерении и контроле за усилиями натяжения.

Изобретение относится к измерительной технике и может быть использовано для измерения вантовых конструкций. Способ определения натяжения шнура заключается в защемлении шнура между двумя зажимами, в центр которого приложена постоянная поперечная нагрузка и измерение максимального прогиба.

Изобретение относится к измерительной технике и может использоваться для измерения натяжений мембранных элементов конструкций. Способ состоит в том, что мембрану защемляют двумя кольцами, расположенными по разные стороны поверхности мембраны, и прикладывают поперечную нагрузку, распределенную по площади круга, центр которого совпадает с центрами защемляющих колец, измеряют величину максимального прогиба мембраны и определяют равномерное натяжение мембраны σ(0) по формуле σ ( 0 ) = P 2 I H π ; I = ∫ d b [ B 2 [ 1 − 1 1 + H 2 B 2 ] − 1 r ∫ b r B 2 1 + H 2 B ​ 2 d r ] r d r B = 4 b 2 r 2 ln r b + 2 b 2 ( d 2 + r 2 ) − 2 r 2 ( b 2 + d 2 ) r ( b 4 − d 4 + 4 b 2 d 2 ln d b ) Где σ(0) - величина равномерного натяжения мембраны, Н/м.

Изобретение относится к измерительной технике и может быть использовано для контроля и индикации величины натяжения проводов, тросов. Заявляемое устройство включает фиксатор, рычажный элемент для создания изгиба измеряемого изделия, электронный блок, размещенный в протяженной балке со встроенным чувствительным элементом в виде тензодатчика и с тремя опорами - центральной и концевыми.

Изобретение относится к устройству для измерения натяжения нити между бегунком и паковкой кольцевой прядильной машины, которое содержит шпиндель, установленный на нем приводной шкив и патронодержатель с бортиком, выполненным в нижней его части и соприкасающимся с шарикоподшипником.

Изобретение относится к области контроля и регистрации, измерения, обработки и хранения данных, а именно контроля состояния гибких соединений, используемых в различных сферах промышленности и отраслях народного хозяйства.

Изобретение относится к области измерений механических параметров. Датчик резонаторный содержит основание в виде пластины из монокристалла, в котором выполнены сквозные прорези с образованием стержневого резонатора, поверхности которого металлизированы для образования электродной системы, и маятникового подвеса в виде двух стержней, одни концы которых присоединены к чувствительному элементу, а другие концы соединены с основанием.

Изобретение относится к области измерительной техники и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля прочности бетона эксплуатируемых предварительно напряженных железобетонных конструкций.

Изобретение относится к высокочувствительным способу и устройству измерения силы/массы с использованием системы фазовой автоподстройки частоты. .

Изобретение относится к области измерений механической силы и производных от нее величин, момента силы, давления, массы, деформаций, линейных и угловых ускорений. .

Изобретение относится к измерительной технике и может быть использовано для контроля напряженно-деформированного состояния (НДС) гидротехнических сооружений, например плотин гидроэлектростанций, а также контроля напряженно-деформированного состояния других сооружений, зданий и конструкций.

Изобретение относится к техническим средствам автоматизации систем управления и предназначено для контроля физических величин. .

Изобретение относится к области испытания машиностроительных и строительных конструкций. .

Изобретение относится к области неразрушающего контроля технологических процессов в строительной индустрии и может быть использовано для получения данных о параметрах предварительно напряженных арматурных элементов (стержней, канатов и т.д.) при изготовлении железобетонных конструкций, в частности, для определения требуемого удлинения арматурного элемента, измерения напряжений в арматурном элементе и корректировки его длины.

Изобретение относится к силоизмерительной технике и может быть использовано в устройствах измерения, контроля и регулирования больших усилий сжатия около 1000 кг и более.

Изобретение относится к химической промышленности, а именно к производству геосинтетических материалов из химических волокон (нитей), и испытанию их на определение сопротивления ударной динамической нагрузке. Сущность изобретения заключается в том, что в устройстве для определения сопротивления геосинтетических материалов ударной динамической нагрузке между направляющим стержнем и ударным конусом помещена цилиндрическая часть, на которой снаружи размещен ферромагнитный сердечник в форме полого цилиндра, защитный экран выполнен из немагнитного материала, инертного к электромагнитным волнам, а на его внешней стороне установлена катушка индуктивности, при этом высота ферромагнитного сердечника соответствует длине катушки индуктивности, а длина катушки индуктивности больше высоты ударного конуса в 1,5 раза; при этом катушка индуктивности включена в измерительную цепь, где она электрически соединена с мостовой измерительной схемой, к входу которой подключен генератор сигналов, а к выходу - усилитель-детектор и последовательно соединенные между собой квадратор, нормирующий преобразователь и измерительный прибор. Технический результат – повышение быстродействия и точности процесса испытания. 2 ил., 1 табл.
Наверх