Способ получения порошков оксидных литий-вольфрамовых бронз



 


Владельцы патента RU 2534149:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова (RU)

Изобретение может быть использовано в химической промышленности. Порошки оксидных литий-вольфрамовых бронз получают при нагреве исходного состава, включающего оксид вольфрама (VI) и вольфрамат лития, до температур 570-600°C, выдерживании в течение 30 минут с последующим подъемом температуры до 650-700°C и выдерживании в течение 1 часа. Состав дополнительно содержит тетраборат лития и порошок металлического вольфрама при следующих соотношениях компонентов, мас.%: Li2WO4 - 30-66; Li2B4O7 - 7-24; WO3 -20-34; W - остальное. Предложенный способ позволяет получить высокодисперсные порошки оксидных литий-вольфрамовых бронз без вакуумирования реакционной зоны при относительно низких температурах. 7 пр.

 

Изобретение относится к области химического производства, а точнее к получению порошков оксидных вольфрамовых бронз обладающих, электрохромными, полупроводниковыми, электродными и каталитическими свойствами.

Известны способы получения порошков оксидных вольфрамовых бронз на основе вольфрамата лития и оксида вольфрама (VI) (Трасова И.П., Назаров В.А., Есина О.Н.// Состав и структура катодных осадков при электролизе расплавленных смесей Li2WO4-WO3 и K2WO4-WO3// Труды института электрохимии УНЦ, АН СССР. Свердловск, 1974. Т.21. С.61-65; ″ArneMagneli″, Brigitta Blomberg, Contribution to the Knowledge of the Alkali Tungsten Bronzes, Acta Chemica Scandinavica, 1951, 5, p.372-378, D1.).

Из известных способов для получения порошков оксидных вольфрамовых бронз лития наиболее близким является использование расплава, включающего вольфрамат лития, оксид вольфрама (VI) и оксид вольфрама (IV):

~Li2O·3WO3+0.3WO2

(″ArneMagneli″, Brigitta Blomberg, Contribution to the Knowledge of the Alkali Tungsten Bronzes, Acta Chemica Scandinavica, 1951, 5, p.372-378, D1.) Из данного расплава (Li2WO4·2WO3+0.3WO2) химическим способом получают порошки оксидных литий-вольфрамовых бронз. Этим способом, меняя соотношение исходных компонентов и восстановителя - оксида вольфрама (IV), можно получать оксидные литиевые вольфрамовые бронзы LixWO3 со значением «x» 0.31-0.57.

Недостатком известного способа является то, что синтез порошков оксидных вольфрамовых бронз лития трудно осуществляют в вакууме, что связано с необходимостью защиты порошка оксида вольфрама (IV) - восстановителя вольфрамата лития до бронзы от окисления и при высокой температуре 850°C.

Задачей настоящего изобретения является упрощение химического способа получения порошков оксидных вольфрамовых бронз и повышение их дисперсности.

Поставленная задача достигается тем, что в известный состав, включающий оксид вольфрама (VI) и вольфрамат лития, дополнительно вводят тетраборат лития и порошок металлического вольфрама при следующих соотношениях компонентов, мас.%:

Li2WO4 30-66
Li2B4O7 7-24
WO3 20-34
W остальное

Впервые химический способ синтеза оксидных вольфрамовых бронз, в основе которого лежит реакция взаимодействия тонкой смеси порошков вольфрамата натрия, оксида вольфрама (VI) и порошка металлического вольфрама в расплаве, предложил Страуманис (Straumanis M.E.//Anal. Chem. - 1949 г., - vol.71, - p.679). По его схеме эта реакция основана на следующем уравнении:

Насколько удалось установить, в литературе нет других данных по механизму процесса синтеза оксидных вольфрамовых бронз химическим способом в расплавах вольфрамат-оксидной системы с использованием в качестве восстановителя порошка металлического вольфрама.

Уравнение (1) при x=1 принимает вид:

При этом, вероятно, в расплаве порошок металлического вольфрама в расплаве сначала восстанавливает оксид вольфрама (VI) до оксида вольфрама (IV) по уравнению:

В последующем образовавшийся в расплаве оксид вольфрама (IV), очевидно, восстанавливает вольфрамат щелочного металла до бронзы:

Приведенная схема образования бронз, на наш взгляд, правильно отражая суть процесса, приводит к представлению о существовании оксида вольфрама (VI) в расплаве в молекулярной форме, что является не совсем точным.

В связи с этим, рассматривая взаимодействие вольфрамата щелочного металла с оксидом вольфрама (VI) в рамках концепции Люкса кислотно-основных равновесий в ионных расплавах (Ю.К. Делимарский «Химия ионных расплавов», Киев, 1980, Наукова думка, 380 с.), можно представить следующим образом:

Механизм процесса химического способа синтеза бронз в расплавах вольфрамат-оксидных, вольфрамат-фосфат-оксидных и вольфрамат-борат-оксидных систем подробно изучен в научных статьях и диссертационных работах авторов настоящего предлагаемого изобретения (Шурдумов Б.К. Физико-химические основы оптимизации синтеза порошков оксидных вольфрамовых бронз в ионных расплавах/ Дис… д.х.н. - Нальчик, 2003. - 277 с.; Шурдумов А.Б. Фазовые равновесия и синтез порошков оксидных вольфрамовых бронз в расплавах вольфрамат-фосфат-хлорид-оксидных систем / Дис. к.х.н. - Нальчик, 2009. - 129 с.; Шурдумов М.Б. Фазовые равновесия и синтез порошков оксидных вольфрамовых бронз в расплавах вольфрамат-борат-оксидных систем / Дис. к.х.н. - Нальчик, 2011. - 144 с.).

Из уравнения (5) следует, что оксид вольфрама (VI) как бы исключается из расплава, но это исключение формальное, так как, исходя из механизма образования комплексного иона W O 2 O 7 2 , его можно разложить на две составляющие частицы: на вольфрамат - ион W O 4 2 и WO3. Последний, очевидно, восстанавливается вводимым в систему порошком металлического вольфрама до оксида вольфрама (IV), который в последующем восстанавливает вольфрамат щелочного металла до бронзы по уравнению (4).

Таким образом, суть химического способа синтеза порошков оксидных вольфрамовых бронз заключается в проведении реакции восстановления вольфрамата щелочного металла до бронзы порошком металлического вольфрама, при низких температурных режимах, при которых порошок металлического вольфрама-восстановителя, содержащийся сначала в шихте, а затем в расплаве, не окисляется или окисляется, по крайней мере до W+WO2. Это условие, согласно диаграмме состояния вольфрам - кислород (А.Н. Зеликман, Г.А. Мейерсон. «Металлургия редких металлов», М. Металлургия, 1973, с.65), достигается при проведении указанных реакций при температурах не выше 500-600°C, что исключает применение инертной атмосферы для защиты порошка металлического вольфрама - восстановителя от окисления кислородом воздуха.

Как показали наши исследования по термическому анализу системы Li2WO4-Li2B4O7-WO3 в указанной концентрационной области, составы плавятся при 560-570°C.

Химический способ синтеза порошков оксидных вольфрамовых бронз осуществляют следующим образом.

Состав, включающий вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама из указанной концентрационной области нагревают медленно до температур 570-600°C и выдерживают при этих температурах в течение 30 минут для удаления возможных пузырьков воздуха из расплава, а затем повышают температуру до 650-700°C. При этих температурах расплав выдерживают в течение 1 часа. После этого расплав охлаждают и отмывают продукты реакции от солевой массы раствором аммиака и дистиллированной водой.

Пример 1. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 66; 7; 20 и 7 масс.% соответственно, тщательно перетирают и помещают в алундовый тигель. Смесь порошков нагревают медленно до 600°C и выдерживают при этой температуре 30 минут. Синтез бронз проводят при 650°C в течение одного часа. На дне тигля собирается мелкодисперсный порошок оксидных вольфрамовых бронз фиолетового цвета. Химический анализ дает состав продукта реакции Li0,57WO3. Средний размер кристалликов 3 мкм.

Пример 2. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 59; 9; 23 и 9 масс.% соответственно. Условия подготовки шихты, проведения синтеза и отмывка продуктов те же, что и в примере 1. Продукт реакции - мелкодисперсный порошок фиолетового цвета, состава Li0,55WO3. Размеры кристалликов 1-3 мкм.

Пример 3. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 46; 16; 27 и 11 масс.% соответственно. Условия подготовки шихты, проведения синтеза и отмывка продуктов те же, что и в примере 1. Продукт реакции - мелкодисперсный порошок сине-фиолетового цвета, состава Li0,40WO3. Размеры кристалликов 1-2 мкм.

Пример 4. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 36; 21; 31 и 12 масс.% соответственно. Условия подготовки шихты, проведения синтеза и отмывка продуктов те же, что и в примере 1. Продукт реакции - мелкодисперсный порошок синего цвета, состава Li0,35WO3. Размеры кристалликов 0,5-1 мкм.

Пример 5. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 29; 24; 34 и 13 масс.% соответственно. Условия подготовки шихты, проведения синтеза и отмывка продуктов те же, что и в примере 1. Продукт реакции - мелкодисперсный порошок темно-синего цвета, состава Li0,32WO3. Размеры кристалликов 0,3-1 мкм.

Пример 6. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 68; 7,5; 17,5 и 7 масс.% соответственно. Условия подготовки шихты, проведения синтеза и отмывка продуктов те же, что и в примере 1, но синтез проводят при 700°C. Продукт реакции - оксиды вольфрама.

Пример 7. Берут вольфрамат и тетраборат лития, оксид вольфрама (VI) и порошок металлического вольфрама в количествах 27; 23,8; 35,2 и 14 масс.% соответственно. Условия подготовки шихты, проведения синтеза и отмывка продуктов те же, что и в примере 1, но синтез проводят при 700°C. Продукт реакции - смесь оксида вольфрама и бронз.

Таким образом, предлагаемый расплав позволяет химическим способом получать высокодисперсные порошки оксидных вольфрамовых бронз лития без вакуумирования реакционной зоны при относительно низких температурах, состав и дисперсность которых регулируется составом расплава.

Способ получения порошков оксидных литий-вольфрамовых бронз, заключающийся в нагреве исходного состава, включающего оксид вольфрама (VI) и вольфрамат лития, отличающийся тем, что состав нагревают до температур 570-600°C, выдерживают в течение 30 минут, а затем поднимают температуру до 650-700°C и выдерживают 1 час, причем состав дополнительно содержит тетраборат лития и порошок металлического вольфрама при следующих соотношениях компонентов, мас.%:

Li2WO4 30-66
Li2B4O7 7-24
WO3 20-34
W остальное.



 

Похожие патенты:
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов.
Изобретение относится к порошковой металлургии, в частности к составу шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза.
Изобретение относится к порошковой металлургии, в частности к составу шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза.

Изобретение относится к тонкодисперсным структурам, содержащим вентильный металл или субоксид вентильных металлов, и может быть использовано, в частности, в качестве материалов для катализаторов, мембран, фильтров, анодов конденсаторов.

Изобретение относится к порошковой металлургии, в частности к получению сложных оксидов алюминия и магния, активированных ионами редкоземельных металлов. Может использоваться при производстве материалов для источников и преобразователей зеленого света.

Изобретение относится к пирохлорным материалам и к создающим тепловой барьер покрытиям с этими пирохлорными материалами, нанесенными на суперсплав на основе железа, никеля или кобальта.

Изобретение может быть использовано в химической промышленности. Порошок вольфрамовой кислоты имеет насыпную плотность согласно ASTM B 329, составляющую как минимум 1,5 г/см3.

Изобретение предназначено для химической промышленности и может быть использовано в катализаторах процессов гидрокрекинга, гидроконверсии, гидроочистки. Для получения гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащей вольфрам, к гетерополивольфрамовым кислотам добавляют x+y/2 эквивалентов гидроксида бария.
Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО3 3-, РО4 3-, AsO4 3- и SiO3 2.
Способ рекуперации молибдата или вольфрамата из водного раствора заключается в том, что молибдат или вольфрамат связывают из водного раствора при значении рН в пределах от 2 до 6 с водонерастворимым, катионизированным неорганическим носителем.

Изобретение относится к неорганической фуллереноподобной наночастице формулы A1-x-Bx-халькогенид, где В встроен в решетку A1-x-халькогенида, А представляет собой металл или сплав металлов, выбранных из Мо и W, В является металлом, выбранным из V, Nb, Та, Mn и Re, а х≤0,3; при условии, что х не равен нулю и А≠В.

Изобретение относится к способу, который позволяет преобразовывать хлориды щелочноземельных металлов в вольфраматы и молибдаты, а также к его применению. .

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошковых материалов на основе карбидов вольфрама. .

Изобретение относится к неорганической химии, а именно к получению оксосульфидных кластерных комплексов металлов, в частности оксосульфидных кластерных комплексов вольфрама и молибденвольфрама состава W3S2O2(H2 O)9Cl4 (1) и W2MoS2 O2(H2O)9Cl4 (2).

Изобретение относится к области порошковой металлургии. Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана, включающий смешение вольфрам- и титансодержащих компонентов с источником углерода, прессование полученного порошка и последующую карбидизацию. Осуществляют нейтрализацию до pH 0-2 водного раствора вольфрамата аммония в присутствии сажи, взятой в количестве WO3:С=1:4 (в пересчете на оксид), и нейтрализацию до pH 10-12 водного раствора сульфата титанила в присутствии сажи, взятой в количестве TiO2:С=1:3 (в пересчете на оксид). Полученные осадки смешивают и карбидизируют путем обработки микроволновым излучением с частотой 2450-3000 МГц при мощности 700-1200 Вт в токе аргона со скоростью 5-6 л/ч в три стадии: со скоростью 15°C/мин до 500°C; со скоростью 10°C/мин до 700°C и со скоростью 5°C/мин до 1100°С с выдержкой на конечной стадии в течение 20-30 мин и последующей обработки в вакууме 10-3 мм рт.ст. при температуре 1350-1400°C в течение 50-60 мин. При этом соотношение карбида вольфрама к карбиду титана WC:TiC=90-50:10-50. Изобретение позволяет получить ультрадисперсный порошок сложного карбида вольфрама и титана с размером частиц менее 300 нм. 1 табл., 3 ил.
Наверх