Шихта для получения пористого проницаемого материала


 


Владельцы патента RU 2507029:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) (RU)

Изобретение относится к порошковой металлургии, в частности к составу шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза. Может использоваться для изготовления каталитических блоков нейтрализаторов отработавших газов двигателей внутреннего сгорания, фильтров для очистки сточных вод гальванических ванн в металлургической промышленности, масляных фильтров в системе смазки двигателей внутреннего сгорания. Шихта содержит, мас.%: железная окалина 42-47, α-оксид алюминия 32-39, ферросилиций ФС 1-5, медный порошок, являющийся отходом при травлении и механической обработке биметалла 1-5, алюминий АСД-1 - остальное. Обеспечивается нейтрализация отработавших газов ДВС посредством фильтрующих элементов из пористого проницаемого материала, повышается устойчивость к динамическим и статическим нагрузкам и снижается материалоемкость изделий. 1 табл., 1 пр.

 

Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза (СВС), применяемого для изготовления фильтрующих элементов, которые могут быть использованы в качестве каталитических блоков нейтрализаторов отработавших газов двигателей внутреннего сгорания, при очистке сточных вод гальванических ванн в металлургической промышленности, в качестве масляных фильтров в системе смазки двигателей внутреннего сгорания, а также для производства других пористых изделий.

Известна шихта для получения пористого проницаемого материала на основе керметов, состоящая из оксидных соединений и металла. Пористый проницаемый материал изготавливается из известной шихты методом порошковой металлургии, то есть путем прессования и последующего спекания в печи при температуре более 1000°С (Иванов В.Н. Словарь-справочник по литейному производству / В.Н.Иванов. -М.: Машиностроение, 1990. - С.116 и Федоренко И.М. Справочник: Порошковая металлургия. Материалы, технология, свойства, области применения / И.М.Федоренко, И.Н.Францевич, И.Д.Радомысельский. и др. - Киев: Наукова думка, 1985. - С.242-263).

Основным недостатком этой шихты являются повышенная энергоемкость изготовления получаемого на ее основе пористого проницаемого материала вследствие необходимости спекания в высокотемпературной печи и осуществления производства с применением дорогостоящей высокоточной технологической оснастки и прессового оборудования.

Известна шихта для получения пористого проницаемого материала, содержащая железную окалину, оксид алюминия, алюминий при следующем соотношении компонентов, мас.%: железная окалина 39-44; оксид алюминия 35-43; алюминий - остальное. Пористый проницаемый материал получают методом СВС, он имеет упорядоченную структуру порового пространства со средним размером пор 360 мкм, коррозионную стойкость 9-16%, механическую прочность на сжатие 6,2 МПа (патент RU 2081731, МПК6 В22F 1/00, В22F 3/23).

Недостатками вышеописанной шихты являются ограничение сферы применения изготовленных на ее основе изделий из пористого проницаемого материала вследствие недостаточной активности для нейтрализации отработавших газов двигателя внутреннего сгорания (ДВС), обусловленной отсутствием меди в составе шихты; пониженная устойчивость к динамическим и статическим нагрузкам и значительная материалоемкость названных изделий, обусловленные низкой механической прочностью получаемого пористого материала из-за наличия в составе шихты железной окалины и оксида алюминия при отсутствии раскисления.

Наиболее близким по технической сущности и достигаемому результату к прилагаемому изобретению (прототипом) является шихта для получения пористого проницаемого материала, содержащая железную окалину, алюминий, оксид алюминия, ферросилиций ФС-70 и алюминий при следующем соотношении компонентов, мас.%: железная окалина 41-43; оксид алюминия 37-40; ферросилиций ФС-70 1-5; алюминий - остальное. Пористый проницаемый материал получают методом СВС, он имеет упорядоченную структуру порового пространства со средним размером пор 370 мкм, механическую прочность на сжатие 10-13 МПа (патент RU 2081731, МПК6 В22F 1/00, В22F 3/23).

В качестве недостатков вышеописанной шихты можно отметить ограничение сферы применения изготовленных на ее основе изделий из пористого проницаемого материала из-за недостаточной очистки отработавших газов ДВС от вредных примесей, пониженную устойчивость к динамическим и статическим нагрузкам и значительную материалоемкость названных изделий. Эти недостатки обусловлены не достаточно высокой прочностью на сжатие получаемого пористого материала при отсутствии компонента меди в составе шихты.

Задачей настоящего изобретения является расширение сферы применения изготовленных на основе предлагаемой шихты изделий из пористого проницаемого материала путем обеспечения нейтрализации отработавших газов ДВС посредством фильтрующих элементов из пористого проницаемого материала, изготовленных на основе предлагаемой шихты, повышение устойчивости к динамическим и статическим нагрузкам и снижение материалоемкости названных изделий.

Поставленная задача решается тем, что шихта для получения пористого проницаемого материала, содержащая железную окалину, оксид алюминия, ферросилиций и алюминий, согласно изобретению содержит в качестве оксида алюминия α-оксид алюминия, в качестве ферросилиция - ферросилиций ФС-1, в качестве алюминия - алюминий АСД-1 и дополнительно содержит медный порошок, являющийся отходом при травлении и механической обработке биметалла, при следующем соотношении компонентов, мас%: железная окалина 42-47; α-оксид алюминия 32-39; ферросилиций ФС-1 1-5; медный порошок, являющийся отходом при травлении и механической обработке биметалла 1-5; алюминий АСД-1 - остальное.

Расширение сферы применения изготовленных на основе предлагаемой шихты изделий из пористого проницаемого материала путем обеспечения нейтрализации отработавших газов ДВС посредством фильтрующих элементов из пористого проницаемого материала с усиленным каталитическим действием, изготовленных на основе предлагаемой шихты, повышение устойчивости к динамическим и статическим нагрузкам и снижение материалоемкости названных изделий обусловлены повышением прочности на сжатие до 13-15 МПа (см. таблицу) вследствие введения в состав шихты порошковых отходов меди, полученных при травлении и механической обработки биметалла, содержащих 92-95% меди, что позволяет использовать тонкостенные фильтрующие элементы вместо толстостенных при жестких технологических требованиях к их необходимой механической прочности.

Содержание в шихте железной окалины в количестве 42-47 мас.% является оптимальным, так как при уменьшении в составе шихты количества железной окалины менее 42 мас.% в системе появляется жидкая фаза, а при увеличении в составе шихты количества железной окалины более 47 мас.% шихта сгорает не полностью.

Содержание в шихте α-оксида алюминия в количестве 32-39 мас.% является оптимальным, так как при уменьшении в составе шихты количества α-оксида алюминия менее 32 мас.% в системе появляется жидкая фаза, а при увеличении в составе шихты количества α-оксида алюминия более 39 мас.% шихта сгорает не полностью.

Содержание в шихте ферросилиция ФС-1 в количестве 1-5 мас.% является оптимальным, так как при уменьшении в составе шихты количества ферросилиция ФС-1 менее 1 мас.% шихта сгорает не полностью, а при увеличении в составе шихты количества ферросилиция ФС-1 более 5 мас.% в системе появляется жидкая фаза.

Содержание в шихте медного порошка, являющегося отходом при травлении и механической обработке биметалла, в количестве 1-5 мас.% является оптимальным, так как такое количество данного компонента в составе шихты обеспечивает каталитическую очистку отработавших газов, реализуется способность окисления и нейтрализации токсических компонентов отработавших газов и уменьшается дымность ДВС, при этом могут быть использованы более тонкостенные фильтрующие элементы вследствие повышения механической прочности на сжатие до 13-15 МПа. Снижение в составе шихты количества медного порошка, являющегося отходом при травлении и механической обработке биметалла, менее 1 мас.% шихта сгорает не полностью, а повышение в составе шихты количества медного порошка, являющегося отходом при травлении и механической обработке биметалла, более 5 мас.% в системе появляется жидкая фаза.

Предлагаемое изобретение поясняется таблицей, в которой приведены физико-механические и нейтрализующие свойства получаемого пористого проницаемого материала на основе предлагаемой шихты.

Шихта для получения пористого проницаемого материала содержит железную окалину в количестве 42-47 мас.%, α-оксид алюминия в количестве 32-39 мас.%, ферросилиций ФС в количестве 1-5 мас.%, медный порошок, являющийся отходом при травлении и механической обработке биметалла, в количестве 1-5 мас.%, алюминий АСД-1 - остальное. При этом отмытый и высушенный медный порошок, являющийся отходом при травлении и механической обработке биметалла, содержит 92-95 мас.% меди.

Изобретение иллюстрируется следующим примером.

Для экспериментальной проверки заявленного технического решения были приготовлены образцы шихты различного состава согласно изобретению, а также образец шихты - прототипа. Для изготовления образцов использовали порошок железной окалины стали 18Х2Н4МА, порошок α-оксида алюминия (αAl2O3), порошок ферросилиция ФС-1, отмытый и высушенный медный порошок, являющийся отходом при травлении и механической обработке биметалла, содержащий 92-95 мас.% меди, порошок алюминия АСД-1 (ТУ 48-5-226-87).

Компоненты дозировались в заданных соотношениях на аналитических весах с точностью 0,001 г, смешивались в сухую в атмосфере воздуха в лабораторном смесителе типа «пьяная бочка» партиями по 200 г в течение часа. Приготовленная шихта засыпалась в металлические формы и после инициирования реакции СВС компонентов получали образцы пористого проницаемого материала, которые в дальнейшем использовались для испытаний.

Образцы для испытаний физико-механических и каталитических свойств имели вид цилиндров с диаметром 50 мм и высотой 50 мм. Воздействием на образцы нагрузкой определяли прочность образцов на сжатие. Каталитические свойства получаемого пористого проницаемого материала на основе предлагаемой шихты определяли в опытном каталитическом нейтрализаторе отработавших газов ДВС.

По результатам, представленным в таблице, видно, что шихта с заявленным составом компонентов обеспечивает получение пористого материала с более высокой прочностью на сжатие - на 60-70% выше по сравнению с прототипом и снижающим содержание окислов азота на 61-65%, окиси углерода на 45-55% в отработавших газах ДВС.

Таким образом, использование предлагаемой шихты по сравнению с применением шихты - прототипа позволяет расширить сферу применения изготовленных на основе предлагаемой шихты изделий из пористого проницаемого материала путем изготовления фильтрующих элементов для обеспечения нейтрализации отработавших газов ДВС, повысить устойчивость названных изделий к динамическим и статическим нагрузкам и снизить их материалоемкость.

Шихта для получения пористого проницаемого материала

Таблица
Физико-механические и нейтрализующие свойства получаемого пористого - проницаемого материала
№ п/п Состав шихты Сред ний раз- мер пор, мкм Проч-ность на сжатие, МПа Примечания Нейтрализация отработавших газов ДВС
Железная окалина стали 18Х2Н 4МА α-оксид алюминия Ферросили-ций ФС-1 Медный порошок, являющийся отходом при травле-нии и механической обработ-ке биметалл-ла Алюминий АСД-1 Окис-ления азота, % Окисле-ния углеро-да, % сажа, %
1 49 38 1 0,5 11,5 - - шихта сгорела не полностью - - -
2 47 39 1 1 12 - 4,0 65 55 90
3 45 36 1 2 16 370 13,1 65 55 90
4 44 35 2 3 16 385 14,7 61 50 90
5 43 34 3 4 16 385 15,2 60 45 90
6 42 32 5 5 16 - - 60 40 90
7 41 31 6 6 16 - - Наблюдала-сь жид-кая фаза - - -
Пористый проницаемый материал на основе шихты - прототипа
8 45 40 1 - 15 370 12,5 40 30 90

Шихта для получения пористого проницаемого материала, содержащая железную окалину, оксид алюминия, ферросилиций и алюминий, отличающаяся тем, что она дополнительно содержит медный порошок, являющийся отходом при травлении и механической обработке биметалла, а оксид алюминия - в виде α-оксида алюминия, ферросилиций - в виде ферросилиция ФС-1, алюминий - в виде алюминия АСД-1, при следующем соотношении компонентов, мас. %:

железная окалина 42-47
α - оксид алюминия 32-39
ферросилиций ФС-1 1-5
медный порошок, являющийся
отходом при травлении и механической обработке
биметалла 1-5
алюминий АСД-1 остальное.



 

Похожие патенты:

Изобретение относится к тонкодисперсным структурам, содержащим вентильный металл или субоксид вентильных металлов, и может быть использовано, в частности, в качестве материалов для катализаторов, мембран, фильтров, анодов конденсаторов.

Изобретение относится к порошковой металлургии, в частности к получению сложных оксидов алюминия и магния, активированных ионами редкоземельных металлов. Может использоваться при производстве материалов для источников и преобразователей зеленого света.

Изобретение относится к пирохлорным материалам и к создающим тепловой барьер покрытиям с этими пирохлорными материалами, нанесенными на суперсплав на основе железа, никеля или кобальта.

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области металлургии, в частности к полупроводниковым ферримагнитным материалам. .
Изобретение относится к металлургии, в частности к изготовлению шиберных затворов из сплавленных зерен, содержащих оксид алюминия, оксид титана и оксид циркония, которые используются в литейных ковшах при непрерывной выплавке стали.
Изобретение относится к порошковой металлургии, в частности к технологии получения радиопоглощающих ферритов. .
Изобретение относится к электротехнике, в частности к производству контактов из высокотемпературных материалов, устройств отключения тока на мощных линиях электропередач и в качестве защитных средств в соплах ракетных двигателей.

Изобретение относится к области химии, а именно к керамометаллам, фильтрующим элементам, носителям для катализаторов и мембран, которые могут быть использованы преимущественно в различных гетерогенных каталитических процессах химической промышленности, а также в энергетике, автомобильной промышленности.
Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза (СВС).

Изобретение относится к порошковой металлургии, в частности к подбору состава материала при производстве изделий из порошковых металлических композиционных материалов с заданным физико-механическим свойством.

Изобретение относится к порошковой металлургии, в частности к способу гранулирования пластифицированного материала. Может использоваться для получения изделий из непластичных порошков, обладающих плохой формуемостью.

Изобретение относится к порошковой металлургии, в частности к получению легко выделяемых и передиспергируемых наночастиц переходных металлов. Может использоваться в качестве ИК-поглотителей, в частности в прозрачных термопластичных или сшиваемых полимерах для архитектурного или автомобильного застекления.

Изобретение относится к получению пригодных для использования на воздухе пассивированных тонкодисперсных порошков металлов или сплавов. Порошок со средним размером частиц менее 10 мкм состоит из одного из реакционноспособных металлов: циркония, титана или гафния, или содержит один из указанных реакционноспособных металлов, получают путем металлотермического восстановления их оксидов или галогенидов посредством восстанавливающего металла, который флегматизируют путем добавления пассивирующего газа или газовой смеси в процессе и/или после восстановления оксидов или галогенидов и/или путем добавления пассивирующего твердого вещества перед восстановлением оксидов или галогенидов, причем как восстановление, так и флегматизацию выполняют в едином вакуумируемом и газогерметичном реакционном сосуде.
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий на основе железа из порошковой композиции, содержащей распыленный водой предварительно легированный стальной порошок.
Изобретение относится к порошковой металлургии, в частности к получению спеченных деталей из порошковой композиции на основе распыленного водой порошка на основе железа.
Изобретение относится к порошковой металлургии, в частности к получению алюминиевой гранулированной пудры. .

Изобретение относится к порошковой металлургии, а именно к получению порошка на основе железа, содержащего небольшое количество углерода. .

Изобретение относится к порошковой металлургии, в частности к получению высокоазотистой аустенитной порошковой стали с нанокристаллической структурой. .
Изобретение относится к технологии получения таблеток из шихты оксида цинка методом прессования, а в частности к его промежуточной стадии - спеканию. .
Изобретение относится к порошковой металлургии, в частности к составу шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза. Может использоваться для изготовления каталитических блоков нейтрализаторов отработавших газов двигателей внутреннего сгорания, фильтров для очистки сточных вод гальванических ванн в металлургической промышленности, масляных фильтров в системе смазки двигателей внутреннего сгорания. Шихта содержит, мас.%: железная окалина - 42,0-47,0; α-оксид алюминия - 32,0-39,0; ферросилиций ФС-1 - 1,0-5,0; комплексная добавка иридия и родия в соотношении 2:1 - 0,2-0,4; алюминий АСД-1 - остальное. Обеспечивается нейтрализация отработавших газов ДВС посредством фильтрующих элементов из пористого проницаемого материала, повышается устойчивость к динамическим и статическим нагрузкам и снижается материалоемкость изделий. 1 табл., 1 пр.
Наверх