Состав для укрепления песчаного грунта



Состав для укрепления песчаного грунта
Состав для укрепления песчаного грунта
Состав для укрепления песчаного грунта
Состав для укрепления песчаного грунта
Состав для укрепления песчаного грунта
Состав для укрепления песчаного грунта

 


Владельцы патента RU 2534862:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) (RU)

Изобретение относится к области строительства дорожных и других оснований и может быть использовано для укрепления песчаных грунтов. Состав для укрепления песчаного грунта, включающий наполнитель и связующий компонент, причем наполнитель содержит измельченный до высокодисперсного состояния песок (74-136 нм), а в качестве связующего компонента применен измельченный до микродисперсного состояния сапонитсодержащий материал (265-451 нм), выделенный из пульпы хвостохранилища промышленного обогащения руд месторождения алмазов, при следующем соотношении компонентов, мас.%: сапонитсодержащий материал 3-6, песок - остальное. Технический результат - повышение прочностных характеристик песчаного грунта. 2 табл. , 3 ил.

 

Изобретение относится к области строительства дорожных и других оснований и может быть использовано для укрепления песчаных грунтов.

Существующие в настоящее время составы для укрепления песчаных грунтов являются затратными и трудоемкими, для которых требуется наличие специальных компонентов.

Известен состав для укрепления песчаного грунта [Авт.св. СССР №616354, МПК Е01С 7/36, C08L 95/00, 1978 г.]. Изобретение направлено на укрепление песчаного грунта составом, включающим в себя модификатор из битумной эмульсии, сульфитно-спиртовой барды, добавки и воды, при этом в качестве добавки используют жидкое стекло.

Недостатки состава - его многокомпонентность, сложность выдержки в технологическом процессе и недостаточно высокие прочностные характеристики закрепляемого грунта.

Известно вяжущее для закрепления песчаного грунта [Авт.св. СССР №1796743, МПК E02D 3/12, С09К 17/00, 1993 г.]. Изобретение направлено на укрепление песчаного грунта вяжущим, включающим в себя модификатор из технического лигносульфоната, древесной смолы и воды.

Недостатки состава - сложность выдержки компонентов в технологическом процессе, дополнительный расход энергии, которая затрачивается на подогрев древесной смолы, и недостаточно высокие прочностные характеристики закрепляемого грунта.

Ближайшим аналогом заявленного изобретения является состав для закрепления песчаного грунта [Авт.св. СССР №1165705, МПК E02D 3/12, Е01С 3/04, 1985 г.]. Изобретение направлено на укрепление песчаного грунта составом, включающим в себя модификатор из отработанных нефтепродуктов и оксикислот.

Недостатки состава - недостаточно высокие прочностные характеристики закрепляемого грунта и дополнительный расход энергии, затрачиваемой на подогрев отработанных нефтепродуктов.

Задачей настоящего изобретения является повышение прочностных характеристик песчаного грунта, а именно повышение удельного сцепления без изменения угла внутреннего трения более чем на 4%.

Поставленная задача достигается тем, что состав в качестве модификатора содержит высокодисперсный песок и микродисперсный сапонит при следующем соотношении компонентов, мас.%:

сапонитсодержащий материал 3-6;

песок - остальное.

В качестве исходных сырьевых материалов используются: речной полиминеральный песок (основные составляющие минералы: кварц, кальцит, полевые шпаты, гипс, слюда), крупностью зерен от 1,6 до 1,8 мм, предварительно отмытый от глинистых включений, и сапонитсодержащий материал, выделенный из пульпы хвостохранилища промышленного обогащения руд месторождения алмазов.

Модификатор получают следующим образом. Песчаный грунт, предварительно отмытый от глинистых включений, высушивается до постоянной массы при температуре 110°С. Исходный материал методом механического диспергирования измельчается на планетарной шаровой мельнице Retsch РМ100 (продолжительность помола - 60 мин при 420 об/мин, 80°С). Затем полученная фракция подвергается мокрому помолу в течение 5 часов на планетарной шаровой мельнице (420 об/мин). Образец сапонитсодержащего материала высушивается до постоянной массы при температуре 110°С. Исходный материал методом механического диспергирования измельчается на планетарной шаровой мельнице Retsch РМ100 (продолжительность помола - 120 мин при 420 об/мин, 80°С). Размер частиц образцов определяется на установке Delsa Nano Series Zeta Potential and Submicron Particle Size Analyzers.

Для экспериментов используются образцы молотого песка со средним размером частиц 102±34 нм, сапонитсодержащего материала - 361±96 нм. Данные их характеризуются по величине удельной поверхности S методом сорбции азота на анализаторе Autosorb-iQMP. Для образцов получены следующие значения удельной поверхности: песок - 8580 м2/кг, сапонитсодержащий материал - 173429 м2/кг.

По методике, основанной на измерении величины краевого угла смачивания поверхности образца водно-этанольным раствором и реализующей способ Г.А. Зисмана, определяется критическое значение поверхностного натяжения (σк) бинарной системы высокодисперсный песок - микродисперсный сапонит при варьировании массовой доли последнего в композите в диапазоне 0÷2%. Верхний предел содержания сапонитсодержащего материала в смеси обусловлен фактом нарушения однородности поверхности системы, что проявляется в невозможности фиксации псевдоравновесного состояния при нанесении эталонного водно-этанольного раствора. Определение краевого угла смачивания выполняется на установке Easy Drop. После завершения серий экспериментов, заключающихся в обязательном проведении трех параллельных измерений, рассчитывается величина ΔGS по уравнению ΔGS=Δσ+σ·ln SудII/SI. Для расчета используются не менее двух сходящихся экспериментальных значений краевого угла. Кроме того, для каждого состава композита определяется величина удельной поверхности системы. Полученные экспериментальные результаты и рассчитанные значения изобарно-изотермического потенциала композиционных составов «песок-сапонит» представлены в таблице 1.

Изобретение иллюстрируется чертежом, где на фиг.1 приведен графический вид функциональной зависимости ΔGS=f(p), который показывает наличие в исследуемой бинарной системе области соотношения компонентов, характеризующейся отрицательными значениями ΔGS.

На фиг.2 и фиг.3 представлены протоколы испытаний модификатора. На фиг.2 предельное сопротивление сдвигу образца песка фракции 0,1-0,25 мм без добавки модификатора; на фиг.3 - с добавкой модификатора 5% по массе.

Исходя из вышеизложенного для данной системы можно использовать понятие термодинамической совместимости компонентов, которая отмечается при содержании сапонита в интервале 3÷6%, причем с явно выраженным экстремумом при его 4%-ной добавке.

Показателями прочностных характеристик грунта являются удельное сцепление и угол внутреннего трения.

Примеры реализации изобретения, подтверждающие повышение прочностных характеристик песчаного грунта, представлены в таблице 2 - определение удельного сцепления и угла внутреннего трения (примеры 1-6). Испытания проводились на приборе прямого плоскостного среза «Shear Trac-II».

Состав для укрепления полученный смешении измельченного сапонитсодержащего материала и песка добавляется в песчаный грунт в сухом состоянии с последующим перемешиванием.

Приведенные примеры реализации изобретения 1-6 подтверждают повышение прочностных характеристик песчаного грунта при применении заявляемого состава.

Состав для укрепления песчаного грунта, включающий наполнитель и связующий компонент, отличающийся тем, что наполнитель содержит измельченный до высокодисперсного состояния песок (74-136 нм), а в качестве связующего компонента применен измельченный до микродисперсного состояния сапонитсодержащий материал (265-451 нм), выделенный из пульпы хвостохранилища промышленного обогащения руд месторождения алмазов, при следующем соотношении компонентов, мас.%:
сапонитсодержащий материал 3-6;
песок - остальное.



 

Похожие патенты:

Изобретение относится к устройству для смешивания почвенных материалов, в особенности к устройству для смешивания примесей непосредственно с почвенными материалами земли.
Изобретение относится к строительству и утилизации отходов теплоэнергетики, а именно к укрепленным грунтовым композициям (цементогрунтам), которые могут быть использованы для строительства сооружений, в том числе в конструкциях оснований дорожных одежд автомобильных дорог; в земляном полотне автомобильных дорог и других сооружений; для засыпки, ликвидации и рекультивации выработанных грунтовых карьеров и шламовых амбаров; для укрепления обочин дорог, откосов, выемок.

Изобретение относится к технологии строительства и может быть использовано для определения количества цемента в грунтоцементном материале при создании строительных конструкций посредством струйной цементации.

Изобретение относится к области строительства оснований и покрытий дорог с использованием песчаных, супесчаных и глинистых грунтов естественного происхождения в комбинации с другими материалами.

Изобретение относится к строительству и может быть использовано для повышения несущей способности в действующем состоянии просадочных грунтов под фундаментами сооружений жилых домов путем укрепления под ними просадочных грунтов.
Изобретение относится к способу закрепления грунтов и фундаментов. Способ заключается в обработке последних содержащим латексный полимер закрепителем, применяемым в смеси с водой.

Изобретение относится к области строительства и используется при сооружении и анализе напряженно-деформированного состояния строящихся преимущественно высоких и высотных зданий и сооружений на неравномерно сжимаемых грунтах.
Изобретение относится к области строительных материалов, в частности к технологии получения самоуплотняемых грунтовых смесей с гидравлическим вяжущим, которые могут быть использованы в устройстве дорожных оснований и обвалований, при прокладке инженерных коммуникаций, заполнении траншей и выемок различной конфигурации в грунтах, в подземном строительстве и др.

Изобретение относится к области строительства и может быть использовано для укрепления оснований зданий и сооружений в сейсмически опасных зонах. .

Изобретение относится к строительству, а именно к оборудованию для струйной цементации для закрепления грунта. .

Изобретение относится к способам повышения эксплуатационных характеристик дороги и может быть использовано при строительстве автомобильных и железных дорог, требующих специальных средств для усиления земляного полотна.

Изобретение относится к строительству автомобильных дорог, а именно к конструкциям дорожной одежды. Технический результат - повышение прочности проезжей части автомобильной дороги за счет снижения напряжений от приложенной нагрузки в зоне перехода от более прочного участка конструкции дороги к менее прочному.

Изобретение относится к строительству и гидромелиорации и может быть использовано для осушения взлетно-посадочных полос аэродромов, автомобильных и железных дорог.
Изобретение относится к строительству и утилизации отходов теплоэнергетики, а именно к укрепленным грунтовым композициям (цементогрунтам), которые могут быть использованы для строительства сооружений, в том числе в конструкциях оснований дорожных одежд автомобильных дорог; в земляном полотне автомобильных дорог и других сооружений; для засыпки, ликвидации и рекультивации выработанных грунтовых карьеров и шламовых амбаров; для укрепления обочин дорог, откосов, выемок.

Изобретение относится к области строительства и широко может быть использовано при возведении земляного полотна автомобильных и железных дорог, взлетно-посадочных полос аэродромов, использовано в районах, характеризующихся глубоким сезонным промерзанием грунтов и высоким уровнем грунтовых вод.

Изобретение относится к области строительства и может быть использовано при возведении земляного полотна автомобильных и железных дорог, взлетно-посадочных полос аэродромов, использовано в районах, характеризующихся глубоким сезонным промерзанием грунтов и высоким уровнем грунтовых вод.
Изобретение относится к строительной промышленности и может быть использовано для устройства дорожной одежды автодорог. Технический результат - повышение водоотталкивающих и теплоизоляционных свойств.

Гибкая укрепляющая лента, по существу, с постоянной толщиной «е», предназначена для использования в армированных грунтовых сооружениях, содержит центральную часть, состоящую из полимерной матрицы, армированной волокнами, упомянутый участок проходит продольно для выдерживания растягивающего усилия, а также, по меньшей мере, из одного бокового участка переменной ширины, содержащего множество сегментов, расположенных непрерывно вдоль центрального участка.
Изобретение относится к способу закрепления грунтов и фундаментов. Способ заключается в обработке последних содержащим латексный полимер закрепителем, применяемым в смеси с водой.
Изобретение относится к дорожному строительству. Технический результат - снижение трудоемкости работ по возведению дорожной одежды.

Изобретение относится к области дорожного строительства, в частности к строительству дорожных конструкций с асфальтобетонным покрытием нежесткого типа. Способ уширения дорожной конструкции включает выполнение вдоль кромки покрытия горизонтального среза грунта обочины на глубину, равную толщине существующего покрытия с одновременным удалением его на откос насыпи дороги, обрезку кромки перпендикулярно плоскости покрытия или вертикально на величину не более 100 мм, удаление обломков в ковш погрузчика для вторичного использования, сооружение вертикальной «стены в грунте» из извлекаемых металлических шпунтовых свай, вплотную примыкающей к обновленной кромке покрытия, при этом нижние концы свай внедрены в деятельный слой уплотненного грунтового основания на достаточную глубину, а верхние концы свай с проушинами возвышаются над уровнем горизонтального дна среза грунта обочины на минимальную высоту, достаточную для размещения захвата грузоподъемного механизма. Затем вдоль стены в грунте производят удаление грунта обочины и откоса насыпи до низа дорожной одежды и здесь устраивают деятельный слой грунтового основания рекомендуемой толщины на расчетную величину уширения с послойным уплотнением грунта до максимальной плотности при оптимальной влажности. На деятельном слое устраивают все конструктивные слои дорожной одежды из материалов, аналогичных материалам старой дорожной одежды по качеству, толщине и степени уплотнения. Затем устраивают новое покрытие, примыкающее по плоскости к старому покрытию, аналогичное ему, и следом защитный слой асфальтобетонного покрытия по полной ширине укрепленной поверхности со смещением при необходимости оси дороги путем профилирования. Завершают процесс подсыпкой грунта на обочину и уплотнением его. При втором способе уширения дорожной конструкции используют неизвлекаемые железобетонные шпунтовые сваи для сооружения на том же месте стены в грунте без поэтапного извлечения их при устройстве слоев дорожной одежды, оставляя верхние торцы свай на уровне горизонтального дна среза грунта обочины, а затем накрывают их слоями покрытия. Технический результат - гарантированное сохранение несущей способности существующей дорожной одежды и обеспечение возможности пропуска транспортного потока по дороге без строительства объездного пути, способствующих удешевлению стоимости дорожно-ремонтных работ, увеличению межремонтных сроков с сохранением на длительный период ее высоких транспортно-эксплуатационных показателей. 2 н.п. ф-лы, 6 ил.
Наверх