Способ определения степени пропитки жгутов углеродного волокна пеками и установка для его осуществления



Способ определения степени пропитки жгутов углеродного волокна пеками и установка для его осуществления
Способ определения степени пропитки жгутов углеродного волокна пеками и установка для его осуществления
Способ определения степени пропитки жгутов углеродного волокна пеками и установка для его осуществления

 


Владельцы патента RU 2538687:

Открытое акционерное общество "Авиационная корпорация "Рубин" (ОАО "АК "Рубин") (RU)

Изобретение относится к области производства углерод-углеродных композиционных материалов различного назначения, предназначено для сравнительной оценки пропитки жгутов углеродного волокна (УВ) расплавами пеков и может быть использовано при отработке технологий производства углерод-углеродных композиционных материалов, имеющих различные свойства, посредством модификации или замены пекового связующего и/или углеродного волокна, например, в научных лабораториях, в частности, при проведении лабораторных работ. Для определения степени пропитки жгутов углеродного волокна пеками жгут углеродного волокна помещают в стеклянную трубку так, чтобы конец жгута выступал из стеклянной трубки, а углеродные волокна в жгуте были ориентированы по оси стеклянной трубки, при этом толщину жгута выбирают таким образом, чтобы он плотно держался в стеклянной трубке, выступающий конец жгута углеродного волокна приводят в соприкосновение с расплавленным пеком и выдерживают в таком положении, затем жгут углеродного волокна извлекают из трубки и определяют высоту пропитки жгута углеродного волокна пеком. Достигается упрощение и ускорение определения. 1 пр., 3 ил.

 

Изобретение относится к области производства углерод-углеродных композиционных материалов различного назначения, предназначено для сравнительной оценки пропитки жгутов углеродного волокна расплавами пеков и может быть использовано при отработке технологий производства углерод-углеродных композиционных материалов, имеющих различные свойства, посредством модификации или замены пекового связующего и/или углеродного волокна, например, в научных лабораториях, в частности, при проведении лабораторных работ.

Углеродные волокна характеризуются уникальной комбинацией физико-механических и химических свойств, сочетая высокую прочность с химической инертностью, что позволяет использовать их для создания композиционных материалов не только общего, но также авиационного и космического назначения. Прочность и надежность подобных материалов, а также упрощение технологической схемы их получения зависит от характера взаимодействия на поверхности раздела углеродное волокно/матрица. Функционализация углеродного волокна, модификация связующего и т.д. способствует повышению адгезии углеродного волокна к матрице и повышению механических свойств получаемого материала.

Одним из факторов, определяющих прочность композиционного материала, состоящего из армирующего компонента в виде жгутов углеродного волокна и полимерной матрицы в виде пека, является способность связующего смачивать углеродное волокно, иными словами, сродство углеродного волокна и пека. Смачивание, в свою очередь, определяет степень пропитки волоконного наполнителя связующим в процессе формования и однородность получаемого материала.

Известен способ определения смачивания углеродного волокна пеком, который проводили методом пластины Вильгельми на силовом тензиометре (Шорникова О.Н. и др. Смачивание углеродных волокон расплавами каменноугольного пека // Химические волокна. - 2012. - №4. - С. 64-68). Данный способ принят за прототип. Сущность метода пластинки Вильгельми состоит в погружении пластины с известными геометрическими параметрами в исследуемую жидкость: при погружении пластины в жидкость на нее действует выталкивающая сила F, которая зависит от глубины погружения пластины в жидкость. При этом на первом этапе работы измеряли краевые углы смачивания углеродных волокон модельными жидкостями, образцы моноволокон помещали в цилиндрические полые держатели, фиксировали с помощью проволоки так, чтобы длина свободного конца волокна не превышала 5 мм. Держатель закрепляли на весах и образец приводили в соприкосновение с модельной жидкостью. Измерения проводили для 10 образцов волокна одного типа, в рамках каждого измерения проводили 5 циклов погружения/извлечения волокна. В каждом цикле записывали кривую смачивания - зависимость силы, действующей на образец, от глубины погружения. Затем рассчитывали равновесные углы смачивания, полярную и дисперсионную составляющие свободной поверхностной энергии волокон. Затем определяли характеристики пеков. Для этого образец пека помещали в стакан диаметром 70 мм и высотой 40 мм, так чтобы стакан был наполовину полон. Стакан с пеком помещали в термостатируемую ячейку с температурой 160°С. Далее измеряли поверхностное натяжение расплавов пеков методом кольца дью Нуи. Для каждого образца проводили 10 измерений. Далее измеряли краевой угол смачивания тефлоновой пластины расплавом пека, рассчитывали полярную и дисперсионную составляющие расплавов пека. Для каждого образца проводили не менее 5 измерений. Между измерениями пек термостатировали 10 минут с закрытой крышкой.

Данная технология определения смачивания углеродного волокна пеком очень сложна, трудоемка и требует много времени на измерительный процесс и процесс расшифровки данных. Еще один недостаток описанного способа заключается в сложности его аппаратурного оформления.

К тому же измерение смачивания волокон полимерным связующим (пеком) напрямую не всегда возможно ввиду малых диаметров моноволокон и вязкости связующего.

Задачей изобретения является упрощение и ускорение процесса определения степени пропитки углеродных волокон пеками, а также упрощение оборудования для определения степени пропитки углеродных волокон пеками.

Технический результат достигается посредством способа определения степени пропитки жгутов углеродного волокна пеками, который характеризуется тем, что жгут углеродного волокна помещают в стеклянную трубку так, чтобы конец жгута выступал из стеклянной трубки, а углеродные волокна в жгуте были ориентированы по оси стеклянной трубки, при этом толщину жгута выбирают таким образом, чтобы он плотно держался в стеклянной трубке, выступающий конец жгута углеродного волокна приводят в соприкосновение с расплавленным пеком и выдерживают в таком положении, затем жгут углеродного волокна извлекают из трубки и определяют высоту пропитки жгута углеродного волокна пеком.

Также технический результат достигается посредством установки для определения степени пропитки жгутов углеродного волокна пеками, с помощью которой может быть осуществлен описанный выше способ и которая содержит печь, основание с возможностью помещения его в печь, ванночку, установленную на основании, и держатель для по меньшей мере одной вертикально установленной стеклянной трубки, расположенный на основании над ванночкой с возможностью вертикального возвратно-поступательного перемещения.

Вышеизложенные особенности и преимущества предлагаемого изобретения будут понятны из последующего описания предпочтительных примеров их осуществления со ссылками на прилагаемые чертежи, на которых одинаковые элементы обозначены одинаковыми позициями:

на фиг.1 представлена схема установки определения степени пропитки жгутов углеродного волокна пеками в соответствии с настоящим изобретением;

на фиг.2 - схема основания с установленными на нем ванночкой и держателем в исходном положении в соответствии с настоящим изобретением;

на фиг.3 - схема основания с установленными на нем ванночкой и держателем в положении, когда выступающий конец жгута углеродного волокна опущен в расплавленный пек, в соответствии с настоящим изобретением.

В основу способа определения степени пропитки жгутов углеродного волокна пеками в соответствии с настоящим изобретением положено явление капиллярного всасывания жидкости (раствора, расплава) в область между углеродными волокнами, собранными в жгут. Для осуществления заявленного способа используют по меньшей мере одну стеклянную трубку 1, в которую помещают жгут 2 углеродного волокна. Толщину жгута 2 выбирают таким образом, чтобы он плотно держался в стеклянной трубке 1. Углеродные волокна в жгуте 2 ориентированы по оси стеклянной трубки (практически параллельно). Свободный конец жгута 2 углеродного волокна, выступающий из стеклянной трубки 1, приводят в соприкосновение с пропитывающей жидкостью - расплавленным пеком 4 и выдерживают в таком положении фиксированный промежуток времени. Поскольку на углеродные волокна нанесен аппрет, а также на них присутствуют дефекты, то какой бы плотной ни была упаковка углеродных волокон в жгуте 2, между ними существуют длинные и узкие пространства. Если углеродное волокно смачивается расплавленным пеком 4, то за счет эффекта капиллярного всасывания он будет подниматься вдоль углеродных волокон и заполнять расстояние между ними. Если упаковка жгута 2 углеродных волокон окажется не плотной, то сила тяготения превысит силу капиллярного всасывания, и расплав пека не будет пропитывать жгут углеродных волокон. Затем жгут 2 углеродного волокна извлекают из стеклянной трубки 1 и определяют путь, пройденный расплавленным пеком 4 в центральной части жгута 2, т.е. высоту пропитки жгута 2 углеродного волокна пеком 4.

Описанный выше способ может быть осуществлен на установке для определения степени пропитки жгутов углеродного волокна пеками, которая содержит печь 5 и основание 6, которое расположено с возможностью помещения в печь 5. В качестве печи 5 может быть использован шкаф сушильный или муфельная печь, обеспечивающие температуру до 350°С. На основании 6 смонтирована ванночка 7 для пека 4. На основании 6 над ванночкой 7 расположен с возможностью вертикального возвратно-поступательного перемещения держатель 8 для по меньшей мере одной вертикально установленной стеклянной трубки 1.

Работа на установке для определения степени пропитки жгутов углеродного волокна пеками осуществляется следующим образом.

Углеродные волокна нарезают одинаковой длины и складывают вместе, образуя жгут 2. Полученный жгут 2 помещают в стеклянную трубку 1 так, чтобы конец жгута 2 выступал из стеклянной трубки. 1, а углеродные волокна в жгуте 2 были ориентированы по оси стеклянной трубки 1, при этом толщину жгута 2 выбирают таким образом, чтобы он плотно держался в стеклянной трубке 1.

В ванночку 7 засыпают пек 4 и устанавливают над ней держатель 8 для по меньшей мере одной стеклянной трубки 1. В держатель 8 закрепляют вертикально по меньшей мере одну стеклянную трубку 1 так, чтобы выступающий конец жгута 2 углеродного волокна находился на некотором расстоянии от уровня пека.

Основание 6 с ванночкой 7, наполненной пеком 4, и держателем 8 с по меньшей мере одной стеклянной трубкой 1 со жгутом 2 углеродного волокна помещают в печь 5, нагретую до температуры, которая на 80°С выше точки размягчения пека (~190°С). После расплава пека 4 дополнительно выдерживают в течение 30 минут. После этого держатель 8 опускают до такого уровня, чтобы выступающий конец жгута 2 углеродного волокна пришел в соприкосновение с расплавленным пеком 4, а край стеклянной трубки 1 находился выше уровня пека 4. Держатель 8 в таком положении фиксируют и выдерживают. Затем основание 6 извлекают из печи 5, и держатель 8 поднимают до исходного положения. После остывания жгут 2 углеродного волокна извлекают из стеклянной трубки 1 и определяют (например, тактильно) высоту пропитки жгута 2 углеродного волокна пеком 4.

Описанный способ предлагается для сравнительной оценки пропитки жгутов углеродного волокна расплавами пеков, результаты которой можно использовать при отработке технологий производства углерод-углеродных композиционных материалов в зависимости от их механических и эксплуатационных свойств, посредством модификации или замены пекового связующего и/или углеродного волокна.

Пример.

Установка для определения степени пропитки жгутов углеродного волокна пеками содержит:

- основание 6 с расположенным на нем с возможностью вертикального возвратно-поступательного перемещения держателем 8 для стеклянных трубок 1;

- стеклянные трубки 1 с внутренним диаметром 8 мм (5 штук);

- ванночку 7 для расплава пека 4;

- печь 5, обеспечивающую температуру до 350°С.

Определение степени пропитки жгутов углеродного волокна пеками на указанной установке осуществляли следующим образом.

1. Подготовка образцов углеродного волокна.

Углеродные волокна нарезали длиной по 100 мм и складывали вместе в жгуты 2 так, чтобы результирующая линейная плотность составляла 27000 текс.

Полученные жгуты углеродного волокна помещали в стеклянные трубки 1 так, чтобы конец жгута 2 выступал от края стеклянной трубки 1 на 10-13 мм. Концы жгутов 2 подравнивали с помощью ножниц.

2. Подготовка установки к определению степени пропитки.

В ванночку 7 засыпали пек 4 и устанавливали над ней держатель 8, в который закрепляли 5 стеклянных трубок 1 со жгутом 2 углеродного волокна так, чтобы расстояние от уровня пека до конца жгута 2 углеродного волокна составляло 15-20 мм. Исходное положение установки перед выполнением анализа показано на фиг.2

3. Проведение определению степени пропитки.

Основание 6 с ванночкой 7 и держателем 8, в котором размещены стеклянные трубки 1 со жгутами 2 углеродного волокна, помещали в печь 5, нагретую до температуры, которая на 80°С выше точки размягчения пека (~190°С). После расплава пека 4 установку дополнительно выдерживали в течение 30 минут. После этого держатель 8 опускали до такого уровня, чтобы концы жгутов 2 углеродного волокна были погружены в расплавленный пек 4, при этом края стеклянных трубок 1 находились выше уровня пека 4 на 1-2 мм (см. фиг.3). Положение держателя 8 фиксировали и выдерживали в течение 2-х часов. Затем основание 6 извлекали из печи 5 и держатель 8 поднимали до исходного положения (см. фиг.2).

После остывания жгуты 2 углеродного волокна извлекали из стеклянных трубок 1 и определяли (тактильным способом) высоту пропитки жгута 2 углеродного волокна пеком 4.

Данный пример подтверждает, что предлагаемые способ и установка позволяют упростить и ускорить процесс определения степени пропитки жгутов углеродного волокна пеками, а также упростить аппаратурное оснащение и сократить операцию по расшифровке полученных данных.

Описанный выше пример осуществления следует во всех аспектах рассматривать лишь как иллюстративный и не обуславливающий никаких ограничений. Следовательно, могут быть использованы другие примеры осуществления настоящего изобретения и примеры внедрения, которые не выходят за пределы описанных здесь существенных признаков.

Способ определения степени пропитки жгутов углеродного волокна пеками, характеризующийся тем, что жгут углеродного волокна помещают в стеклянную трубку так, чтобы конец жгута выступал из стеклянной трубки, а углеродные волокна в жгуте были ориентированы по оси стеклянной трубки, при этом толщину жгута выбирают таким образом, чтобы он плотно держался в стеклянной трубке, выступающий конец жгута углеродного волокна приводят в соприкосновение с расплавленным пеком и выдерживают в таком положении, затем жгут углеродного волокна извлекают из трубки и определяют высоту пропитки жгута углеродного волокна пеком.



 

Похожие патенты:

Изобретение относится к определению марки вулканизированной резины и может быть использовано в машиностроении. .

Изобретение относится к способу оценки концентрации смолоподобных веществ в водной суспензии титрованием и может быть использовано в области экспериментальной и промышленной биотехнологии.

Изобретение относится к испытательной технике и может быть использовано для неразрушающего контроля физико-механических характеристик кожи и подобных ей мягких композитов.

Изобретение относится к способу оценки влияния нанокомпонентов на санитарно-химические свойства полимерных материалов заключается в газохроматографическом анализе летучих органических соединений из газовых проб, отобранных из камеры при тестировании образцов полимерных материалов с модифицирующими минеральными добавками.
Изобретение относится к легкой промышленности. .
Изобретение относится к способу создания хрупкого покрытия на поверхности изделий из светостабилизированного полиэтилена для экспериментального исследования напряженного состояния изделий методом хрупких покрытий.

Изобретение относится к кожевенной промышленности. .

Изобретение относится к анализу технического углерода (сажи) и может быть использовано при разработке технологии получения новых марок сажи для резин. .
Изобретение относится к медицине, в частности к онкологии, и может быть применено для установления наличия первично-множественного синхронного рака толстой кишки. Сущностью изобретения является то, что у больных раком толстой кишки обоего пола в предоперационном периоде определяют содержание в крови фолликулостимулирующего гормона. При его концентрации у женщин в границах от 26,01 до 60,91 МЕ/л, а у мужчин - в границах от 2,71 до 5,67 МЕ/л устанавливают наличие у пациентов одиночной опухоли, а при концентрации гормона у женщин в границах от 2,70 до 5,50 МЕ/л и у мужчин в границах от 12,88 до 52,04 МЕ/л устанавливают наличие в толстой кишке синхронно развивающихся новообразований. Способ может быть осуществим на дооперационном этапе, легко воспроизводим в условиях стационара лечебных учреждений онкологического профиля. 6 пр.

Изобретение относится к области инновационных технологий и может быть использовано для повышения эффективности определения функциональных параметров полимерных композиционных материалов, определяющих эффективность перспективных технических систем. Заявлен способ определения температуры стеклования полимерных композиционных материалов на основе тетразола, согласно которому температуру стеклования определяют по изменению наклона на графике температурной зависимости обратной величины действительной части комплексной диэлектрической проницаемости 1/ε′=f(T). Технический результат - повышение точности и достоверности определения температуры стеклования полимерных композиционных материалов на основе тетразола. 4 ил., 1 табл.

Изобретение относится к измерительной технике, в частности к устройствам для измерения профиля поверхностей низкомодульных вязкоупругих листовых материалов легкой промышленности, а именно искусственных и натуральных кож и прочего. Устройство для определения профиля материалов в деформированном состоянии, содержащее основание, отсчетный узел, базирующий элемент, установленный с возможностью поворота вокруг своей оси, отличающийся тем, что базирующий элемент выполнен в виде полуцилиндра с полым полуконусом и двумя ограничительными пластинами для крепления образца; устройство содержит дополнительный отсчетный узел, закрепленный на полуцилиндре, для определения радиуса изгиба исследуемого образца, расположенный параллельно направляющей полуконуса, при этом основной отсчетный узел выполнен комбинированным, с возможностью перемещения вдоль оси вращения базирующего элемента и содержит тензометрический датчик перемещений и цифровой оптический микроскоп. Устройство дает возможность изучать скрытые дефекты натуральной кожи и искусственных материалов, определять изменение рельефа материала при деформации изгиба. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам испытания материалов. Сущность: образец сначала растягивают до максимальной заданной деформации, выдерживают при этой деформации заданное время, сжимают до исходного ненагруженного состояния, выдерживают заданное время, затем циклически деформируют с выдержкой по времени на каждой ступени деформации при растяжении и сжатии, при этом деформация на каждом цикле растяжения задается меньшей, чем на предыдущем цикле, а деформация на каждом цикле разгрузки задается большей, чем на предыдущем цикле. Технический результат: получение большей информации о свойствах материала при испытании одного образца, а также получение новой информации - построение равновесной кривой растяжения, диссипативных потерь, размягчения материала после каждого цикла растяжения-сжатия и кривых релаксации и кривых восстановления структуры материала при разных деформациях. 1 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической химии пищевых производств. Способ оценки безопасности упаковочных полимерных материалов для тепловой обработки вакуумированных пищевых продуктов включает формирование полимерного материала в виде пакета, его вакуумирование, герметизирование и термическую обработку, после которой пакет термостатируют при комнатной температуре, вкалывают в него шприцем 5,0 см3 осушенного воздуха и через 5 мин, не вынимая шприца, отбирают 3,0 см3 воздуха. Полученную пробу вводят в герметичную ячейку детектирования устройства «пьезоэлектронный нос», состоящего из массива семи масс-чувствительных пьезосенсоров. Регистрируют изменение сигналов пьезосенсоров в парах равновесной газовой фазы пробы в течение 60 c с интервалом 1с, наибольшие отклики пьезосенсоров формируют в масс-ароматограмму максимумов, рассчитывают площадь масс-ароматограммы. В идентичных условиях анализируют пробу-стандарт полимерного материала. Оценку безопасности полимерного материала проводят путем сопоставления площади масс-ароматограмм анализируемой пробы и пробы-стандарта. Различие площади масс-ароматограмм более чем на 30,0±1,0% свидетельствует о несоответствии пробы стандарту полимерной упаковки. Изобретение позволяет оценить уровень возможной эмиссии легколетучих соединений из полимерных материалов в процессе тепловой обработки при повышении точности и сокращении времени анализа. 2 ил., 1 табл.
Изобретение относится к медицине и предназначено для оценки эффективности нутриционной поддержки при язвенном колите. В качестве маркера используют растворимую форму молекул адгезии семейства ICAM - sICAM-1, sICAM-2, sICAM-3. При снижении уровня sICAM-1 с 29-37,2 до 23-24, sICAM-2 с 19,1-21,1 до 13-14, sICAM-3 с 23-30,7 до 14-17 считают нутриционную поддержку эффективной. Способ позволяет повысить точность оценки эффективности нутриционной поддержки при язвенном колите. 3 пр.

Изобретение относится к средствам и способам виброзащиты объектов техники, в частности к прокладкам-амортизаторам под подошву шпал или брусьев стрелочных переводов, а также для виброзащиты строительных конструкций и промышленного оборудования. Способ регулирования жесткости амортизатора включает введение в сырую пористую резиновую смесь на основе непредельного каучука или смеси каучуков синтетического полипропиленового волокна от 0,1 до 12 мас.%, считая на массу резиновой смеси, с последующим формованием и вулканизацией получаемых изделий. При этом количество полипропиленового волокна рассчитывают по предварительно полученной экспериментальным путем зависимости величины жесткости амортизатора от содержания волокна в указанном интервале и обеспечивающее требуемую величину жесткости. Способ позволяет получить пористый амортизатор с заданным модулем упругости, характеризующийся, по существу, линейной зависимостью величины модуля упругости от содержания указанного полипропиленового волокна. 3 н. и 15 з.п. ф-лы, 1 ил.,8 табл.
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения. Анализ летучих органических соединений (ЛОС), мигрирующих из СПМ, проводят путем активного отбора проб на сорбент, с последующей термической десорбцией и газохроматографическим анализом. Прогнозирование процессов старения материалов и оценку токсичности газовыделения проводят по динамике качественного и количественного состава компонентов газовыделения в исходном состоянии СПМ и в процессе искусственного климатического термовлажностного старения. Анализ динамики суммарного газовыделения (ΣT) из каждого материала проводят для всех веществ, мигрирующих из исследованных СПМ. Оценку изменения токсичности и прогнозирование процессов старения материалов проводят по разработанным показателям суммарного газовыделения (ΣT) и по гигиеническому показателю Р=(ΣTисх/ΣTn)/V, где Tисх и Tn - показатели токсичности газовыделения каждого вещества в исходном и состаренном состояниях соответственно, а ΣТисх и ΣTn - суммарный показатель токсичности газовыделения всех входящих в состав образца СПМ в исходном и состаренном состояниях, V - длительность старения (год, месяц). Изобретение позволяет достигать высокой точности метода детектирования количественного и качественного состава ЛОС в газовыделении в процессе старения материалов и воспроизводимости результатов анализа. 3 табл.

Изобретение относится к аналитической химии, а может быть использовано для оценки безопасности изделий из фенолформальдегидных пластмасс. Для этого используют многоканальный анализатор газов (МАГ-8) с 8-мью пьезокварцевыми резонаторами, электроды которых модифицируют нанесением растворов полидиэтиленгликольсукцината, полиэтиленгликольсебацината, полиэтиленгликольфталата, полифенилового эфира, триоктилфосфиноксида, пчелиного клея, пчелиного воска и комбинированного сорбента - пчелиного клея с хлоридом железа (III). После удаления растворителя при температуре 40-50°C в течение 15-20 мин, масса пленки сорбента составляет 15-20 мкг. После этого модифицированные пьезокварцевые резонаторы помещают в закрытую ячейку детектирования МАГ-8 и выдерживают в течение 5 мин для установки стабильного нулевого сигнала. Затем в пробоотборник помещают 5,00 г измельченного образца фенолформальдегидной пластмассы, плотно закрывают полиуретановой пробкой и выдерживают при температуре 20±1°C в течение 15 мин для насыщения газовой фазы парами фенола. Затем отбирают 3 см3 равновесной газовой фазы через полиуретановую пробку и инжектируют ее в закрытую ячейку детектора МАГ-8, фиксируют в течение 120 с изменение частоты колебаний пьезосенсоров и рассчитывают площадь «визуального отпечатка» Sв.о., Гц·с по формуле Sв.о.=f(Сф), S=1959·Сф+35. Для расчета предварительно строят калибровочный график зависимости Sв.о., Гц·с от концентрации фенола Сф, мг/дм3. Если площадь Sв.о.≥130±10 Гц·с, то концентрация свободного фенола в равновесной газовой фазе над фенолформальдегидными пластмассами Сф>0,05 мг/дм3 превышает рекомендуемый уровень для пищевых пластмасс, а при Sв.о. >260 Гц·с и выше, регистрируется высокое содержание фенола и формальдегида. Изобретение позволяет быстро оценить безопасность изделий из фенолформальдегидных пластмасс с 5% погрешностью измерений. 2 ил., 1 пр.

Изобретение относится к области экспериментального определения температуры хрупко-вязкого перехода при распространении быстрой трещины в образцах материалов, на основе полиолефинов при их испытании на растяжение в исследуемом интервале температур и предназначено для использования при создании однородного хрупкого слоя на поверхности образца, действующего в качестве инициатора трещины. Способ включает смешивание при 180º С частиц кокса с размерами 10 мкм и гранул полиолефина с последующим изготовлением пластины толщиной 2-3 мм. После чего на поверхности образца из полиолефина формируют однородный хрупкий слой путем нагрева и соединения между собой поверхностей образца и полученной (охрупченной) пластины. Настоящее изобретение позволяет применять метод «хрупкой наплавки» в испытаниях материалов на основе полиолефинов на стойкость к быстрому распространению трещин. 2 ил.
Наверх