Комплекс для газификации угля



Комплекс для газификации угля
Комплекс для газификации угля

 


Владельцы патента RU 2539055:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" (ДВФУ) (RU)

Изобретение относится к горному делу и может быть применено для газификации угля. Комплекс включает подземный газогенератор, при этом отводящая скважина размещена в центре газифицируемого участка угля, а подающие скважины размещены вокруг нее по периферии газифицируемого участка угля. Парогенерирующее оборудование включает два спиральных трубопровода, обвитых вокруг газоотводящей трубы, первый из которых выполнен на ее верхнем участке, а второй выполнен ниже первого. Приемное отверстие первого спирального трубопровода сообщено с источником воды, а его выпускное отверстие сообщено соединительным трубопроводом с приемным отверстием второго спирального трубопровода. При этом выпускное отверстие второго спирального трубопровода, размещенное в его верхней точке, сообщено с паровой турбиной посредством паропровода. Причем выход паровой турбины через узел приготовления дутья сообщен с подающей скважиной, которая дополнительно сообщена с паропроводом через обводной паропровод. Обводной паропровод пропущен через узел приготовления дутья с возможностью эжектирования его содержимого, кроме того, на поверхности размещен узел сушки углеродсодержащих твердых отходов, сообщенный с их дезинтегратором, выход которого сообщен с узлом приготовления дутья. В качестве средства утилизации CO2 использована линия по производству углекислоты или накопитель углекислоты, выполненный с возможностью ее регулируемого сброса в узел приготовления дутья. Технический результат заключается в повышении эффективности утилизации тепла исходящих газов. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к горному делу и может быть использовано при подземной газификации угля, а также утилизации углеродсодержащих твердых отходов.

Известен комплекс для газификации угля, включающий подземный газогенератор, содержащий систему подающих скважин и отводящих скважин, средство сортировки твердых отходов и средство подготовки углеродсодержащих твердых отходов к газификации, средство их дезинтеграции, средство подготовки дутья в смеси с подготовленными углеродсодержащими твердыми отходами (см. RU №2069591, МПК B09B 3/00, E21B 43/295, 1996).

Недостатком этого технического решения является снижение качества исходящих газов - продуктов газификации по теплотворной способности, а также снижение производительности подземного газогенератора как «утилизатора отходов» до уровня, обеспечивающего устойчивость режима газификации (исключающего подавление этого процесса отходами, в том числе и увлажненными, подаваемыми в газогенератор).

В качестве ближайшего аналога принят комплекс для газификации угля, включающий подземный газогенератор, содержащий систему подающих и отводящих скважин, снабженных обсадной и газоотводящей трубами, в зазоре между которыми размещено парогенерирующее обрудование, выполненное с возможностью утилизации тепла исходящих газов, сообщенное с источником воды, а также смонтированные на поверхности блок очистки исходящих газов, выполненный с возможностью отбора CO2, энергетический блок, содержащий газовую и паровую турбины, снабженные электрогенераторами, средство утилизации CO2, при этом подающая скважина сообщена с источником пара и кислорода (см. SU №1800010, МПК E21B 43/295, 1993).

Недостаток ближайшего аналога - недостаточно эффективное использование тепла, генерируемого в процессе газификации, в т.ч. из-за параметров получаемого пара. При этом эффективность работы паровой турбины вызывает сомнения, поскольку параметры подаваемого на нее пара (по температуре и давлению) не могут быть высокими. Кроме того, структура комплекса громоздка в связи с необходимостью получения широкого круга промежуточных материалов, наличием нескольких компрессорных установок и т.п.

Задача, на решение которой направлено заявляемое изобретение, - повышение эффективности использования тепла, генерируемого в процессе газификации, и упрощение структуры комплекса.

Технический результат, проявляющийся при решении поставленной задачи, выражается в обеспечении эффективной утилизации тепла исходящих газов в верхней части газоотводящей трубы при получении перегретого пара с параметрами, оптимальными для использования в паровых турбинах с противодавлением. Таким образом обеспечивается возможность получения пара с максимально высокой (порядка 260°C), а газа подземной газификаторной установки (далее - ПГУ) - с максимально низкой (ограниченной точкой росы газа ПГУ - порядка 210-220°C) температурой, поскольку образующийся при охлаждении газа ПГУ конденсат содержит такие агрессивные компоненты, как фенолы, аммиак, кислоты, смолы, концентрация которых зависит, главным образом, от состава угля. Конденсат отрицательно влияет на срок службы металлических труб скважин и трубопроводов, поэтому исключение его образования способствует продлению сроков эксплуатации оборудования.

Поставленная задача решается тем, что комплекс для газификации угля, включающий подземный газогенератор, содержащий систему подающих и отводящих скважин, снабженных обсадной и газоотводящей трубами, в зазоре между которыми размещено парогенерирующее обрудование, выполненное с возможностью утилизации тепла исходящих газов, сообщенное с источником воды, а также смонтированные на поверхности блок очистки исходящих газов, выполненный с возможностью отбора CO2, энергетический блок, содержащий газовую и паровую турбины, снабженные электрогенераторами, средство утилизации CO2, при этом подающая скважина сообщена с источником пара и кислорода, отличающийся тем, что отводящая скважина размещена в центре газифицируемого участка угля, а подающие скважины размещены вокруг нее, по периферии газифицируемого участка угля, при этом парогенерирующее обрудование включает два спиральных трубопровода, обвитых вокруг газоотводящей трубы, первый из которых выполнен на ее верхнем участке, предпочтительно примыкающем к поверхности, а второй выполнен ниже первого, причем приемное отверстие первого спирального трубопровода сообщено с источником воды, а его выпускное отверстие, расположенное на его нижнем конце, сообщено соединительным трубопроводом с приемным отверстием второго спирального трубопровода, размещенным в его нижней точке, предпочтительно у нижнего торца затрубного участка, кроме того, в качестве паровой турбины использована паровая турбина с противодавлением, при этом выпускное отверстие второго спирального трубопровода, размещенное в его верхней точке, сообщено с паровой турбиной посредством паропровода, причем выход паровой турбины через узел приготовления дутья сообщен с подающей скважиной, которая дополнительно сообщена с паропроводом через обводной паропровод, выполненный с возможностью регулируемого отбора части пара из паропровода, причем обводной паропровод пропущен через узел приготовления дутья с возможностью эжектирования его содержимого, кроме того, на поверхности размещен узел сушки углеродсодержащих твердых отходов, сообщенный с их дезинтегратором, выход которого сообщен с узлом приготовления дутья, кроме того, в качестве средства утилизации CO2 использована линия по производству углекислоты или накопитель углекислоты, выполненный с возможностью ее регулируемого сброса в узел приготовления дутья. Кроме того, выход газовой турбины сообщен со входом блока очистки исходящих газов. Кроме того, узел сушки углеродсодержащих твердых отходов выполнен с возможностью утилизации тепла исходящих газов газовой турбины и/или исходящего пара паровой турбины.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач.

Признаки «отводящая скважина размещена в центре газифицируемого участка угля, а подающие скважины размещены вокруг нее, по периферии газифицируемого участка» обеспечивают возможность минимизации расходов на сооружение отводящей скважины, приходящейся на подводящие скважины.

Признаки, указывающие, что «парогенерирующее обрудование включает два спиральных трубопровода, обвитых вокруг газоотводящей трубы», обеспечивают возможность снятия тепла и с менее нагретых участков газоотводящей трубы (примыкающих к поверхности), и более прогретых ее участков (расположенных ниже), при этом обеспечивается возможность заданного увеличения площади теплоотводящей поверхности трубопроводов. Кроме того обеспечивается возможность организации оптимальной схемы отбора тепла по длине трубы для отвода горючего газа.

Признаки, указывающие, что «первый из спиральных трубопроводов выполнен на верхнем участке газоотводящей трубы… а второй выполнен ниже первого», обеспечивают возможность формирования теплообменника-экономайзера, снимающего тепло с менее нагретых (верхних) участков газоотводящей трубы и теплообменника-перегревателя пара (снимающего тепло с более прогретых ее участков).

Признаки, указывающие, что «приемное отверстие первого спирального трубопровода сообщено с источником воды, а его выпускное отверстие, расположенное на его нижнем конце, сообщено соединительным трубопроводом с приемным отверстием второго спирального трубопровода, размещенным в его нижней точке, предпочтительно у нижнего торца затрубного участка», обеспечивают возможность отбора тепла на самом верхнем и нижнем участках отводящей скважины и, тем самым, прогрева воды и ее испарения за счет использования отбираемого на экономайзерном участке теплообменника и доведение параметров пара до уровня, соответствующего перегретому пару, пригодному для эффективного срабатывания в паровой турбине с противодавлением. Таким образом, обеспечивается возможность получения перегретого пара с максимально высокой температурой, а газа ПТУ - с максимально низкой.

Признаки, указывающие, что «в качестве паровой турбины использована паровая турбина с противодавлением», описывают вариант максимально эффективного использования получаемого перегретого пара высоких параметров.

Признаки, указывающие, что «выпускное отверстие второго спирального трубопровода, размещенное в его верхней точке, сообщено с паровой турбиной посредством паропровода», минимизируют потери тепла отводимого перегретого пара и обеспечивают его передачу на паровую турбину.

Признаки, указывающие, что «выход паровой турбины через узел приготовления дутья сообщен с подающей скважиной», обеспечивают возможность использования отработанного пара для приготовления дутья, и если его параметры позволят, то обеспечивается возможность использования энергии этого пара для эжектирования дутья.

Признаки, указывающие, что подающая скважина «дополнительно сообщена с паропроводом через обводной паропровод, выполненный с возможностью регулируемого отбора части пара из паропровода», обеспечивают возможность принудительной подачи дутья в эту скважину.

Признаки, указывающие, что «обводной паропровод пропущен через узел приготовления дутья с возможностью эжектирования его содержимого», гарантируют техническую осуществимость эжектирования дутья.

Признаки, указывающие, что «на поверхности размещен узел сушки углеродсодержащих твердых отходов, сообщенный с их дезинтегратором, выход которого сообщен с узлом приготовления дутья», обеспечивают подготовку отходов к сжиганию в подземном газогенераторе.

Признаки, указывающие, что «в качестве средства утилизации CO2 использована линия по производству углекислоты или накопитель углекислоты, выполненный с возможностью ее регулируемого сброса в узел приготовления дутья», исключают сброс углекислого газа в атмосферу и обеспечивают возможность его утилизации, в т.ч. и как компонента дутья.

Признаки, указывающие что «выход газовой турбины сообщен со входом блока очистки исходящих газов», позволяют утилизировать выхлоп газовой турбины.

Признаки, указывающие, что «узел сушки углеродсодержащих твердых отходов выполнен с возможностью утилизации тепла исходящих газов газовой турбины и/или исходящего пара паровой турбины», позволяют минимизировать тепловое загрязнение воздушной среды в зоне работы газогенерирующего комплекса.

На фиг.1 представлена схема комплекса; на фиг.2 показан вид сверху на фрагмент площадки подземного газогенератора.

На чертежах показаны коаксиально расположенные обсадная труба 1, газоотводящая труба 2, затрубный участок 3, парогенерирующее оборудование (теплообменник), содержащее первый 4 и второй 5 спиральные трубопроводы, приемное 6 и выпускное 7 отверстия первого спирального трубопровода 4, приемное 8 и выпускное 9 отверстия второго спирального трубопровода 5, соединительный трубопровод 10, паропровод 11, источник воды 12, паровая турбина 13 с противодавлением, нижний торец 14 затрубного участка 3, земная поверхность 15, подающая 16 и отводящая 17 скважины, подземный газогенератор 18, блок очистки 19 исходящих газов, газовая турбина 20 и электрогенераторы 21, образующие энергетический блок 22, средство утилизации CO2 23, газифицируемый участок 24 угля, узел приготовления дутья 25, обводной паропровод 26, узел сушки 27 углеродсодержащих твердых отходов, дезинтегратор 28, газопровод 29, теплообменники-утилизаторы 30.

Обсадная труба 1 и газоотводящая труба 2 конструктивно не отличаются от известных конструкций, единственное требование к ним - возможность размещения в затрубном участке 3 (между ними) теплообменника. Толщина затрубного участка 3 порядка трех диаметров труб, использованных для изготовления спиральных трубопроводов 4 и 5, а также соединительного трубопровода 10 (или паропровода 11). Диаметр газоотводящей трубы 2 определяется рабочими параметрами подземного газогенератора 18 и составляет порядка 300 мм. Спиральные трубопроводы 4 и 5, а также соединительный трубопровод 10 и паропровод 11 изготовлены из труб диаметром порядка 70 мм, они размещены в контакте с газоотводящей трубой 2.

Первый 4 и второй 5 спиральные трубопроводы обвиты вокруг газоотводящей трубы 2, при этом первый из них размещен на ее верхнем участке, предпочтительно примыкающем к поверхности 15, а второй выполнен ниже первого. Приемное отверстие 6 первого спирального трубопровода 4 размещено на земной поверхности 15 и сообщено с источником воды 12, а его выпускное отверстие 7, размещенное на его нижнем конце, сообщено соединительным трубопроводом 10 с приемным отверстием 8 второго спирального трубопровода 5, размещенным в его нижней точке, предпочтительно у нижнего торца 14 затрубного участка 3.

При этом выпускное отверстие 9 второго спирального трубопровода 5, размещенное в его верхней точке, сообщено с паровой турбиной 13 посредством паропровода 11, причем выход паровой турбины 13 через узел приготовления дутья 25 сообщен с подающей скважиной 16, которая дополнительно сообщена с паропроводом 11 через обводной паропровод 26, выполненный с возможностью регулируемого отбора части пара из паропровода 11, причем обводной паропровод 26 пропущен через узел приготовления дутья 25 с возможностью эжектирования его содержимого. На земной поверхности 15 размещен узел сушки 27 углеродсодержащих твердых отходов, сообщенный с их дезинтегратором 28, выход которого сообщен с узлом приготовления дутья 25.

Выход газовой турбины 20 сообщен газопроводом 29 со входом блока очистки 19 исходящих газов.

В качестве источника воды 12 использована емкость для воды известной конструкции, размещенная на земной поверхности 15. Источник воды 12 снабжен насосом (на чертежах не показан) и непосредственно сообщен с приемным отверстием 6 первого спирального трубопровода 4, предпочтительно через запорную арматуру известной конструкции (на чертежах не показана).

У паровой турбины 13 с противодавлением весь отработанный пар используется для технологических целей (сушка углеродсодержащих твердых отходов, приготовление парового дутья, отопление и т.п.).

Нижний торец 14 затрубного участка 3 формируют как шайбу, жестко закрепляемую (например, привариваемую у нижнего торца газоотводящей трубы 2), при этом целесообразно, закрепить подобную же шайбу (на чертежах не показана) на расстоянии 15-20 м выше нижнего торца 14 затрубного участка 3.

Блок очистки 19 исходящих газов выполнен с возможностью отбора как минимум CO2 (желательно еще и азота с его окислами). В качестве средства утилизации CO2 использована линия по производству углекислоты известной конструкции или накопитель углекислоты, выполненный в виде резервуара с возможностью ее регулируемого сброса в узел приготовления дутья 25. При этом отводящая скважина 17 размещена в центре газифицируемого участка 24 угля, а подающие скважины 16 размещены вокруг нее по периферии газифицируемого участка 24.

Узел приготовления дутья 25 выполнен в виде смесительной камеры, сообщенной с источниками соответствующих компонентов дутья (пара, воздуха, дезинтегрированных углеродсодержащих твердых отходов и т.п.).

Узел сушки 27 углеродсодержащих твердых отходов выполнен с возможностью утилизации тепла исходящих газов газовой турбины 20 и/или исходящего пара паровой турбины 13, для чего каналы, сообщающие их соответственно с блоком очистки 19 исходящих газов и узлом приготовления дутья 25, использованы как теплоподводящие каналы теплообменников-утилизаторов 30.

Отводящая скважина сооружается следующим образом.

Соответствующим буровым станком бурится скважина (предпочтительно вертикальная) соответствующего диаметра, которая известным образом обсаживается обсадной трубой 1, с тампонажем пространства затрубного участка 3. Далее в обсадную трубу 1 опускают газоотводящую трубу 2, на которой закреплены спиральные трубопроводы 4 и 5, связанные соединительным трубопроводом 10, и паропровод 11, закрепленный на выпускном отверстии 9 второго спирального трубопровода 5, при этом нижний торец газоотводящей трубы 2 (и вышеупомянутая дополнительная шайба) обеспечивает надежную центровку газоотводящей трубы 2 в процессе ее спуска в обсадную трубу 1. Кроме того, у верхнего конца газоотводящей трубы 2 жестко фиксируют опорную шайбу (на чертежах не показана), диаметр которой несколько больше диаметра оголовка обсадной трубы 1. Расстояние от торца газоотводящей трубы 2 до месторасположения опорной шайбы выбирают из условия позиционирования нижнего торца 14 затрубного участка 3 в полости обсадной трубы 1, желательно, как можно ближе к ее нижнему торцу. После спуска газоотводящей трубы 2 с теплообменником на заданную глубину жестко и герметично скрепляют нижнюю поверхность опорной шайбы с торцом оголовка обсадной трубы 1 (например, сваркой) Далее монтируют комплекс оборудования на земной поверхности:

- монтируют источник воды 12 и соединяют его с приемным отверстием 6 первого спирального трубопровода 4, а выпускное 9 отверстие второго спирального трубопровода 5 соединяют с паровой турбиной 13 с противодавлением энергетического блока 22;

- выход газоотводящей трубы 2 сообщают с блоком очистки 19 исходящих газов - продуктов газификации, выход которого по горючему газу сообщают с камерой сгорания газовой турбины 20, выход которой по исходящим газам сообщают газопроводом 29 со входом блока очистки 19 исходящих газов - продуктов газификации;

- паровую турбину 13 с противодавлением и газовую турбину 20 кинематически связывают с валами соответствующих электрогенераторов 21;

- узел приготовления дутья 25 сообщен с атмосферой или источником окислителя (воздушного, кислородного, воздушно-кислородного дутья - на чертежах не показаны), для чего его смесительную камеру дополнительно сообщают с источниками соответствующих компонентов дутья - с выходом паровой турбины 13 (по пару), дезинтегратором 28 (по дезинтегрированным углеродсодержащим твердым отходам), и, кроме того, посредством обводного паропровода 26 сообщают с паропроводом 11, обеспечивая возможность эжектирования объема дутья в задействованную на данном этапе подающую скважину 16.

Подающую скважину 16 известным образом сбивают с отводящей скважиной 17 подземного газогенератора 18. Процесс розжига и газификации осуществляют известным образом с подачей дутья через подающую скважину 16 и отвода исходящего газа (газа ПТУ) через отводящую скважину 17, при этом огневой забой перемещают поворотом радиально ориентированного огневого забоя (на чертежах не показан) вокруг отводящей скважины 17, например, в направлении, показанном стрелкой.

Заявленный комплекс работает следующим образом.

Горячий газ (исходящий газ - продукт газификации) удаляется по газоотводящей трубе 2. В теплообменник (первый 4 и второй 5 спиральные трубопроводы) подают под давлением 0,5-1,0 МПа холодную воду с температурой +20°C от источника воды 12. Последовательно проходя через первый спиральный трубопровод 4, холодная вода испаряется и превращается в пар с температурой +212°C, этот пар, проходя второй спиральный трубопровод 5, превращается в перегретый пар с температурой 260°C. При этом температура исходящего газа падает с 1200°C (на контакте с газогенератором) до 210-220°C (на устье скважины).

Подготовка твердых бытовых отходов и других углеродсодержащих компонентов заключается в их сушке (предпочтительно с использованием тепла отбираемого теплообменниками-утилизаторами 30) и последующем измельчении в дезинтеграторе 28. Целесообразно, чтобы степень измельчения обеспечивала достаточную летучесть частиц углеродсодержащих отходов при вышеназванных параметрах нагнетания. Если давление пара на выходе паровой турбины 13 принято на уровне, обеспечивающем эжектирование и нагнетание дутья в подземный газогенератор 18, то отбор пара с высокими параметрами из паропровода 11 не нужен. В противном случае используют обводной паропровод 26 для подвода пара, обеспечивающего возможность эжектирования объема дутья в соответствующую подающую скважину 16. Далее процесс повторяется.

1. Комплекс для газификации угля, включающий подземный газогенератор, содержащий систему подающих и отводящих скважин, снабженных обсадной и газоотводящей трубами, в зазоре между которыми размещено парогенерирующее оборудование, выполненное с возможностью утилизации тепла исходящих газов, сообщенное с источником воды, а также смонтированные на поверхности блок очистки исходящих газов, выполненный с возможностью отбора CO2, энергетический блок, содержащий газовую и паровую турбины, снабженные электрогенераторами, средство утилизации CO2, при этом подающая скважина сообщена с источником пара и кислорода, отличающийся тем, что отводящая скважина размещена в центре газифицируемого участка угля, а подающие скважины размещены вокруг нее, по периферии газифицируемого участка угля, при этом парогенерирующее оборудование включает два спиральных трубопровода, обвитых вокруг газоотводящей трубы, первый из которых выполнен на ее верхнем участке, предпочтительно примыкающем к поверхности, а второй выполнен ниже первого, причем приемное отверстие первого спирального трубопровода сообщено с источником воды, а его выпускное отверстие, расположенное на его нижнем конце, сообщено соединительным трубопроводом с приемным отверстием второго спирального трубопровода, размещенным в его нижней точке, предпочтительно у нижнего торца затрубного участка, кроме того, в качестве паровой турбины использована паровая турбина с противодавлением, при этом выпускное отверстие второго спирального трубопровода, размещенное в его верхней точке, сообщено с паровой турбиной посредством паропровода, причем выход паровой турбины через узел приготовления дутья сообщен с подающей скважиной, которая дополнительно сообщена с паропроводом через обводной паропровод, выполненный с возможностью регулируемого отбора части пара из паропровода, причем обводной паропровод пропущен через узел приготовления дутья с возможностью эжектирования его содержимого, кроме того, на поверхности размещен узел сушки углеродсодержащих твердых отходов, сообщенный с их дезинтегратором, выход которого сообщен с узлом приготовления дутья, кроме того, в качестве средства утилизации CO2 использована линия по производству углекислоты или накопитель углекислоты, выполненный с возможностью ее регулируемого сброса в узел приготовления дутья.

2. Комплекс по п.1, в котором выход газовой турбины сообщен со входом блока очистки исходящих газов.

3. Комплекс по п.1, в котором узел сушки углеродсодержащих твердых отходов выполнен с возможностью утилизации тепла исходящих газов газовой турбины и/или исходящего пара паровой турбины.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи горизонтальными скважинами. Обеспечивает повышение коэффициента нефтеизвлечения продуктивного пласта и снижает скорость обводнения продукции добывающих скважин.

Изобретение относится к горному делу и может быть применено в подземной газификации бурого угля в тонких и средней мощности пластах. Способ включает осушение угольного пласта, нагнетание в реакционный канал окислителя по вертикальным дутьевым скважинам, отсос из него продуктов газификации через газоотводящие скважины и минимизацию давления в реакционном канале.

Изобретение относится к нефтяной промышленности и может найти применение при разработке участков залежей нефти в карбонатных и терригенных коллекторах. Обеспечивает повышение охвата пласта вытеснением как по толщине, так и по площади, увеличение нефтеотдачи продуктивного пласта и повышение темпов отбора нефти.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам интенсификации добычи нефти из неоднородных залежей. Способ разработки неоднородной нефтяной залежи включает бурение по любой из известных сеток вертикальных, горизонтальных и наклонных скважин.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке чисто нефтяных залежей с низкопроницаемыми коллекторами. Обеспечивает снижение темпов падения добычи нефти добывающими скважинами и увеличение коэффициента извлечения нефти. Сущность изобретения: способ включает бурение горизонтальных добывающих скважин с рядным размещением скважин и ориентацией горизонтальных стволов в направлении минимальных горизонтальных напряжений пласта, выполнение многостадийного гидроразрыва пласта (ГРП) и, согласно изобретению, параллельно рядам добывающих горизонтальных скважин, с чередованием через один ряд, бурят ряды нагнетательных наклонно-направленных скважин с выполнением на всех скважинах ГРП.

Изобретение относится к нефтяной промышленности и может быть применено при разработке многопластовых нефтяных месторождений с залежами нефти в карбонатных и терригенных коллекторах.

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей нефти с коллектором, имеющим естественную трещиноватость. Обеспечивает повышение коэффициента охвата и нефтеотдачи продуктивного пласта.

Изобретение относится к методам скважинной геотехнологии разработки залежей горючих сланцев с высоким выходом жидких углеводородов («сланцевой нефти»). Способ заключается в бурении на залежь горючих сланцев наклонно-направленных и вертикальных скважин, создании в них воспламененной зоны, сжигании части углеводородного сырья, прогреве залежи продуктами горения и отгонке сланцевого керогена в виде продуктов термической обработки горючих сланцев.

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи с применением разветвленных горизонтальных скважин. Сущность изобретения: осуществляют бурение вертикальных нагнетательных и добывающих горизонтальных скважин, закачку вытесняющего агента через нагнетательные скважины, отбор продукции через добывающие горизонтальные скважины.

Изобретение относится к нефтяной промышленности и может быть применено при разработке нефтяной залежи с различным типом коллектора. Способ включает бурение вертикальных нагнетательных и добывающих горизонтальных скважин, закачку вытесняющего агента через нагнетательные скважины, отбор продукции через добывающие горизонтальные скважины.
Изобретение относится к области переработки, обезвреживания и утилизации твердых бытовых отходов. Для термической утилизации отходов бурят скважину, проводят газификацию органических компонентов отходов при помощи контролируемого нагрева и подачи топлива с получением синтез-газа и его последующим выводом.
Изобретение относится к технологиям подземной газификации угольных пластов посредством преобразования угля на месте его залегания в горючий газ, который в качестве топлива может использоваться в энергоустановках разного типа.

Изобретение относится к комплексному освоению месторождения полезных ископаемых и может быть использовано для получения продуктов подземной газификации горючих сланцев.

Изобретение относится к комплексному освоению угольного месторождения при подземной газификации угля. Способ комплексного освоения угольного месторождения включает бурение системы дутьевых и газоотводящих скважин, гидравлически связанных между собой по угольному пласту, осуществление через них гидродинамического воздействия с образованием зоны искусственных полостей и трещин и огневого воздействия на угольный пласт с образованием очага горения, перемещаемого от дутьевой скважины в сторону газоотводящей скважины, получение сырого генераторного газа, охлаждение его до температуры ниже температуры конденсации компонентов, входящих в состав сырого газа, и получение вместе с очищенным газом других полезных компонентов.

Изобретение относится к горному делу и может быть использовано для комплексного освоения месторождений бурого угля. Технический результат заключается в обеспечении эффективного комплексного использования месторождений бурого угля и комплексной защите окружающей среды от воздействия технологического процесса.

Изобретение относится к горному делу и может быть применено в подземной газификации бурого угля в тонких и средней мощности пластах. Способ включает осушение угольного пласта, нагнетание в реакционный канал окислителя по вертикальным дутьевым скважинам, отсос из него продуктов газификации через газоотводящие скважины и минимизацию давления в реакционном канале.

Изобретение относится к области горнодобывающей промышленности, а именно к скважинным методам геотехнологии разработки месторождений горючих сланцев. Обеспечивает повышение эффективности способа при минимальных затратах на его осуществление.

Изобретение относится к горному делу и может быть применено для получения газообразного энергоносителя из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание электрического тока и нагрев пласта за счет джоулева тепла.

Изобретение относится к тепловым методам разработки трудноизвлекаемых тяжелых углеводородных залежей путем их нагрева. Обеспечивает создание огневой технологии воздействия на залежь тяжелых углеводородов для создания коллекторов повышенной дренирующей способности.

Изобретение относится к области горного дела и может быть применено при подземной газификации угля. Способ заключается в том, что выделенный в поверхностном химическом комплексе СО2 делят на два потока: первый из них нагнетают в дутьевые скважины эксплуатируемого подземного газогенератора и инициируют в зонах газификации эндотермическую химическую реакцию СО2+С=2СО-q, обогащая при этом газ ПГУ горючим компонентом СО; второй поток СО2 нагнетают в отработанный подземный газогенератор.

Изобретение относится к горному делу и может быть применено для освоения подземной угольной формации. Эксплуатационный участок залежи угля разбивается на эксплуатационные панели, которые в определенной последовательности разбуриваются до подошвы угольного пласта скважинами среднего и большого диаметров, и которые через эти скважины последовательно отрабатываются в процессе подземной газификации угля с получением полезных продуктов - горючего газа, технологического пара, электроэнергии, и после завершения выгазовки угля с получением полезных продуктов - металла скандия из золы и биогаза из захороненных в выработанном объеме панели твердых бытовых отходов. Технический результат заключается в повышении эффективности освоения подземной угольной формации через технологические скважины за счет комплексного использования теплового ресурса процесса горения угля, минеральной части золы угля, выгазованного объема подземного газогенератора. 6 з.п. ф-лы, 8 ил.
Наверх