Сталь для изготовления кованых прокатных валков

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5, марганец (Mn) 0,5-0,8, хром (Cr) 1,4-1,7, никель (Ni) 0,6-0,9, молибден (Mo) 0,1-0,3, ванадий (V) и ниобий (Nb), исходя из выражения: V+Nb=C/12, железо остальное. Среднее содержание ванадия в 2-2,5 раза больше, чем содержание ниобия. Изготавливаемые кованые прокатные валки имеют высокую прочность и износостойкость за счет образования оптимального количества карбидов и создания мелкозернистой структуры, что способствует повышению эксплуатационных свойств валков. 1 табл.

 

Изобретение относится к металлургии, в частности к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например профилей и труб.

Известна сталь 150ХНМ (ГОСТ 10207-70 и ГОСТ 9487-83), используемая в основном для изготовления литых прокатных валков, имеющая химический состав, мас.%:

углерод 1,4…1,6
кремний 0,25…0,5
марганец 0,5…0,8
хром 0,9…1,25
никель 0,8…1,25
молибден 0,1…0,3
железо остальное

Недостатком этой стали является пониженная пластичность при температурах горячей обработки давлением вследствие высокого содержания углерода, что затрудняет ее ковку. Кроме того, эта сталь вследствие невысокого содержания карбидообразующих элементов (хрома и молибдена) имеет в структуре незначительное количество карбидов, не превышающее 4%, что приводит к интенсивному износу и к выкрашиванию отдельных участков валка, а в итоге к преждевременному выходу его из строя в процессе эксплуатации (пат. РФ 2138577, опубл. 27.09.1999).

Недостатком использования стали 150ХНМ для изготовления валков является также ее сложный и длительный режим термической обработки, состоящий из предварительного тройного отжига и окончательной термической обработки по режиму двойной нормализации с высоким отпуском.

Известна также сталь подобного состава (патент Японии 2-8011, опубл. 22.02.1990) с повышенным содержанием кремния и марганца (до 1,5%), однако это приводит к удорожанию стали, хотя и повышает ее твердость за счет большего содержания карбидов марганца.

В качестве прототипа принята сталь (а.с. СССР 1076485, БИ №8, 1984), содержащая углерод, кремний, марганец, хром, ванадий, ниобий, железо (остальное) в следующих концентрациях, мас.%:

углерод 1,0…1,25
кремний 0,2…0,5
марганец 0,4…0,85
хром 1,4…1,7
ванадий 0,1…0,25
ниобий 0,025…0,05

Достоинством прототипа по сравнению с аналогами является более низкое содержание углерода, что повышает его ковкость, а также наличие в составе ванадия и ниобия, которые способствуют измельчению зерна и повышению пластичности стали в процессе ковки. Повышенное содержание хрома (1,4…1,7%) обусловливает увеличение содержания карбидов в структуре стали и повышение ее износостойкости.

Недостатки прототипа заключаются в том, что он имеет низкую прокаливаемость в процессе термической обработки вследствие отсутствия в составе никеля и молибдена, а также содержание ниобия и ванадия не связано с содержанием углерода, так как ниобий и ванадий являются сильными карбидообразующими элементами и могут вызвать избыточное образование карбидов при термообработке и хрупкость стали.

Техническая задача предлагаемого изобретения - получение кованых прокатных валков высокой прочности и износостойкости за счет образования оптимального количества карбидов и создания мелкозернистой структуры.

Указанная задача решается тем, что сталь для изготовления кованых прокатных валков, содержащая углерод, кремний, марганец, хром, ванадий, ниобий, железо, дополнительно содержит никель и молибден при следующей концентрации элементов, мас.%:

углерод 1,2…1,4
кремний 0,2…0,5
марганец 0,5…0,8
хром 1,4…1,7
никель 0,6…0,9
молибден 0,1…0,3
железо остальное

а суммарное среднее содержание ванадия и ниобия определяют по формуле (V+Nb)=C/12, где V, Nb и C - соответственно среднее содержание ванадия, ниобия и углерода в %, при этом среднее содержание ванадия в 2-2,5 раза больше, чем ниобия.

Сущность изобретения заключается в том, что установлены рациональные соотношения между содержанием карбидообразующих элементов ванадия и ниобия, сдерживающими рост зерна, и содержанием углерода, который также образует карбиды хрома и молибдена, для получения мелкозернистой и достаточно твердой износостойкой структуры стали и повышения эксплуатационных свойств валков.

Рациональное содержание легирующих элементов определили следующим образом. В лабораторных условиях провели 3 опытных плавки стали с химическим составом согласно таблице. После отливки слитков и вырезки образцов испытали механические свойства стали для оценки ее пригодности к ковке по пластичности, которая оценивалось по относительному удлинению образцов.

Химический состав опытных плавок (%) и механические свойства стали
C Si Mn Cr Ni Mo Nb V σв, мПа δ, % НВ, мПа
1 1,22 0,47 0,59 1,52 0,76 0,22 0,047 0,098 834 19,4 246
2 1,37 0,35 0,65 1,63 0,83 0,26 0,035 0,080 873 23,0 236
3 1,32 0,35 0,72 1,44 0,72 0,30 0,029 0,052 862 20,1 248
Примечание. В таблице приняты следующие обозначения: σв - временное сопротивление; δ - относительное удлинение; НВ - твердость по Бринеллю.

Из таблицы видно, что максимальную пластичность имеет сталь плавки №2 (δ=23%) с соотношением содержания C/(V+Nb)=1,377(0,080+0,035)=11,92≈12. В остальных плавках эти соотношения равны:

Плавка №1: C/(V+Nb)=1,227(0,098+0,047)=8,4.

Плавка №3: C/(V+Nb)=1,327(0,052+0,029)=16,3.

Соотношение содержаний V/Nb=2…2,5 выбрано из соображений, во-первых, большей дефицитности и стоимости ниобия (его содержание в земной коре 10-4% против 0,005% содержания ванадия). Во-вторых, ниобий - более тугоплавкий металл (температура его плавления 2460°C), чем ванадий (1919°C), поэтому ниобий образует более твердые и тяжелые карбиды, которые трудно деформируются при ковке, следовательно, их должно быть меньше, чем карбидов ванадия. Также данные таблицы показывают, что во всех случаях соотношение концентраций V/Nb находилось в диапазоне 2…2,5, что обеспечивает повышение пластических свойств без потери прочностных свойств и твердости.

В качестве примера определим химический состав предлагаемой стали. По предложенной формуле рассчитаем суммарное содержание ванадия и ниобия для максимального и минимального содержания углерода (1,2…1,4%):

(V+Nb)макс=Cмакс/12=1,4/12=0,12%;

(V+Nb)мин=Cмин/12=1,2/12=0,10%.

Содержание ванадия (V) установим в 2 раза больше, чем ниобия (Nb).

Определим содержание ниобия. По условию содержание ванадия V=2Nb, тогда их суммарное содержание (V+Nb)=3Nb, и Nb=(V+Nb)/3.

Определим максимальное и минимальное содержание ниобия:

Nbмакс=0,12/3=0,04; Nbмин=0,10/3=0,033%.

Содержание ванадия в 2 раза больше:

Vмакс=0,08; Vмин=0,067%.

Техническим результатом заявляемого изобретения является получение кованых прокатных валков высокой прочности и износостойкости за счет наличия в структуре достаточно высокого содержания карбидов и создания мелкозернистой структуры, что достигается рациональным соотношением легирующих элементов.

Сталь для изготовления кованых прокатных валков, содержащая углерод, кремний, марганец, хром, ванадий, ниобий и железо, отличающаяся тем, что она дополнительно содержит никель и молибден при следующем содержании элементов, мас.%:

углерод 1,2-1,4
кремний 0,2-0,5
марганец 0,5-0,8
хром 1,4-1,7
никель 0,6-0,9
молибден 0,1-0,3
железо остальное

а для ванадия и ниобия определено суммарное среднее содержание по выражению (V+Nb)=C/12, где V, Nb и C - соответственно среднее содержание ванадия, ниобия и углерода в мас.%, при этом среднее содержание ванадия в 2-2,5 раза больше, чем ниобия.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных труб, используемых при строительстве трубопроводов, эксплуатируемых в условиях агрессивных сред, в частности для транспортировки обводненной нефти и высокоминерализированных пластовых вод, содержащих сероводород, ионы хлора, углекислоты, а также механические частицы.
Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, используемым для изготовления термически упрочненных сварных конструкций, крупногабаритных изделий, а также строительных конструкций и деталей нефтяного машиностроения.

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой стали высокой прочности и улучшенной свариваемости для применения в судостроении, мостостроении и других отраслях промышленности.

Изобретение относится к металлургии, а именно к производству толстолистового проката из хладостойкой высокопрочной стали с улучшенной свариваемостью для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности.

Изобретение относится к области металлургии, а именно к ролику для поддержки и транспортировки горячего материала, в частности полученной непрерывной разливкой стальной заготовки на рольганге или в установке непрерывной разливки.

Изобретение относится к области металлургии. .
Изобретение относится к области металлургии, а именно к производству трубных заготовок. .

Изобретение относится к области металлургии, в частности стальному листу для производства магистральной трубы и способу изготовления стального листа. .

Изобретение относится к области металлургии, а именно к присадочному материалу для сварки, который может быть использован при сварке роторов газовых турбин. Присадочный материал содержит, вес.%: C 0,05-0,15, Cr 8-11, Ni 2,8-6, Mo 0,5-1,9, Mn 0,5-1,5, Si 0,15-0,5, V 0,2-0,4, B 0-0,04, Re 1-3, Ta 0,001-0,07, N 0,01-0,06, Pd 0-60 ч./млн, P не более 0,25, S не более 0,02, железо и неизбежные примеси - остальное. Присадочный материал характеризуется хорошей смачиваемостью, повышенным сопротивлением ползучести, высокой вязкостью. 12 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сталям, предназначенным для длительной эксплуатации при температурах до 1100°C. Сталь содержит углерод, кремний, марганец, хром, никель, ниобий, азот, фосфор, серу, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,4-0,5, кремний 1,0-2,0, марганец 4,5-5,5, хром 24,0-26,0, никель 11,0-13,0, ниобий 1,2-1,5, азот 0,2-0,4, фосфор ≤0,02, сера ≤0,02, железо и неизбежные примеси - остальное. Повышаются прочностные свойства и пластические характеристики при высоких температурах при сохранении уровня удельной теплоемкости, температурного коэффициента линейного расширения и экономном легировании по никелю. 4 табл., 1 пр.

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для изготовления подшипников, работающих при температуре до 500°C и используемых в авиационных газотурбинных двигателях (ГТД) и редукторах вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам, ванадий, молибден, никель, ниобий и железо при следующем соотношении компонентов, мас.%: углерод 0,7-0,85, марганец 0,1-0,4, кремний 0,3-0,5, хром 4,5-5,5, вольфрам 1-1,5, ванадий 0,5-1,0, молибден 3-3,5, никель 0,15-0,4, ниобий 0,1-0,3, железо - остальное. Повышается технологичность при горячей пластической деформации, обеспечивается отсутствие дефектов при ковке и прокатке, а также высокая однородность структуры. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций. Cпособ включает выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и правку. Выплавляют сталь, содержащую, в мас.%: углерод 0,16-0,20, кремний 0,15-0,30, марганец 0,30-0,50, алюминий 0,02-0,05, сера не более 0,02, фосфор не более 0,02, хром не более 0,30, никель не более 0,30, медь не более 0,30, ниобий 0,010-0,030, железо и неизбежные примеси - остальное. Горячую прокатку заканчивают при температуре 850-950°С. Смотку полос ведут при температуре 510-650°С. Правку полос на изгибо-растяжной машине производят с удлинением 0,4-0,6% для толщин до 1,5 мм и с удлинением от 0,2% до 0,4% для толщин от 1,5 мм. Правку полос на изгибо-растяжной машине могут проводить с натяжением 8,5-14 т, а перед правкой могут производить дрессировку горячеоцинкованного проката. Техническим результатом изобретения является получение требуемого уровня предела текучести для получения надежного материала для изготовления металлоконструкций. 2 з.п. ф-лы, 2 табл.

Изобретение относится к способу получения электротехнических текстурированных стальных лент или листов, в котором температуру тонкого сляба, изготовленного из стали с содержанием мас.%: Si 2-6,5%, С 0,02-0,15%, S 0,01-0,1%, Cu 0,1-0,5%, при этом соотношение между процентными содержаниями меди и серы %Cu/%S составляло более 4, Mn до 0,1%, при этом соотношение между процентными содержаниями марганца и серы Mn/S составляло менее 2,5, и необязательно N, Al, Ni, Cr, Mo, Sn, V, Nb. Тонкий сляб выравнивают до 1000-1200°C, прокатывают в горячем состоянии с получением горячекатаной ленты толщиной 0,5-4,0 мм при начальной температуре горячей прокатки ≤1030°C и ее конечной температуре ≥710°C с обжатием на первом и втором проходе при горячей деформации ≥40%. Горячекатаную ленту охлаждают, сматывают в рулон, из которого затем горячекатаную ленту прокатывают в холодном состоянии с получением холоднокатаной ленты с конечной толщиной от 0,15 до 0,50 мм. На отожженную холоднокатаную ленту наносят покрытие из отжигового сепаратора и проводят заключительный отжиг холоднокатаной ленты с покрытием из отжигового сепаратора для образования текстуры Госса. Технический результат заключается в получении лент и листов с магнитными свойствами, соответствующими магнитным свойствам материала CGO. 2 н. и 28 з.п. ф-лы, 7 табл.
Наверх