Способ разработки нефтяной залежи

Изобретение относится к нефтяной промышленности и может найти применение при проведении повторного гидроразрыва пласта - ГРП. Технический результат - повышение эффективности повторного ГРП. По способу закачивают рабочий агент через нагнетательные скважины. Отбирают нефть через добывающие скважины и проводят первичные и повторные ГРП в скважинах. При повторных ГРП выполняют перфорацию пластов плотностью не менее 10 отверстий на погонный м интервала ГРП. Массу проппанта закачивают не менее чем на 10% больше массы проппанта при первичном ГРП. Конечную концентрацию проппанта увеличивают в сравнении с первичным ГРП не менее чем на 10%. Объем загрузки полимерного гелеобразователя в сравнении с первичным ГРП уменьшают не менее чем на 10%. 3 пр., 1 табл.

 

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи.

Известен способ улучшения гидродинамической связи скважины с продуктивным пластом, включающий кислотный гидравлический разрыв пласта (ГРП) путем установки пакера над кровлей перфорированного продуктивного пласта, закачки в подпакерную зону жидкости гидроразрыва, создания в подпакерной зоне давления гидроразрыва и продавки в образовавшуюся трещину жидкости гидроразрыва. После кислотного ГРП производят повторный ГРП в два этапа. На первом этапе образовавшуюся вследствие кислотного ГРП трещину закрепляют закачкой жидкости гидроразрыва с проппантом в расчетном количестве, достаточном для изменений горизонтальных напряжений в карбонатном пласте и обеспечения перпендикулярного направления второй трещины, образующейся при проведении второго этапа кислотного ГРП относительно первой трещины. После проведения первого этапа повторного ГРП проводят отработку скважины на излив через штуцеры в возрастающей последовательности их диаметров. На первом этапе ГРП в качестве жидкости гидроразрыва используют гель, а на втором - кислотный состав (патент РФ №2462590, опублик. 27.09.2012).

Наиболее близким к предложенному изобретению по технической сущности является способ разработки нефтегазовой залежи с применением гидравлического разрыва пласта, включающий проведение на первом этапе разработки ГРП во всех добывающих скважинах. Одновременно с этим при помощи геофизических методов, основанных на регистрации микросейсмических колебаний, а также на регистрации скважинными наклономерами изменения угла наклона пластов, возникающих при ГРП, определяют направления развития трещин гидравлического разрыва по азимуту. При снижении дебитов добывающих скважин ниже 10% от первоначальных значений проводят ГРП во всех нагнетательных скважинах, при этом сразу же после проведения ГРП в нагнетательных скважинах проводится обработка пласта высоким давлением для увеличения приемистости. При падении дебитов добывающих скважин более чем на 50% от первоначальных значений в них осуществляют повторный ГРП (патент РФ №2496001, опублик 20.10.2013 - прототип).

Общим недостатком известных способов является малая эффективность повторного (вторичного) ГРП.

В предложенном изобретении решается задача увеличения эффективности повторного ГРП.

Задача решается тем, что в способе разработки нефтяной залежи, включающем закачку рабочего агента через нагнетательные скважины, отбор нефти через добывающие скважины и проведение первичных и повторных ГРП в скважинах, согласно изобретению, при повторных ГРП выполняют перфорацию пластов плотностью не менее 10 отверстий на погонный м интервала гидроразрыва, массу проппанта закачивают не менее чем на 10% больше массы проппанта при первичном ГРП, конечную концентрацию проппанта увеличивают в сравнении с первичным ГРП не менее чем на 10%, а объем загрузки гелеобразователя в сравнении с первичным ГРП уменьшают не менее чем на 10%.

Сущность изобретения

При разработке нефтяной залежи дебит и приемистость скважин неизбежно снижаются. Одним из наиболее эффективных способов увеличения продуктивности скважин является ГРП. Однако и после ГРП снижение продуктивности скважин продолжается. При снижении продуктивности проводят повторный ГРП в тех же скважинах и в тех же интервалах продуктивных пластов. Однако эффективность повторного ГРП оказывается невысокой. В предложенном изобретении решается задача увеличения эффективности повторного ГРП. Задача решается следующим образом.

При повторных ГРП выполняют повторную перфорацию пластов плотностью не менее 10 отверстий на погонный м интервала гидроразрыва, массу проппанта закачивают не менее чем на 10% больше массы проппанта при первичном ГРП, конечную концентрацию проппанта увеличивают в сравнении с первичным ГРП не менее чем на 10%, уменьшают объем загрузки гелеобразователя в сравнении с первичным ГРП не менее чем на 10%.

Как правило, чем больше загрузка гелеобразователя, тем больше осадок, снижение загрузки гелеобразователя, начиная с загрузки в 4 кг/м3 на каждые 0,1 кг, дает уменьшение осадкообразования в среднем на 0,5%.

Концентрированные жидкости имеют свои преимущества, например: жидкость с концентрацией 4 кг/м3 гидратирует быстрее, чем жидкость с концентрацией 3.6 кг/м3,но присутствует побочный эффект: при разложении полимера остается неразлагающийся остаток в зависимости от концентрации гелеобразователя (соотношение 100 г гелеобразователя добавляет в среднем 0,5% неразложившегося остатка). Осадок действует на пласт как закупоривающий материал или как тампонажный материал в поровом пространстве пласта.

Если принять за базу загрузку гелеобразователя в 4 кг/м3 с осадкообразованием в среднем для жидкости разрыва 10-20%, то в случае уменьшения загрузки полимеров до 3,6 кг осадкообразование уменьшится в среднем на 2%.

Все эти режимы в совокупности изменяют и увеличивают геометрию закрепленной трещины - происходит открытие новых зон, отклонение и частичная переориентация трещины, изменяется область дренирования запасов. Также большое влияние на повторный ГРП оказывает качество жидкости разрыва. Необходимо применять более современную жидкость разрыва - с меньшей концентрацией гелеобразователя для уменьшения осадкообразования.

Пример конкретного выполнения

Пример 1 (по прототипу). Разрабатывают нефтяную залежь с продуктивными пластами Д1а и Д1б3 в интервалах 1642-1644 м, 1654-1656 м.

Отбирают пластовую продукцию через добывающие скважины и закачивают рабочий агент - пластовую воду через нагнетательные скважины.

Проводят интенсификацию работы нефтедобывающей скважины. Скважина введена в эксплуатацию с начальным дебитом на уровне 4 м3/сут и обводненностью продукции 18%. Литология объектов: верхний пласт Д1а - заглинизированный песчаник (абсолютная проницаемость 338,5 мД, пористость 16,7%, глинистость 2,0%); нижний пласт Д163 - заглинизированный песчаник (абсолютная проницаемость 731,1 мД, пористость 22%, глинистость 3,5%).

Конструкция скважины и спущенного оборудования эксплуатационная колонна диаметром 146 мм герметична.

Первичный ГРП

Спускают колонну насосно-компрессорных труб, проводят отсыпку забоя песчаным мостом до глубины 1661,7 м.

Спускают пакер на колонне насосно-компрессорных труб диаметром 89 мм на глубину 1633 м и производят посадку пакера.

Дебит жидкости до ГРП составляет 4 м3/сут, дебит нефти 3 тн/сут. ГРП проведен с закачкой 8000 кг проппанта (фракцией 16/30 меш - 6000 кг, фракцией 12/18 - 2000 кг), использовано жидкости разрыва 73 м3, загрузка гелеобразователя составила 4,2 кг/м3, конечная концентрация 370 кг/м3.

По результатам обработки результатов записи устьевых давлений выполненного ГРП получены следующие данные: длина трещины закрепленная (одно крыло) - 23,6 м; высота трещины созданная - 14,08 м, закрепленная - 1,78 м. Ширина трещины после снятия давления по пласту 0,88 мм, максимальная ширина трещины у интервалов перфорации 7,04 мм, проводимость трещины 478,3 мД/м. По результату ГРП получен среднесуточный прирост по нефти 2,5 тн/сут.

В процессе эксплуатации после первого ГРП произошло постепенное снижение дебита в течение 3-х лет. Дебит скважины по нефти снизился с 9 тн/сут (после первого ГРП) до 3 тн/сут.

Выполняют повторный ГРП по технологии и режимам в соответствии с первым ГРП.

Пример 2. Выполняют, как пример 1.

Выполняют первичный ГРП, как в примере 1. После снижения дебита до 3 тн/сут выполняют повторный ГРП по следующей технологии режима.

В интервалах ГРП 1654-1656 м, 1642-1644 м проводят кумулятивную перфорацию в количестве 40 отверстий - с плотностью 10 отверстий на погонный м.

Спускают колонну насосно-компрессорных труб, проводят отсыпку забоя песчаным мостом до глубины 1658 м.

Спускают пакер на колонне насосно-компрессорных труб диаметром 89 мм на глубину 1633,2 м и производят посадку пакера.

Проводят тестовую закачку. Начальная приемистость объекта гидроразрыва Q-240 м3/сут, начальное давление Рнач=11 МПа, конечное давление Ркон=11 МПа. Выполняют определение качества связи с пластом закачкой 5 м3 технической жидкости плотностью 1,18 г/см3 без предварительного насыщения призабойной зоны.

При гидроразрыве производят отбор проб технической воды и их анализ на содержание механических примесей, содержание свободных ионов водорода и температуры, производят тестовое приготовление жидкости разрыва, выполняют тест на распускание и сшивку. Результаты удовлетворительные. Готовят гель в объеме 25 м3 на основе гелеобразователя WG 46 «Эконотек» на основе гуаровой камеди (производитель "Economy Polymers&Chemicals"). Реология - температура 27°С, вязкость 21 сП, время сшивки 4 сек. Производят добавление к гелю деэмульгатора, активатора деструкции и стабилизатора глин, смесь доводят до гомогенного состояния при перемешивании, производят запуск и прогрев нагнетательных насосов.

Производят тестовую закачку с записью спада давления и обработкой полученных данных по спаду давления - в объеме 25 м3 жидкости разрыва с добавлением 1000 кг проппанта фракции 20/40. Пробная пачка прошла интервал перфорации с ростом давления с 22 МПа до 24 МПа. Полученные данные обрабатывают, получают данные об эффективности работы жидкости разрыва, значении чистого давления, градиента напряжения в пласте, времени и давлении смыкания трещины, поровом давлении в коллекторе, гидравлических потерях давления в интервале перфорации и призабойной части пласта. На основе полученных данных производят адаптацию проектных данных процесса гидроразрыва к полученным данным обработки тестовой закачки. Проводят основной процесс ГРП.

Откорректированные данные используют для повторного расчета трехмерной модели гидроразрыва и уточнения плана проведения гидроразрыва. На основе произведенных расчетов производят набор необходимого объема технологической жидкости и приготовление жидкости разрыва с проведением тестирования. Результаты теста удовлетворительны. Процесс гидроразрыва проводят в соответствии с составленным уточненным планом, приготовление жидкости разрыва производят с загрузкой гелеобразователя 3,4 кг/м3 и с концентрацией проппанта по стадиям: 120 кг/м3, 200 кг/м3, 250 кг/м3, 300 кг/м3, 350 кг/м3, 400 кг/м3, 500 кг/м3, 600 кг/м3. 700 кг/м3, 800 кг/м3 для улучшения гидродинамической связи пласта с трещиной.

Конечная концентрация проппанта составляет 800 кг/м3, что соответствует 216% от конечной концентрации проппанта при первом ГРП.

Загрузка гелеобразователя составляет 3,4 кг/м3, т.е. ее уменьшают на 19%.

Давление на устье скважины начальным 22 МПа, конечным 27 МПА, где объем конечной продавки определяют как сумму объема колонны насосно-компрессорных труб и подпакерной зоны до кровли интервала перфорации за вычетом объема расчетной недопродавки. Рабочий расход при основном процессе 3,3 м3/мин. По окончании продавки проппантно-гелевой смеси насосные агрегаты останавливают и производят запись спада давления, после чего устье скважины закрывают, оборудование демонтируют и скважину оставляют для ожидания спада давления. По окончании необходимого времени для деструкции геля производят стравливание остаточного устьевого давления до атмосферного. Начало стравливания избыточного давления производят по истечении 12-ти часов. Устье скважины разгерметизируют, производят срыв и подъем пакерного оборудования.

По результатам обработки результатов записи устьевых давлений проделанного процесса получены следующие данные: длина трещины закрепленная (одно крыло) - 64,68 м; высота трещины созданная - 15,04 м; закрепленная - 9,34 м. Ширина трещины после снятия давления по пласту 2,7 мм, максимальная ширина трещины у интервалов перфорации 14,1 мм; проводимость трещины 622,8 мД/м. Масса закачанного проппанта 10000 кг (20/40 - 1000 кг, 16/30 - 6000 кг, 12/18 - 3000 кг), что на 25% выше чем при предыдущей обработке.

Пример 3. Выполняют, как пример 2.

В интервалах ГРП 1654-1656 м, 1642-1644 м проводят кумулятивную перфорацию в количестве 48 отверстий - с плотностью 12 отверстий на погонный м. Общее количество проппанта составляет 8,8 тн, что больше на 10% в сравнении с предыдущей обработкой. Увеличивают конечную концентрацию проппанта на 10% до 410 кг/м3. Одновременно снижают загрузку гелеобразователя - WG - 40 DS на основе гидроксипропилгуара (производитель "Economy Polymers&Chemicals") на 10% до 3,7 кг/м3.

Скважина введена в эксплуатацию через 19 суток после завершения работ по гидроразрыву пласта с увеличением коэффициента продуктивности более чем 4 раза без роста обводненности продукции. Среднесуточный прирост по нефти составил 6,7 тн/сут, превысил более чем в 2 раза показатели от первого ГРП.

Пример 4. Выполняют, как пример 2. В качестве гелеобразователя используют ГПГ-3 - полисахарид по ТУ 2499-072-17197708-2003 (производитель ЗАО «Петрохим»).

Сравнительный анализ предложенного способа и прототипа представлен в таблице 1.

В приведенной таблице указаны параметры по скважине с проведенными ГРП с разницей по времени в четыре года. Как видно из таблицы, существуют различия в режимах проведения гидравлического разрыва пласта на одной скважине при первичном и повторном ГРП. Предложенный ГРП проводят с большим, чем в ГРП по прототипу, количеством проппанта на 25%, конечная концентрация также выше. В предложенном ГРП используют жидкость разрыва с меньшим удельным количеством полимеров - загрузка гелеобразователя уменьшена с 4,2 до 3,4 кг/м3, что позволило снизить осадкообразование. В итоге трещина имеет большую длину, закрепленные высоту и ширину. Изменение геометрии позволило получить более проводящую трещину, а уменьшение количества гелеобразователя позволило уменьшить осадкообразование. В конечном итоге среднесуточный прирост по нефти по предложенному способу более чем на 30% превышает показатели ГРП по прототипу без увеличения обводненности продукции. Таким образом, предлагаемый способ позволяет повышать эффективность ГРП за счет изменения геометрии трещины, распределения проппанта по пласту и применения более совершенных жидкостей разрыва.

Способ разработки нефтяной залежи, включающий закачку рабочего агента через нагнетательные скважины, отбор нефти через добывающие скважины и проведение первичных и повторных гидроразрывов пласта в скважинах, отличающийся тем, что при повторных гидроразрывах пласта выполняют перфорацию пластов плотностью не менее 10 отверстий на погонный м интервала гидроразрыва, массу проппанта закачивают не менее чем на 10% больше массы проппанта при первичном гидроразрыве пласта, конечную концентрацию проппанта увеличивают в сравнении с первичным гидроразрывом пласта не менее чем на 10%, а объем загрузки полимерного гелеобразователя в сравнении с первичным гидроразрывом пласта уменьшают не менее чем на 10%.



 

Похожие патенты:
Изобретение относится к нефтяной промышленности и может быть применено для интенсификации работы скважины, вскрывшей пласт с высокопроницаемым коллектором. Способ включает тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта разрыва и проведение основного процесса разрыва.

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом изобретения является развитие равномерной сети трещин и разрушение массива угольного пласта по длине дегазационных скважин за малое время и при использовании минимального количества оборудования.
Изобретение относится к расклинивающему наполнителю и его использованию при гидроразрыве для добычи нефти и газа. Сверхлегкий расклинивающий наполнитель приготовлен из смеси сырьевых материалов, содержащей фарфоровую глину, гончарную глину и каолин и/или кремнистую глину, где содержание, вес.%: фарфоровой глины 5-85, каолина и/или кремнистой глины 5-85, гончарной глины 5-30.

Изобретение относится к способам гидравлического разрыва пласта. Способ включает бурение горизонтального ствола скважины, спуск и крепление хвостовика с фильтрами, спуск пакера и его посадку, формирование трещин в каждой из зон, соответствующих интервалам частей горизонтального ствола с изоляцией остальных его частей.

Изобретение относится к способам гидравлического разрыва пласта, сложенного карбонатными породами. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи.

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин. Способ включает бурение горизонтального ствола скважины в нефтенасыщенной части продуктивного пласта скважины, спуск колонны труб в скважину, формирование перфорационных каналов и трещин с помощью гидроразрыва пласта в стволе горизонтальной скважины последовательно, начиная с конца дальнего от оси вертикального ствола скважины.

Изобретение относится к разработке нефтяных месторождений. Технический результат - повышение эффективности разработки залежи.

Группа изобретений относится к скважинному мониторингу, с использованием распределенной системы акустического зондирования, гидравлического разрыва пласта во время сооружения эксплуатационных скважин, таких как нефтяные и газовые скважины.

Изобретение относится к обработке подземных пластов при добыче углеводородов. Способ обработки подземного пласта, пересеченного скважиной, включающий: обеспечение обрабатывающей жидкости, содержащей вязкоупругое поверхностно-активное вещество, имеющее по меньшей мере одну разлагаемую связь, гидролизуемый материал и материал для регулирования величины рН, при этом материал для регулирования величины рН имеет значение рН, равное или большее, чем примерно 9, и содержит сильнощелочное вещество и окислитель; и введение в подземный пласт обрабатывающей жидкости.
Изобретение относится к нефтяной промышленности и может быть применено при интенсификации работы скважин. Способ включает тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта разрыва и проведение основного процесса разрыва.
Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению простаивающих нефтяных и газовых скважин с низкими фильтрационно-емкостными свойствами и близко расположенными водонефтяным или газоводяным контактами.

Изобретение относится к нефтегазодобывающей промышленности, а конкретно к пороховым генераторам давления, и может быть использовано для интенсификации добычи нефти и газа.

Изобретение относится к области газовой и нефтяной промышленности и, в частности, к разработке месторождений - залежей газовых гидратов. Обеспечивает повышение эффективности добычи газа из газогидратных залежей.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке низкопроницаемой нефтяной залежи горизонтальными скважинами на естественном режиме посредствам проведения многократного гидравлического разрыва пласта в карбонатных и терригенных коллекторах.
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи. Обеспечивает повышение нефтеотдачи залежи.
Изобретение относится к области разработки нефтяных месторождений и может быть использовано при разработке нефтяного месторождения с глинистыми коллекторами. Обеспечивает повышение нефтеотдачи залежи нефти с глинистым коллектором.

Группа изобретений относится к технике и технологии нефтегазодобычи и может применяться для эксплуатации насосной скважины. Обеспечивает повышение эффективности эксплуатации насосной скважины за счет предотвращения глушения продуктивного пласта ниже пакера при замене электропогружного насосного агрегата.
Изобретение относится к нефтяной промышленности и может быть использовано при обработке призабойной зоны добывающей скважины. Способ обработки призабойной зоны добывающей скважины включает заполнение интервала продуктивного пласта скважины растворителем асфальтосмолистых и парафиногидратных отложений с частичной его задавкой в призабойную зону скважины.

Изобретение относится к нефтедобывающей промышленности и может успешно использоваться при разработке нефтяных и газовых месторождений с трудно извлекаемыми запасами, вскрывающими как карбонатные, так и терригенные коллекторы, в том числе с нефтями повышенной вязкости.
Изобретение относится к нефтяной промышленности и может найти применение при добыче нефти штанговым насосом. Техническим результатом является повышение интенсивности извлечения нефти и увеличение продуктивности призабойной зоны за счет увеличения амплитуды упругих колебаний в пласте.

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяного месторождения. Технический результат - упрощение анализа разработки и сокращение материальных затрат и трудозатрат на анализ разработки нефтяного месторождения, снижение обводненности добываемой продукции и увеличение нефтеотдачи месторождения. По способу определяют фильтрационно-емкостные характеристики продуктивных пластов. Устанавливают зависимость забойного давления нагнетания и пластового давления от фильтрационно-емкостных характеристик. Определяют интервалы оптимальных давлений нагнетания и пластовых давлений. Осуществляют закачку рабочего агента через нагнетательные скважины и отбор продукции через добывающие скважины на режимах фильтрации, соответствующих оптимальным значениям давления нагнетания. При этом, нагнетательные скважины оснащают индивидуальными средствами замера расхода жидкости. Добывающие скважины оснащают датчиками замера нагрузки на насосное оборудование. Осуществляют архивацию и усреднение до суточных величин показаний датчиков, поступающих по системе телеметрии в режиме реального времени. На карте месторождения с координатами забоев скважин оконтуривают объемный участок месторождения с количеством скважин не менее 6 в пределах одного или нескольких продуктивных пластов с включением в контур добывающих и нагнетательных скважин. По каждой нагнетательной скважине замеряют данные 1 раз в 2 часа и усредняют 1 раз в сутки. Каждые 40 суток строят график изменения расхода по нагнетательной скважине в зависимости от времени работы скважины. По добывающим скважинам замеряют данные 1 раз в 2 часа и усредняют 1 раз в сутки. Каждые 40 суток строят график изменения нагрузки на насосное оборудование в зависимости от времени работы скважины. Сравнивают наложением графики по нагнетательным и добывающим скважинам. Определяют на одном и том же промежутке времени схожесть амплитуд по высоте колебания, расстоянию точек максимумов параметров расхода и времени работы добывающих скважин. При полном совпадении пиков графика делают вывод о прямом влиянии нагнетательной скважины на добывающую скважину. При полном несовпадении делают вывод о влиянии через период времени. При частичном совпадении делают вывод о влиянии через часть периода времени. При полном отсутствии пиков добывающей скважины в зависимости от пиков колебаний параметров работы нагнетательной скважины делают вывод об отсутствии влияния нагнетательных скважин на добывающую скважину. Рассчитывают коэффициент взаимовлияния, представляющий собой коэффициент схожести сигнала скважин от 1 до 0 в зависимости от удаления и фильтрационно-емкостных свойств пласта. Коэффициенты ранжируют и выбирают добывающие скважины с коэффициентами более 0,5. По этим скважинам анализируют динамику обводненности. При высокой динамике более 25% в течение 0,5 года отключают или частично ограничивают до 50% закачку через эти нагнетательные скважины. Проводят водоизоляционные работы либо потокоотклоняющие методы увеличения нефтеотдачи. При стабильной работе эксплуатируют добывающие скважины. При коэффициенте схожести сигнала скважин менее 0,1 делают вывод об отсутствии реагирования и незначительном взаимовлиянии скважин. При этом проводят дополнительные исследования нагнетательной скважины и определяют непроизводительные закачки в заколонное пространство или нарушение герметичности эксплуатационной колонны. 7 ил.
Наверх