Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала



Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала
Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала
Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала
Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала
Полимеризационноспособная фотохромная изоцианатная композиция, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала

 


Владельцы патента RU 2542252:

Федеральное государственное бюджетное образовательное учреждение науки Институт проблем химической физики Российской Академии наук (ИПХФ РАН) (RU)

Группа изобретений относится к полимеризационноспособной фотохромной изоцианатной композиции, содержащей фотохромное соединение, к фотохромному сетчатому оптическому материалу и к способу его получения. Полимеризационноспособная фотохромная изоцианатная композиция включает, мас.ч.: органическое фотохромное соединение 1-15; катализатор полимеризации 0,01-5, полимеризующиеся соединения 100. Полимеризующиеся соединения содержат, мас.ч.: диизоцианаты и/или олигоизоциануратизоцианаты 60-100, моноизоцианаты 0-40. Катализатор используется в количестве 0,01-5 мас.ч. на 100 мас.ч. полимеризующихся соединений. Описан также фотохромный сетчатый оптический материал - продукт, полученный термическим отверждением описанной выше полимеризационноспособной композиции, по крайней мере, на одной поверхности листа прозрачной подложки, выполненной из полиметилметакрилата, поликарбоната, полиэтилентерефталата, производных целлюлозы, поливинилового спирта, поливинилхлорида, поливинилиденхлорида, полиэфиров, полиуретанов. Описан также способ получения фотохромного сетчатого оптического материала. Технический результат - получение полимеризационноспособной фотохромной изоцианатной композиции с высокой адгезионной способностью и продукта на ее основе с высокими оптическими свойствами, такими как прозрачность, бесцветность, или окрашиванием, и долговременным сроком эксплуатации. 3 н. и 10 з.п. ф-лы, 2 табл., 25 пр.

 

Полимеризационноспособная фотохромная изоцианатная композиция для покрытий, фотохромный сетчатый оптический материал и способ получения фотохромного сетчатого оптического материала.

Группа изобретений относится к полимеризационноспособной фотохромной изоцианатной композиции, содержащей фотохромное соединение, к фотохромному сетчатому оптическому материалу и к способу его получения.

Известна полимеризационноспособная фотохромная композиция, включающая органическое фотохромное соединение, полимеризующиеся соединения и инициатор полимеризации (см. патент US №6811830, кл. C08P 2/46, 02.11.2004).

Из этого же патента известен фотохромный оптический материал, полученный термическим отверждением полимеризационноспособной композиции, и способ его получения, включающий отверждение полимеризационноспособной композиции.

Общий недостаток описанных выше технических решений сравнительно невысокий срок работоспособности вследствие необратимого фотохимического превращения веществ.

Наиболее близким техническим решением является полимеризационноспособная фотохромная изоцианатная композиция, включающая: органические фотохромные соединения, в частности нафтопираны и бензопираны, полимеризующиеся соединения, содержащие диизоцианаты и катализатор полимеризации (см. опубликованную заявку US №2005/0233153, кл. B32B 27/00, 20.10.2005).

Из этой же заявки известен фотохромный оптический материал, полученный термическим отверждением полимеризационноспособной композиции и способ его получения, включающий отверждение полимеризационноспособной композиции.

Известное техническое решение позволяет получать тонкие и однородные линзы. Однако данная композиция и полученный с ее помощью продукт не позволяет добиться требуемых адгезионных свойств при получении продукта, а также требуемого длительного срока эксплуатации.

Задачей, на решение которой направлено настоящее изобретение, является устранение указанных выше недостатков.

Технический результат заключается в получении полимеризационноспособной фотохромной изоцианатной композиции с высокой адгезионной способностью и продукта на ее основе с высокими оптическими свойствами, такими как прозрачность, бесцветность или окрашивание и долговременный срок эксплуатации.

Указанная задача решается, а технический результат достигается за счет того, что полимеризационноспособная фотохромная изоцианатная композиция включает: 1-15 мас.ч. органических фотохромных соединений и 0,01-5 мас.ч. катализатора полимеризации на 100 мас.ч. полимеризующихся соединений; 100 мас.ч. полимеризующихся соединений, содержащих: 60-100 мас.ч. диизоцианатов и/или олигоизоциануратизоцианатов и 0-40 мас.ч. моноизоцианатов.

Олигоизоциануратизоцианаты выбраны из группы олигоизоциануратизоцианатов на основе алифатических, ароматических и циклоалифатических диизоцианатов или олигоизоциануратизоцианаты выбраны из группы, состоящей из олигоизоциануратизоцианатов на основе 1,6-гексаметилендиизоцианата, изофорондиизоцианата, 2,4-толуилендиизоцианата, 1,3-циклогександиизоцианата, 4,4′-метилен-бис(фенилизоцианата).

Диизоцианаты выбраны из группы, состоящей из алифатических, ароматических и циклоалифатических изоцианатов или их смеси или диизоцианаты выбраны из группы, состоящей из 1,6- гексаметилендиизоцианата (ГМДИ), изофорондиизоцианата (ИФДИ), 2,4-толуилендиизоцианата (ТДИ), 1,3-циклогександиизоцианата (ЦГДИ), 4,4′-метилен-бис(фенилизоцианата) (МБФИ).

Моноизоцианаты выбраны из группы, состоящей из хлоргексаметиленизоцианата (ХГМИ), мета-хлорфенилизоцианата (МХФИ), или их смесей, причем соотношение изоцианатных групп, принадлежащих диизоцианату и/или производным диизоцианатов, к изоцианатным группам, принадлежащих моноизоцианату, должно быть не меньше 2.

Катализатор полимеризации выбран из группы: третичные амины, производные четвертичного аммониевого основания, основания Манниха, органические соединения олова, в частности алкокси-, карбоксилатные соединения олова, соли щелочных металлов, органические соли металлов переменной валентности, в частности нафтенаты, стеараты, ацетилацетонаты или катализатор полимеризации изоцианатов выбран из группы: дибутилдилауринат олова (ДБДЛО), каталитическая система 1,4-диазобицикло[2,2,2]октан (ДАБКО) - окись пропилена (ОП), гексабутилдистаннумоксид (ГБСО), триэтиламин (ТЭА), тетраэтиламмоний гидроксид (ТЭАГ).

Фотохромные соединения выбраны из группы, состоящей из нафтопиранов, инденонафтопиранов, фульгидов, фенантропиранов, спиро(индолин)нафтоксазинов, или смеси таких фотохромных соединений.

Фотохромный сетчатый оптический материал - продукт, полученный термическим отверждением описанной выше полимеризационноспособной композиции, по крайней мере, на одной поверхности листа прозрачной подложки, в частности, продукт может быть получен на подложке из листа прозрачного органического стекла из полиметилметакрилата или поликарбоната, причем продукт может быть получен на подложке из листа прозрачного органического материала толщиной 25-150 µм, выбранного из группы, состоящей из полиэтилентерефталата, ацетата целлюлозы, триацетета целлюлозы, пропионата ацетата целлюлозы, бутирата ацетата целлюлозы, поливинилацетата, поливинилового спирта, поливинилхлорида, поливинилиденхлорида, полиэфиров и полиуретанов.

Способ получения фотохромного сетчатого оптического материала заключается в:

приготовлении полимеризационноспособной изоцианатной композиции;

подготовке поверхности прозрачной подложки, включающей обезжиривание и осушки с помощью растворителя;

заливке приготовленной полимеризационноспособной изоцианатной композиции на поверхность подготовленной прозрачной подложки тонким слоем 5-50 мкм;

осушке изоцианатной композиции на поверхности подготовленной прозрачной подложки от растворителя путем выдерживания при температуре 40-45°C в течение 10-20 мин и

термической полимеризации полимеризационноспособной изоцианатной композиции на поверхности подготовленной прозрачной подложки при температуре 100-120°C в течение 25-35 мин.

В ходе проведенного исследования была выявлена возможность создания полимеризационноспособной фотохромной изоцианатной композиции, образующей в результате термического отверждения на поверхности прозрачного органического материала пленку фотохромного сетчатого оптического материала, обладающего повышенной фотостойкостью.

В полимеризационноспособной композиции может использоваться в качестве исходного компонента как диизоцианат, так и продукт его частичной циклотримеризации - олигоизоциануратизоцианат. Типичным примером олигоизоциануратизоцианата является олигомер структуры (I):

который синтезируется по следующей схеме 1:

где kt - катализатор.

В качестве исходного диизоцианата для получения олигоизоциануратизоцианата могут быть использованы 1,6-гексаметилендиизоцианат, изофорондиизоцианат, 2,4-толуилендиизоцианат, 1,3-циклогександиизоцианат, 4,4′-метилен-бис(фенилизоцианат). Наиболее предпочтительными являются 1,6-гексаметилендиизоцианат, изофорондиизоцианат.

Кроме того, в качестве полимеризующегося компонента могут быть использованы и сами диизоцианаты. Наиболее предпочтительными являются 1,6-гексаметилендиизоцианат, изофорондиизоцианат.

Полимеризационноспособные композиции могут включать моноизоцианат в дополнение к вышеупомянутым диизоцианатам и олигоизоциануратизоцианатам. Это предпочтительно с точки зрения достижения оптимальных характеристических свойств, таких как плотность сетки сшитого полимера и, следовательно, эластичность сетчатого оптического полимера.

Получение фотохромного сшитого продукта методом полимеризации изоцианатсодержащих компонентов может быть осуществлено только с использованием соответствующих катализаторов. Типичные примеры катализаторов включают дибутилдилауринат олова (ДБДЛО), триэтиламин, каталитическая система 1,4-диазобицикло[2,2,2]октан (ДАБКО) - окись пропилена (ОП), гексабутилдистаннумоксид (ГБСО), триэтиламин (ТЭА), тетраэтиламмоний гидроксид (ТЭАГ), нафтенаты различных переходных металлов. Наиболее предпочтительными из них являются ГБСО, ТЭАГ, каталитическая система ДАБКО-ОП и нафтенаты переходных металлов.

Катализатор используется в количестве от 0.01 до 5 весовых процентов к полимеризационноспособному компоненту. Наиболее предпочтительная концентрация катализатора 1-2 вес.%. Необходимо отметить, что катализатор полимеризации может содержаться непосредственно в полимеризующемся соединении, как в случае олигоизоцианатизоцианурата, или добавляться при приготовлении полимеризационноспособной композиции.

Отверждение полимеризационноспособной композиции протекает при высоких температурах. Наиболее предпочтительная температура отверждения 100-120°C. В результате термоотверждения изоцианатсодержащей композиции образуется полиизоциануратная пленка.

Полиизоцианураты - сшитые полимеры регулярного химического строения - получают по реакции циклотримеризации диизоцианатов и олигоизоциануратизоцианатов, т.е. сначала образуется фрагмент с тремя концевыми NCO-группами, включающий изоциануратный цикл (схема 1), далее в результате циклотримеризации этих концевых групп происходит образование полимера - полиизоцианурата (схема 2).

Среди термически и химически устойчивых полимерных материалов сшитые полиизоцианураты обладают весьма привлекательным комплексом свойств. Это высокая прочность, способность выдерживать температуры от -200°C до +300°C, высокая адгезия практически к любым подложкам, прекрасные электроизоляционные свойства, высокая устойчивость к действию различных органических растворителей и коррозионно-активных сред, высокая радиационная стойкость.

Как описано выше, из полимеризационноспособных композиций по настоящему изобретению, наполненных фотохромным соединением, могут быть получены фотохромные сетчатые оптические материалы, сочетающие превосходные фотохромные свойства, особенно для долговременного использования, и хорошие оптические свойства, такие как бесцветность и прозрачность. Кроме того, сетчатые материалы обладают хорошей адгезией к различным матрицам, что делает весьма перспективным их использование для получения покрытий на различных субстратах.

Приведенные ниже примеры более конкретно описывают существо данного изобретения, но не ограничивают возможные варианты реализации изобретения.

Синтетические примеры 1-8. Синтез олигоизоциануратизоцианата структуры (I) с использованием различных катализаторов и различных диизоцианатов.

Синтетический пример 1.

Синтез олигоизоциануратизоцианата на основе диизоцианата ГМДИ (ТИЦ-ГМДИ) с использованием катализатора ГБСО:

В продуваемый током аргона реакционный сосуд при эффективном перемешивании помещали 253 г (100 мас.ч.) ГМДИ и 5,06 г (2,0 мас.ч.) катализатора ГБСО, выдерживали при температуре 140°С в течение 2.5 часов. Периодически отбирали пробы на определение содержания NCO-групп. Для предотвращения гелеобразования при достижении степени превращения 0.40-0.49 быстро охлаждали реакционную массу. В конечном продукте определяли содержание NCO-групп методом ИК-спектроскопии и химическим методом.

Синтетический пример 2.

Синтез олигоизоциануратизоцианата ТИЦ-ГМДИ с использованием катализатора нафтената Со.

Как в примере 1, за исключением того, что вместо катализатора ГБСО вводили 19,7 г 31% раствора в толуоле нафтената Со, содержание катализатора по отношению к ГМДИ 2,4 мас.ч.

Синтетический пример 3.

Синтез олигоизоциануратизоцианата ТИЦ-ГМДИ с использованием каталитической системы ДАБСО-ОП.

Как в примере 1, за исключением того, что вместо раствора катализатора ГБСО вводили 28,3 г 25% раствора в толуоле каталитической системы ДАБСО-ОП (ДАБСО:ОП=1:2,5), содержание катализатора по отношению к ГМДИ составляло 2,8 мас.ч. Реакционную систему выдерживали при температуре 60°С в течение 0.5 часов. Периодически отбирали пробы на определение содержания NCO-групп.

Синтетический пример 4.

Синтез олигоизоциануратизоцианата ТИЦ-ГМДИ с использованием катализатора ТЕАГ.

Как в примере 3, за исключением того, что вместо каталитической системы ДАБСО-ОП вводили 8,4 г 10% раствора ТЭАГ в диметилсульфоксиде, содержание катализатора по отношению к ГМДИ составляло 0,33 мас.ч.

Синтетический пример 5.

Синтез олигоизоциануратизоцианата на основе диизоцианата ИФДИ (ТИЦ-ИФДИ) с использованием катализатора ТЭАГ.

Как в примере 3, за исключением того, что вместо диизоцианата ГМДИ использовался ИФДИ.

Синтетический пример 6.

Синтез олигоизоциануратизоцианата на основе 2,4-толуилендиизоцианата (ТИЦ-ТДИ) с использованием катализатора ТЭАГ.

Как в примере 3, за исключением того, что вместо диизоцианата ГМДИ использовался ТДИ.

Синтетический пример 7.

Синтез олигоизоциануратизоцианата на основе 1,3-циклогександиизоцианата (ТИЦ-ЦГДИ) с использованием катализатора ТЭА.

Как в примере 3, за исключением того, что вместо диизоцианата ГМДИ использовался 60% раствор ЦГДИ в толуоле, а вместо катализатора ТЭАГ использовался катализатор ТЭА.

Синтетический пример 8.

Синтез олигоизоциануратизоцианата на основе 4,4′-метилен-бис(фенилизоцианата) (ТИЦ-МБФИ) с использованием катализатора ДБДЛО.

Как в примере 1, за исключением того, что вместо диизоцианата ГМДИ использовался 60% раствор МБФИ в толуоле, а вместо катализатора ГБСО использовался катализатор ДБДЛО.

В таблице 1 представлены характеристики олигоизоциануратов при различных степенях превращения.

Примеры 9-14. Получение полимеризационноспособных фотохромных композиций на основе олигоизоциануратизоцианатов и их смеси с диизоцианатами.

Пример 9

В продутом аргоном стеклянном сосуде из темного стекла смешивают (здесь и далее содержание компонентов полимеризационной системы указано в мас.ч. на 100 мас.ч. полимеризующихся соединений) 4 г ТИЦ-ГМДИ, 0,048 г (1,2 мас.ч.) фотохрома метил 9-диметиламино-2-фенил-2-(4-пиперидинофенил)-2Н-нафто[1,2-b]пиран-5-карбоксилата из класса нафтопиранов - и 8 г растворителя. Катализатор в данном примере не вносился в композицию, поскольку исходный олигоизоциануратизоцианат изначально содержит необходимый катализатор. В качестве растворителя использовали осушенный метиленхлорид или толуол. Для удаления инородных частиц раствор отфильтровали в токе аргона через тканевый фильтр.

Пример 10

Как в примере 9, за исключением того, что вместо ТИЦ-ГМДИ использовался ТИЦ-ИФДИ, а вместо нафтопирана использовался фотохром из класса спиро(индолин)нафтоксазинов 1,3-Дигидро-1,3,3-триметил-8′-нитро-спиро(2Н-индол-2,3′-3Н-нафт[2,1-b]оксазин) в количестве 0,04 г (1,0 мас.ч.).

Пример 11

Как в примере 9, за исключением того, что вместо ТИЦ-ГМДИ использовался ТИЦ-ТДИ, а вместо нафтопирана использовался фотохром 3-[1-(1-Бензотиен-3-ил)этилиден]-4-адамантилиден-1-(4-метоксифенил)-дигидро-2,5-фурандион из класса фульгидов в количестве 0,6 г (15,0 мас.ч.).

Пример 12

Как в примере 9, за исключением того, что вместо ТИЦ-ГМДИ использовался ТИЦ-ЦГДИ, а вместо одного фотохрома использовалась смесь, состоящая из фотохрома 1,3-Дигидро-1,3,3-триметил-8′-нитро-спиро(2Н-индол-2,3′-3H-нафт[2,1-b]оксазина) в количестве 0,045 г, фотохрома 2,2-дифенил-2H-фенантро[9,10-b]пиран из класса фенантропиранов в количестве 0,155 г и фотохрома 3,3-ди(4-метоксифенил)-спиро(1H-инден-1,3′)-3H-нафто[2,1-b]пирана из класса инденонафтопиранов в количестве 0,40 г. Суммарное количество фотохромов составило 15 мас.ч.

Пример 13

Как в примере 9, за исключением того, что вместо ТИЦ-ГМДИ использовали ТИЦ-МБФИ.

Пример 14

Как в примере 9, за исключением того, что вместо ТИЦ-ГМДИ использовали смесь, состоящую из 2 г ТИЦ-ИФДИ и 2 г ГМДИ.

Примеры 15-19. Получение полимеризационноспособных фотохромных композиций на основе диизоцианатов

Пример 15

В продутом аргоном стеклянном сосуде из темного стекла смешивают 4 г ГМДИ и 4 г толуола. В приготовленном растворе диизоцианата растворяли каталитическую систему ДАБСО-ОП (ДАБСО:ОП=1:2,5), содержание каталитической системы по отношению к ГМДИ составляло 2,8 мас.ч. Затем в композицию вводили фотохром 9-метокси-2,2-бис(4-метоксифенил)-2Н-нафто[1,2-b]пиран-5-карбоксилат из класса нафтопиранов в количестве 0,24 г (6,0 мас.ч.). Для удаления инородных частиц раствор отфильтровывали в токе аргона через тканевый фильтр.

Пример 16

Как в примере 15, за исключением того, что вместо ГМДИ использовали ИФДИ, а вместо каталитической системы ДАБСО-ОП использовали катализатор ГБСО в количестве 0,2 г (5 мас.ч.).

Пример 17

Как в примере 15, за исключением того, что вместо ГМДИ использовали ТДИ.

Пример 18

Как в примере 15, за исключением того, что вместо ГМДИ использовали ЦГДИ.

Пример 19

Как в примере 15, за исключением того, что вместо ГМДИ использовали МБФИ.

Примеры 20-23. Получение полимеризационноспособной фотохромной композиции при совместной полимеризации ГМДИ с моноизоцианатом и их смеси с олигоизоциануратизоцианатом.

Пример 20.

В продутом аргоном стеклянном сосуде из темного стекла смешивали 93 г ГМДИ (60 мас.ч.), 67 г МХФИ (40 мас.ч.) и 340 г толуола. В приготовленный раствор вносили 0,0045 г ДАБСО и 0,0115 г ОП. Суммарное содержание каталитической системы ДАБСО-ОП равно 0.01 мас.ч. Затем в композицию вводили фотохром метил 9-метокси-2,2-бис(4-метоксифенил)-2Н-нафто[1,2-b]пиран-5-карбоксилат из класса хроменов в количестве 4,48 г (2,8 мас.ч.). Для удаления инородных частиц раствор отфильтровали в токе аргона через тканевый фильтр.

Пример 21.

Как в примере 20, за исключением того, что вместо МХФИ использовали моноизоцианат ХГМИ.

Пример 22.

Как в примере 20, за исключением того, что вместо МХФИ использовали смесь моноизоцианатов МХФИ и ХГМИ в соотношении 1:1.

Пример 23.

Как в примере 20, за исключением того, что вместо ГМДИ использовали смесь диизоцианата ГМДИ с олигоизоциануратизоцианатом ТИЦ-ГМДИ в соотношении 2:1.

Примеры 24-25. Получение фотохромного сетчатого оптического материала.

Пример 24.

Поверхность прозрачной подложки из листа прозрачного органического стекла из поликарбоната толщиной 2 мм обезжиривают с помощью растворителя и сушат при температуре 40-45°C в течение 1-5 мин. Приготовленную по примеру 9-23 полимеризационноспособную изоцианатную композицию заливают на поверхность подготовленной прозрачной подложки тонким слоем 5-50 мкм, сушат от растворителя путем выдерживания при температуре 40-45°C в течение 10-20 мин и подвергают термической полимеризации при температуре 100-120°C в течение 25-35 мин.

Пример 25.

Как в примере 24, за исключением того, что вместо листа прозрачного органического стекла из поликарбоната в качестве подложки используют лист прозрачного органического материала толщиной 50 µм из полиэтилентерефталата.

Полученные в соответствии с приведенными выше примерами фотохромные сетчатые оптические материалы прозрачны и бесцветны, а при ярком солнечном освещении окрашены, причем окраска и интенсивность окрашивания зависят от используемого фотохрома. В таблице 2 приведены данные испытаний фотохромных сетчатых оптических материалов, полученных по примеру 24 на основе полимеризационноспособных изоцианатных композиций, составленных по примерам 9-23.

Время снижения индуцированной оптической плотности в 2 раза ( τ 0 , 5 ф д е г р ) характеризует фотостойкость материала.

Фотохромные сетчатые оптические материалы могут быть использованы, например, при сооружении спортивных сооружений, различного рода «стеклянных» зданий, а также в быту, промышленности и сельском хозяйстве. Пленочные фотохромные сетчатые оптические материалы можно наклеивать на существующее и новое остекление, в том числе, транспортных средств.

Таблица 2
Характеристики фотохромных сетчатых оптических материалов
№ примера λ B м а к с ,  нм Δ D B ф о т о . м а к с τ 0 , 5 ф д е г р  ч окраска
9 490,580 0,47 575 серая
10 615 1,5 405 красная
11 510 0,42 624 красная
12 620 1,8 420 серая
13 490,580 0,42 586 серая
14 490,580 0,48 572 серая
15 530 0,83 1860 фиолетовый
16 530 0,80 1880 фиолетовый
17 530 0,83 1850 фиолетовый
18 530 0,85 1790 фиолетовый
19 530 0,79 1930 фиолетовый
20 530 0,88 1790 фиолетовый
21 530 0,91 1750 фиолетовый
22 530 0,90 1760 фиолетовый
23 530 0,89 1780 фиолетовый
Примечание λ B м а к с - длина волны максимума поглощения пленки в фотоиндуцированном состоянии; ΔDB - фотоиндуцированное изменение оптической плотности в максимуме полосы поглощения фотоиндуцированной формы; τ 0 , 5 ф д е г р - время снижения фотоиндуцированной оптической плотности в максимуме полосы поглощения фотоиндуцированной формы под действием нефильтрованного источники излучения - лампы -4 фирмы «Hamamatsu» (характеризует фотостойкость материала ). Для фотоокрашивания использовался стеклянный светофильтр УФС-1.

1. Полимеризационноспособная фотохромная изоцианатная композиция для покрытий, включающая:
1-15 мас.ч. органических фотохромных соединений и 0,01-5 мас.ч. катализатора полимеризации на 100 мас.ч. полимеризующихся соединений;
100 мас.ч. полимеризующихся соединений, содержащих: 60-100 мас.ч. диизоцианатов и/или олигоизоциануратизоцианатов и 0-40 мас.ч. моноизоцианатов.

2. Композиция по п. 1, отличающаяся тем, что олигоизоциануратизоцианаты выбраны из группы олигоизоциануратизоцианатов на основе алифатических, ароматических и циклоалифатических диизоцианатов.

3. Композиция по п. 1, отличающаяся тем, что олигоизоциануратизоцианаты выбраны из группы, состоящей из олигоизоциануратизоцианатов на основе 1,6-гексаметилендиизоцианата, изофорондиизоцианата, 2,4-толуилендиизоцианата, 1,3-циклогександиизоцианата, 4,4′-метилен-бис(фенилизоцианата).

4. Композиция по п. 1, отличающаяся тем, что диизоцианаты выбраны из группы, состоящей из алифатических, ароматических и циклоалифатических изоцианатов или их смеси.

5. Композиция по п. 1, отличающаяся тем, что диизоцианаты выбраны из группы, состоящей из 1,6-гексаметилендиизоцианата, изофорондиизоцианата, 2,4-толуилендиизоцианата, 1,3-циклогександиизоцианата, 4,4′-метилен-бис(фенилизоцианата).

6. Композиция по п. 1, отличающаяся тем, что моноизоцианаты выбраны из группы, состоящей из хлоргексаметиленизоцианата, мета-хлорфенилизоцианата, циклогексилизоцианата или их смесей, причем соотношение изоцианатных групп, принадлежащих диизоцианату и/или производным диизоцианатов, к изоцианатным группам, принадлежащих моноизоцианату, должно быть не меньше 2.

7. Композиция по п. 1, отличающаяся тем, что катализатор полимеризации выбран из группы: третичные амины, производные четвертичного аммониевого основания, основания Манниха, органические соединения олова, в частности алкокси-, карбоксилатные соединения олова, соли щелочных металлов, органические соли металлов переменной валентности, в частности нафтенаты, стеараты, ацетилацетонаты.

8. Композиция по п. 1, отличающаяся тем, что катализатор полимеризации изоцианатов выбран из группы: дибутилдилауринат олова, триэтиламин, 1,4-диазобицикло[2,2,2]октан, гексабутилдистаннумоксид, триэтиламин, тетраэтиламмоний гидроксид.

9. Композиция по п. 1, отличающаяся тем, что фотохромные соединения выбраны из группы, состоящей из нафтопиранов, инденонафтопиранов, фенантропиранов, спиро(индолин)нафтоксазинов, фульгидов, или смеси таких фотохромных соединений.

10. Фотохромный сетчатый оптический материал - продукт, полученный термическим отверждением полимеризационноспособной композиции по пп. 1-9, по крайней мере, на одной поверхности листа прозрачной подложки.

11. Материал по п. 10, отличающийся тем, что продукт получен на подложке из листа прозрачного органического стекла из полиметилметакрилата или поликарбоната.

12. Материал по п. 10, отличающийся тем, что продукт получен на подложке из листа прозрачного органического материала толщиной 25-150 µм, выбранного из группы, состоящей из полиэтилентерефталата, ацетата целлюлозы, триацетата целлюлозы, пропионата ацетата целлюлозы, бутирата ацетата целлюлозы, поливинилацетата, поливинилового спирта, поливинилхлорида, поливинилиденхлорида, полиэфиров и полиуретанов.

13. Способ получения фотохромного сетчатого оптического материала, заключающийся в:
приготовлении полимеризационноспособной изоцианатной композиции по пп. 1-9;
подготовке поверхности прозрачной подложки, включающей обезжиривание и осушку с помощью растворителя;
заливке приготовленной полимеризационноспособной изоцианатной композиции на поверхность подготовленной прозрачной подложки тонким слоем 5-50 мкм;
осушке изоцианатной композиции на поверхности подготовленной прозрачной подложки от растворителя путем выдерживания при температуре 40-45°C в течение 10-20 мин и
термической полимеризации полимеризационноспособной изоцианатной композиции на поверхности подготовленной прозрачной подложки при температуре 100-120°C в течение 25-35 мин.



 

Похожие патенты:

Изобретение относится к полимеризационноспособной фотохромной композиции и фотохромному оптическому материалу на ее основе и может быть использовано во всех областях применения фотохромных оптических материалов.

Изобретение относится к химии фотохромных соединений, в частности, к способу получения оксазиновых фотохромных соединений. .

Изобретение относится к новым соединениям типа нафтопиранов, обладающих, в частности, фотохромными свойствами. .

Изобретение относится к оптике, а именно к устройствам-светофильтрам, изменяющим свои оптические характеристики при изменении своего молекулярного состава под действием электромагнитного излучения.

Изобретение может быть использовано в оптических системах оптических, оптоэлектронных и лазерных приборов, работающих в ультрафиолетовой, видимой и ИК областях спектров.
Изобретение относится к улучшенному способу получения заготовок из галогенидов серебра и их твердых растворов для волоконных инфракрасных световодов, включающему нанесение на кристалл-сердцевину из галогенида серебра кристаллической оболочки из кристаллического галогенида серебра с показателем преломления, меньшим, чем у кристалла-сердцевины, и термическую обработку.

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика.

Изобретение относится к монокристаллу со структурой типа граната, который может быть использован в оптической связи и устройствах для лазерной обработки. Данный монокристалл представлен общей формулой (Tb3-xScx)(Sc2-yAly)Al3O12-z, где 0<x<0,1; 0≤y≤0,2; 0≤z≤0,3, является прозрачным и способен ингибировать образование трещин в процессе резки.

Изобретение относится к иммерсионной жидкости, которая может быть использована в оптическом приборостроении для контроля оптических параметров неорганических материалов и оптических деталей, в том числе крупногабаритных изделий сложной формы.

Изобретение относится к абсорберам видимого света, в частности к новым мономерам азосоединений, в особенности применимым для использования в материалах для имплантируемых офтальмологических линз.

Офтальмологическая линза свободной формы содержит первый участок оптической зоны, содержащий множество вокселов полимеризованного способного к поперечной сшивке материала, содержащего фотопоглощающий компонент.

Изобретение относится к области получения слоистых материалов, используемых в тонкопленочных приборах и устройствах. Изобретение предлагает выравнивающую пленку, включающую выравнивающий слой, содержащий связующую полимерную смолу и неорганический наполнитель в качестве компонентов, по меньшей мере на одной стороне прозрачного полимерного основания.

Группа изобретений относится к производству монокристалла алюмотербиевого граната, который может быть использован в качестве фарадеевского вращателя для оптических изоляторов.

Изобретение относится к полимерам для получения ионных силиконовых гидрогелей, пригодным для изготовления офтальмологических устройств. Предложены полимеры, полученные из реакционно-способных компонентов, в состав которых входит по меньшей мере один силиконсодержащий компонент, включающий по меньшей мере одну триметилсилильную группу, и по меньшей мере один ионный компонент, в состав которого входит по меньшей мере одна анионная группа, представляющий собой содержащий карбоновую кислоту компонент.
Настоящее изобретение относится к кристаллическим коллоидным массивам. Описан способ получения кристаллического коллоидного массива, включающий: диспергирование мономера в эмульсии, содержащей полимерное реакционно-способное поверхностно-активное вещество; полимеризацию мономера для получения монодисперсных полимерных частиц, где полимерное реакционно-способное поверхностно-активное вещество ковалентно связано с полимерными частицами, и нанесение дисперсии на подложку, при этом частицы самоупорядочиваются в виде упорядоченного периодического массива, причем полимерное реакционно-способное поверхностно-активное вещество включает по меньшей мере одно соединение, выбираемое из полиэтиленгликольмонометакрилата, полиэтиленгликольакрилата, поли(пропиленгликоль)монометакрилатных сложных эфиров фосфорной кислоты, поли(пропиленгликоль)моноакрилатных сложных эфиров фосфорной кислоты, поли(этиленгликоль)монометакрилатных сложных эфиров фосфорной кислоты, поли(этиленгликоль)моноакрилатных сложных эфиров фосфорной кислоты, поли(пропиленгликоль)монометакрилатсульфата, поли(пропиленгликоль)моноакрилатсульфата, поли(этиленгликоль)монометакрилатсульфата, поли(этиленгликоль)моноакрилатсульфата, аллилоксиполиэтоксисульфата, аллилоксиполиэтоксифосфата, аллилоксиполипропилоксисульфата и аллилоксиполипропилоксифосфата.
Наверх