Энергоэффективное охлаждающее устройство


 


Владельцы патента RU 2542887:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (ДГТУ) (RU)

Изобретение относится к системам охлаждения и теплоотвода, например к устройствам для охлаждения компонентов электронной аппаратуры. Технический результат - повышение энергоэффективности системы охлаждения. Устройство содержит светоизлучающий термомодуль с линейным расположением p-n-переходов, обеспечивающий получение холода и светового излучения, и солнечные батареи, преобразующие энергию излучения в электрическую энергию. В качестве полупроводниковых ветвей p-типа и n-типа термомодуля выбраны такие материалы, что протекающий ток на одном из спаев будет формировать излучение, а в другом спае будет происходить поглощение тепловой энергии в соответствии с эффектом Пельтье. Солнечные батареи с зеркальными электродами состоят из p-слоя и n-слоя и расположены параллельно по обе стороны от термомодуля. 1 ил.

 

Изобретение относится к системам охлаждения и теплоотвода, например к устройствам для охлаждения компонентов электронной аппаратуры.

Известен способ отвода тепла от тепловыделяющих электронных компонентов в виде излучения [1], в котором используются светодиодные излучатели, предназначенные для преобразования тепловой энергии, поступившей с холодных спаев термомодуля в виде электрического тока, в энергию излучения, отводящего тепло от охлаждаемого устройства в окружающую среду.

Цель изобретения - повышение энергоэффективности системы охлаждения. Это достигается тем, что в предлагаемом устройстве используется светоизлучающий термомодуль с линейным расположением p-n-переходов, обеспечивающий получение холода и светового излучения. А для последующего полного преобразования энергии излучения в электрическую энергию используются солнечные батареи.

Конструкция устройства представлена на фиг.1. Устройство состоит из термомодуля 1, в котором в качестве полупроводниковых ветвей p-типа и n-типа выбраны такие материалы, что протекающий ток на одном из спаев 2 будет формировать излучение, а не нагрев, как в обычном термомодуле, причем в другом спае 3 будет происходить поглощение тепловой энергии в соответствии с эффектом Пельтье, и солнечных батарей 4 (состоящих из p-слоя, n-слоя) с зеркальными электродами 5, расположенных параллельно по обе стороны от термомодуля, обеспечивающих преобразование энергии излучения в электрическую энергию. Между термомодулем 1 и солнечными батареями расположены прозрачные изоляторы 6. Питание термомодуля осуществляется постоянным током от источника 7.

В качестве материалов для изготовления ветвей p-типа и n-типа термомодуля используют те же материалы, из которых изготавливают светодиоды, а именно фосфид галлия (GaP), нитрид галлия (GaN), карбид кремния (SiC) и др. Для изготовления солнечной батареи использован арсенид галлия (Ga-As). Прозрачные изоляторы также выполнены из арсенида галлия.

Изобретение относится к области охлаждающих устройств для микроэлектронной аппаратуры. В отличие от прототипа [1] здесь имеется линейное расположение p-n-переходов, светоизлучающих в термомодуле, и используются две солнечные батареи, расположенные параллельно друг к другу с двух сторон от светоизлучающего термомодуля с внешними зеркальными электродами. Работает устройство следующим образом. При пропускании тока через светоизлучающий термомодуль он начинает вырабатывать холод в электродах на переходах n-p и световое излучение в переходах p-n. Излучение идет в обе стороны. Так как структуры на основе арсенида галлия (Ga-As) прозрачны, то оно беспрепятственно проникает наружу и через прозрачную диэлектрическую пленку достигает солнечных батарей сверху и снизу. Солнечная батарея также выполнена из арсенида галлия и также прозрачна для излучения. Таким образом, световое излучение будет многократно отражаться между внешними зеркальными электродами до тех пор, пока полностью не поглотится при переходе p-n-зоны в солнечных батареях. Многократное отражение позволяет полностью превратить излучение в электроэнергию либо в тепловую энергию, которое также в виде теплового излучения будет трансформировано при помощи солнечной батареи в электрическую энергию.

В результате при пропускании тока мы получим следующее. В среднем слое устройства будет излучение и холод. Излучение при помощи солнечной батареи превратится опять в электроэнергию, которую можно будет использовать для повторного питания излучающего термомодуля, а холод, проникая через прозрачные изоляторы, солнечную батареи и внешние зеркальные электроды, позволит обеспечить применение данной конструкции для теплоотвода от компонентов электронной техники, которые могут быть расположены как сверху, так и снизу от всей конструкции. Таким образом, при пропускании тока через термомодуль мы получаем в чистом виде холод и свет, который будет трансформирован в электроэнергию, опять используемую для получения холода. При охлаждении компонентов электронной техники тепло можно отводить без всяких дополнительных внешних теплоотводов и теплоносителей, преобразуя его в электроэнергию, что определяет энергоэффективность разработанного устройства.

Использование представленного устройства позволит повысить эффективность теплопередачи и уменьшить габариты теплоотвода, а также тем самым увеличить интенсивность работы системы охлаждения.

Применение представленного устройства в системах охлаждения позволит обеспечить более эффективное энергопотребление.

Литература

1. Способ отвода тепла от тепловыделяющих электронных компонентов в виде излучения: пат. 2405230 Рос. Федерация: МПК G06F 1/20 / Исмаилов Т.А., Гаджиев Х.М., Гаджиева С.М., Нежведилов Т.Д., Челушкина Т.А.; заявитель и патентообладатель ГОУ ВПО «Дагестанский государственный технический университет». - №2009120686/09; заявл. 01.06.2009, опубл. 27.11.2010, Бюл. №33.

Энергоэффективное охлаждающее устройство, выполненное из светоизлучающего термомодуля, в котором в качестве полупроводниковых ветвей p-типа и n-типа выбраны такие материалы, что протекающий ток на переходе p-n будет формировать излучение, а на переходе n-p будет происходить охлаждение, и солнечных батарей, отличающееся тем, что для получения холода используется термомодуль с линейным расположением p-n-переходов и две солнечные батареи с зеркальными электродами, расположенные параллельно по обе стороны от термомодуля, обеспечивающие многократное отражение излучения термомодуля и последующее полное преобразование энергии излучения в электрическую энергию.



 

Похожие патенты:

Изобретение относится к системе (1) для кондиционирования воздуха внутреннего пространства центра (2) обработки данных, оснащенного электронным оборудованием (3). Технический результат - обеспечение во внутреннем пространстве центра обработки данных наиболее подходящих значений температуры и относительной влажности для его корректной работы в широком диапазоне географических областей с различным климатом.

Изобретение предназначено для воздушной фильтрации. Фильтр для устройства охлаждения кожуха содержит опорную конструкцию, выполненную с возможностью установки в корпусе, прокладку, герметично зацепляющуюся с опорной конструкцией и выполненную с возможностью зацепления с корпусом, фильтрующий материал, опирающийся на опорную конструкцию.

Изобретение предназначено для воздушной фильтрации. Телекоммуникационная станция включает телекоммуникационные электронные компоненты, устройство охлаждения, включающее корпус, внутри которого находятся телекоммуникационные электронные компоненты, В корпусе имеется воздушное впускное отверстие для получения воздуха из внешней среды и фильтрующий элемент, выполненный с возможностью фильтрации воздуха, проходящего через воздушное впускное отверстие.

Изобретение относится к электронному модулю, прежде всего для ручной машины. Технический результат - обеспечение возможности полного и защищенного размещения, соответственно полной и защищенной установки печатной платы в корпусной детали электронного модуля, обеспечение компактной конструкции, оптимального и эффективного охлаждения электронного модуля.

Изобретение относится к системам отвода тепла от компьютерного оборудования, смонтированного внутри серверных или монтажных шкафов, в частности к конденсационному шкафу.

Изобретение относится к конструкции корпуса электронной аппаратуры, а именно малогабаритного бортового электронного блока управления, сбора и обработки данных с высоким энергопотреблением, предназначенного для ответственных применений в жестких условиях эксплуатации, в том числе на орбитальных космических аппаратах и орбитальных космических станциях.

Изобретение относится к системам охлаждения Центров хранения и обработки данных. Техническим результатом является повышение эффективности охлаждения.

Изобретение относится к системам охлаждения для Центров хранения и обработки данных. Техническим результатом является повышение эффективности охлаждения.

Изобретение относится к электротехническим средствам обеспечения рабочих характеристик интегральных схем (ИС) в защищенной бортовой аппаратуре, в частности, микропроцессоров и микроконтроллеров, путем термостабилизации поверхности корпуса ИС.

Изобретение предназначено для охлаждения электронных устройств бортовой аппаратуры космических аппаратов (КА). Технический результат - повышение эффективности охлаждения устройств, содержащих радиоэлектронные компоненты и силовые модули с различными тепловыделениями, в том числе предназначенных для эксплуатации в условиях невесомости.

Изобретение относится к термоэлектрическому преобразованию энергии. Сущность: модуль содержит несколько электрически последовательно подключенных термоэлектрических элементов, которые состоят по меньшей мере из одного n-слоя и по меньшей мере одного р-слоя из термоэлектрического материала с образованием по меньшей мере одного образующегося вдоль пограничного слоя p-n-перехода.

В заявке описано устройство (1) для выработки электрической энергии с использованием тепла отработавших газов (ОГ) (2), образующихся при работе двигателя (3) внутреннего сгорания, имеющее генератор (4) со входом (5) для ОГ и выходом (6) для ОГ, а также с расположенным между ними теплообменным участком (7) со множеством проточных проходов (8) для ОГ (2) на нем, которые по меньшей мере частично окружены термоэлектрическими элементами (9), которые со своей обращенной от проточного прохода (8) стороны (10) соединены теплопроводящим соединением с охлаждающим устройством (11).

Изобретение относится к области термоэлектричества. Сущность: изолирующая подложка (12) оснащена первой (18) и второй (20) областями соединения.

Изобретение относится к термоэлектрическим устройствам. Сущность: способ включает изготовление стержней из термоэлектрического материала методом горячей экструзии.

Изобретение относится к преобразованию тепловой энергии в электрическую. Сущность: термоэлектрический прибор (100) содержит комбинацию термоэлементов (60, 62) и термомагнитных элементов (65) и может быть использован совместно с пирометаллургической технологической установкой (20), за счет работы которой возбуждается магнитное поле.

Изобретение относится к полупроводниковым изделиям из кристаллических материалов, предназначенным для термоэлектрических устройств, основанных на эффектах Пельтье и Зеебека, а именно термоэлектрических генераторов, охлаждающих и нагревательных устройств.

Изобретение относится к области термоэлектричества, в частности к термоэлектрическим устройствам Пельтье или Зеебека, эксплуатируемых в условиях многократного термоциклирования.

Изобретение относится к полупроводниковым приборам на основе эффекта Пельтье. .

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям и материалам, используемым в термоэлектрических элементах (ТЭЭ) и термоэлектрических батареях (ТЭБ).

Изобретение относится к термоэлектричеству. .

Изобретение относится к области электроники и предназначено для отвода тепла от ИС, СБИС, силовых модулей, блоков радиоэлектронной аппаратуры и т.п. Технический результат - повышение теплоотвода от кристалла к корпусу; упрощение технологии сборки с использованием теплоотводов на основе эффекта Пельтье.
Наверх