Способ определения профиля асферической шлифованной поверхности



Способ определения профиля асферической шлифованной поверхности
Способ определения профиля асферической шлифованной поверхности
Способ определения профиля асферической шлифованной поверхности
Способ определения профиля асферической шлифованной поверхности
Способ определения профиля асферической шлифованной поверхности

 


Владельцы патента RU 2545381:

Открытое акционерное общество "Лыткаринский завод оптического стекла" (RU)

Изобретение относится к механическим средствам измерения контуров и профилей и может быть использовано при формообразовании асферических поверхностей крупногабаритных оптических деталей, в частности при контроле параметров крупногабаритных зеркал телескопов. Для измерения профиля шлифованной асферической поверхности крупногабаритной оптической детали используют линейный трехточечный сферометр с дополнительной боковой регулируемой по высоте ножкой, который обнуляют на эталонном сферическом зеркале, устанавливают крайними ножками перпендикулярно диаметральному сечению в краевую зону детали, перемещают сферометр крайними ножками в зону, в которой до этого располагалась центральная ножка с индикатором, процесс снятия показаний индикатора продолжают до центра детали или до центрального отверстия детали и затем на основании геометрических соотношений строят абсолютный профиль отклонений поверхности от заданного (теоретического) профиля с требуемым вершинным радиусом и эксцентриситетом и необходимым допуском на них. Техническим результатом изобретения является построение абсолютного профиля отклонений формы асферической поверхности оптической детали от требуемой теоретической с необходимой точностью и достижение требуемого значения вершинного радиуса в процессе формообразования. 4 ил.

 

Изобретение относится к механическим средствам измерения контуров и профилей и может быть использовано при формообразовании осевых и внеосевых высокоточных асферических поверхностей крупногабаритных оптических деталей, в частности зеркал телескопов.

Известны способы измерения профиля асферической поверхности с помощью трехточечного сферометра, например, по авт. свид. СССР №619779, опубл. 15.08.1978 г. В корпусе сферометра закреплены две измерительные опоры и измеритель (датчик), расположенные на одной линии, и три регулируемых упора. В процессе измерения сферометр перемещают по контролируемой поверхности позонно от точки к точке, вдвигают и выдвигают упоры, контактируют измеритель с контролируемой поверхностью и фиксируют отклонение стрелки кривизны в каждой заданной точке. Процесс измерения довольно громоздок и трудоемок.

Известен механизированный способ измерения профиля асферического зеркала телескопа (Proc. of SPIE Vol.7018, 701818, p.701818-10÷701818-12, 2008), согласно которому измерительную головку, закрепленную на поворотной наклонной штанге, последовательно перемещают механически по большим дугам по контролируемой поверхности и с помощью самописца снимают показания индикатора измерительной головки. Однако из соображений жесткости штанги и необходимой точности измерений способ применим для контроля зеркал относительно небольшого диаметра (не более 1.5 м).

Ближайшим к предлагаемому по технической сущности может служить способ контроля процесса обработки асферической поверхности оптической детали по авт. свид. СССР №413117, опубл. 30.01.1974 г., согласно которому с помощью трехточечного сферометра или металлической линейки с двумя агатовыми ножками на концах и пружинной индикаторной головкой с ценой деления 0.1 мкм, установленной посередине, с базой сферометра, равной «а» (расстоянию между двумя крайними агатовыми ножками сферометра), измеряют стрелки прогиба вдоль диаметрального направления или по хорде, касательной к центральному отверстию на детали (для деталей с центральным отверстием), последовательно смещая сферометр на величину а/2 таким образом, чтобы одна крайняя ножка сферометра перемещалась в положение центральной ножки, центральная в положение второй крайней ножки, а вторая крайняя ножка в новое положение, таким образом с шагом в половину базы сферометра проходя весь диаметральный отрезок или хорду, при этом радиус детали (диаметр, хорду) разбивают на отдельные промежутки «а», укладывающиеся на полном радиусе детали, сравнивают результаты с расчетными величинами стрелок прогиба для каждого положения сферометра и по данным измерениям строят относительный профиль отклонений от ближайшей асферической поверхности для выполнения процесса шлифования.

Обычно для устойчивости сферометра на вогнутой или выпуклой поверхности и для разгрузки его веса сферометр снабжают хотя бы одной вспомогательной боковой ножкой-упором. Так, при контроле асферических поверхностей согласно патентной заявке RU 2013 147718/28, приор. 28.10.2013, используют сферометр с тремя дополнительными опорными ножками, из которых одна расположена сбоку от индикатора (датчика) и может регулироваться по высоте.

Указанный способ не решает поставленную задачу, т.к. дискретность построенного профиля составляет половину базы сферометра, уменьшение базы сферометра приводит к увеличению погрешности определения профиля, а также не определяет вершинный радиус поверхности и эксцентриситет. Полученный профиль отклонений от ближайшей асферической поверхности может существенно отличаться от требуемого, особенно для высокоасферичной поверхности (до 1000 мкм на диаметре до 4 м) с очень малыми допусками на отклонения от вершинного радиуса и эксцентриситета, которые обрабатываются в настоящее время.

Техническим результатом изобретения является построение абсолютного профиля отклонений формы асферической поверхности оптической детали от требуемой теоретической с необходимой точностью (отклонение вершинного радиуса от заданного менее 0,03-0,05%) и достижение данного значения вершинного радиуса в процессе формообразования.

Технический результат достигается тем, что в способе определения профиля шлифованной асферической поверхности путем помещения ножек трехточечного линейного сферометра с базой «а» с индикатором посередине в заранее рассчитанные точки, последовательного перемещения сферометра по диаметру, снятия показаний индикатора о стрелках прогиба и расчета отклонений формы поверхности от теоретической, в отличие от известного используют сферометр с дополнительной боковой регулируемой по высоте ножкой, сферометр обнуляют на контрольном стекле с известным радиусом поверхности, близким к интервалу радиусов асферической поверхности, устанавливают крайними ножками перпендикулярно диаметральному сечению в краевую зону детали с радиусом Ri, перемещают сферометр крайними ножками в зону с радиусом R i + 1 = R i 2 ( a / 2 ) 2 , в которой до этого располагалась центральная ножка с индикатором, процесс снятия показаний индикатора продолжают до центра детали или до центрального отверстия детали и затем на основании геометрических соотношений строят абсолютный профиль отклонений поверхности от заданного (теоретического) профиля с требуемым вершинным радиусом и эксцентриситетом и необходимым допуском на них.

Способ поясняется рисунками, где:

на рис.1 изображена схема установки ножек сферометра на поверхности и схема для расчета установочных точек;

на рис.2 - схема расположения индикатора;

на рис.3 - схема опорных точек и отрезков;

на рис.4 - график построения измеряемого профиля.

Предложенный способ реализуется следующим образом. Измерения проводили на зеркале диаметром 3700 мм со световым измеряемым диаметром 3670 мм, вершинным радиусом кривизны асферической поверхности, равным 14639,0 мм, конической константой К=1,03296, диаметром отверстия 720 мм. Для измерений используют линейный трехточечный сферометр с индикаторной головкой посредине с ценой деления 0,1 мкм, с базой «а» (расстояние между крайними ножками сферометра), равной 1020 мм, и боковой регулируемой по высоте вспомогательной ножкой, закрепленной сбоку индикатора на расстоянии 40 мм. Для обнуления индикатора было изготовлено контрольное (пробное) стекло с радиусом 14727,0 мм, учитывая, что радиус ближайшей к асферике сферы равен 14700,55 мм.

Сферометр с базой «а» (A1-B1 на рис.1), расстоянием «b» до 4-й боковой ножки от центральной (рис.2), обеспечивающей нормальное к поверхности положение сферометра, помещают на контрольное стекло, обнуляют, устанавливают крайними ножками на измеряемую деталь перпендикулярно диаметральному сечению и по нормали к поверхности (рис.2) в первую краевую зону детали (в точки A1, B1, рис.1, рис.3) с радиусом RA1 в плоскости XY, в которой отклонение профиля принимается равным P1=0, снимают показания сферометра Δs1,измер относительно эталонной сферы в точке Т2 на зоне с расстоянием от центра на R A 2 = R A 1 2 ( a / 2 ) 2 , в которой теоретическое значение должно быть Δs2,теор определяется добавка к профилю Δр2=Δs2,измер-Δs2,теор и отклонение профиля в точке Р2=P1+Δр2, сферометр перемещают крайними ножками на зону, в которой располагалась центральная ножка, снова выполняют измерения стрелки прогиба и определяют отклонения профиля в точке Pi+1=Pi+Δpi и процесс измерений продолжают до центра детали или до центрального отверстия Pn=Pn-1+Δpn-1 и строят абсолютный профиль с отклонениями от поверхности с требуемым вершинным радиусом и эксцентриситетом.

Δsi,теор, определяется из уравнения асферической поверхности, которое в общем виде записывается следующим образом:

,

где S2=x2+y2;

c=1/R0 - величина, обратная вершинному радиусу;

K=-e2, где e - эксцентриситет поверхности;

A1, A2, A3, A4 - коэффициенты асферики для поверхностей более высокого порядка (выше 2-го).

В зависимости от величины конической константы различают следующие формы поверхности:

K<-1 - гиперболоид

K=-1 - параболоид

-1<K<0 - эллипсоид вращения относительно главной оси (эллипсоид или вытянутый сфероид)

K=0 - сфера

K>1 - эллипсоид вращения относительно малой оси (сплюснутый сфероид)

Определяем значения zA1, zA2, zT2, определяем стрелку с вычетом стрелки эталонной сферы arrowсферы:

Δsi,теор=(zA1-zT2-arrowсферы)·cos(α),

где угол α - угол между вертикалью и нормалью к поверхности в измеряемой точке.

На рис.4 приведены результаты расчета профиля по описанной методике. На графике приведены полученные отклонения Дельтаасф (на рис.4 Yтр.ноги, Zтр.ноги - третья стационарная ножка). ПСтеор и ПСфакт - теоретические и фактические отклонения стрелки прогиба от эталонной сферической поверхности, Y - координата профиля вдоль радиального направления от края детали к центру, Zтеор и Zфакт - теоретическое и фактическое значение координаты Z. Асф.теор и Асф.факт - теоретическая и полученная фактическая величина асферичности от ближайшей сферы. В последней графе Попр. деф. - величина поправки в показаниях сферометра, учитывающая деформации сферометра при наклонном его положении относительно рабочей поверхности. Данная поправка определяется экспериментально для различных углов наклона сферометра а (рис.2) относительно вертикального положения. Учет данной деформационной поправки значительно повышает точность измерений.

Фактические измерения вершинного радиуса, выполненные после предварительной прополировки поверхности, дали величину R0=14639±5 мм (требуемое значение ±7 мм), что составляет величину отклонения от заданного значения 0,03%.

Результаты, приведенные на рис.4, показывают высокую эффективность и надежность предложенного метода измерения профиля шлифованной асферической поверхности и практически подтверждают достижение технического результата: построение абсолютного профиля отклонений формы асферической поверхности оптической детали от требуемой теоретической с необходимой точностью (отклонение вершинного радиуса от заданного менее 0,03-0,05%) и достижение данного значения вершинного радиуса в процессе формообразования.

Способ определения профиля асферической шлифованной поверхности путем помещения ножек трехточечного линейного сферометра с базой «а» с индикатором посередине в заранее рассчитанные точки, последовательного перемещения сферометра по диаметру, снятия показаний индикатора о стрелках прогиба и расчета отклонений формы поверхности от теоретической, отличающийся тем, что используют сферометр с дополнительной боковой регулируемой по высоте ножкой, сферометр обнуляют на контрольном стекле с известным радиусом поверхности, близким к интервалу радиусов асферической поверхности, устанавливают крайними ножками перпендикулярно диаметральному сечению в краевую зону детали с радиусом Ri, перемещают сферометр крайними ножками в зону с радиусом R i + 1 = R i 2 ( a / 2 ) 2 , в которой до этого располагалась центральная ножка с индикатором, процесс снятия показаний индикатора продолжают до центра детали или до центрального отверстия детали и затем на основании геометрических соотношений строят абсолютный профиль отклонений поверхности от заданного (теоретического) профиля с требуемым вершинным радиусом и эксцентриситетом и необходимым допуском на них.



 

Похожие патенты:

Изобретение относится к настроечному устройству для юстировки ступенчатой коробки передач. Настроечное устройство содержит установленные в корпусе (10) рычага переключения передач главный опорный вал (12) и настроечный элемент (14), входящий в установленный на корпусе (10) рычага направляющий элемент (22).

Изобретение относится к устройству для измерения скорости и направления движения грунта относительно подземного трубопровода, расположенного в местах с возможными оползневыми явлениями.

Изобретение относится к измерительной технике, в частности для измерения взаимного расположения плоскостей и наружной сферической поверхности. Заявленный способ измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности заключается в том, что на установочной плоскости размещают базирующий элемент, содержащий коническое отверстие.

Изобретение может быть использовано для контроля крупногабаритных изделий, отладки и контроля стабильности и точности технологических процессов механической обработки, для определения отклонений формы и расположения деталей машин в полевых условиях.

Способ калибровки рычажных профилемеров включает установку прибора с раскрытыми рычагами, последующую установку калибрующего устройства сверху на профилемер с совмещением пазов калибрующего устройства и паза для перемещения рычага под калибрующим элементом, выставленным на определенный размер радиуса раскрытия рычагов, затем перемещение калибровочного устройства вдоль оси прибора и установку под калибрующим элементом другого рычага калибруемого профилемера, при этом наружная поверхность калибруемого профилемера и опорная поверхность калибровочного устройства совмещаются соосно и беззазорно с помощью прижима опорной поверхности калибруемого прибора и опорной поверхности калибровочного устройства, и величины раскрытия всех рычагов последовательно калибруются однонаправленным устройством.

Изобретение относится к области измерительной техники и может быть использовано в производстве арматуры питания газогидравлических машин для изготовления компенсирующих втулок.

Изобретение относится к измерительной технике, в частности к устройствам для измерения профиля поверхностей низкомодульных вязкоупругих листовых материалов легкой промышленности, а именно искусственных и натуральных кож, нетканых материалов и пр.

Изобретение относится к измерительной технике, в частности, для измерения взаимного расположения плоскостей и наружной сферической поверхности. .

Изобретение относится к области полупроводниковых диагностических технологий, к кристаллографии и петрографии, в частности к анализу кристаллических наноразмерных гетероструктур с помощью электронного томографа с управляемой когерентностью, позволяющего бесконтактно определять толщину и число межплоскостных атомных нанослоев полупроводниковых кристаллических гетероструктур и картирования ориентации кристаллитов для исследования динамических процессов и фазовых переходов.

Изобретение относится к области технических измерений и может быть использовано при измерении геометрических параметров (отклонений формы и биений) преимущественно крупногабаритных корпусных изделий.

Изобретение относится к средствам и методам определения ошибки позиционирования рабочих органов станка с ЧПУ. С этой целью станок оснащается калибровочным элементом и, по меньшей мере, одним датчиком. После осуществления рабочим органом станка калибровочного перемещения считывают данные датчика, которые соответствуют расстоянию между точкой на поверхности калибровочного элемента и датчиком или расстоянию, на которое отклоняется контактный элемент датчика. После выполнения следующего калибровочного перемещения считывают вторые данные датчика при нахождении калибровочного элемента во втором положении. Затем осуществляют перемещение указанного датчика таким образом, пока разность между первыми и вторыми данными датчика не станет меньше, чем заранее определенное пороговое значение, или равной ему, а ошибку позиционирования рабочего органа станка определяют на основании упомянутого перемещения датчика. 3 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для определения радиусов кривизны цилиндрических поверхностей бесконечной длины и может быть применено для мониторинга состояния рабочих поверхностей железнодорожного рельса, например в условиях открытых горных работ. Для измерения радиуса кривизны цилиндрической поверхности (выпуклой или вогнутой) используется инструмент на базе штангенциркуля, включающий основание (рамку с нониусом) с вставленной в рамку штангой с измерительной шкалой, измерительные губки, установленный в гильзу индикатор часового типа и стопорный винт, при этом индикатор часового типа установлен вместе с гильзой на дополнительной штанге, установленной на рамке с обратной стороны основной штанги штангенциркуля, соединенной подвижно с последней с возможностью перемещения относительно нее, причем ось измерительного стержня индикатора часового типа перпендикулярна продольной оси дополнительной штанги, а в начальном (нулевом) положении совпадает с плоскостью соприкосновения внутренних поверхностей измерительных губок и конец измерительного стержня индикатора совпадает с плоскостью, проведенной перпендикулярно оси измерительного стержня по крайним точкам измерительных губок. При измерении радиуса кривизны цилиндрической поверхности измерительные губки устанавливаются на измеряемую поверхность рельса на размер ширины дорожки катания L, а ось измерительного стержня часового индикатора устанавливается перемещением дополнительной штанги на размер l по дополнительной шкале, равный половине ширины дорожки катания L, и измеряет высоту сегмента h от хорды, стягивающей дугу окружности контура цилиндрической поверхности дорожки катания. Радиус кривизны цилиндрической поверхности определяется равным частному от деления суммы квадратов полуширины дорожки катания и высоты сегмента, измеренной от хорды, стягивающей дугу окружности контура цилиндрической поверхности дорожки катания, на удвоенную высоту сегмента. 2 з.п. ф-лы, 4 ил.

Изобретение относится к станкостроению и может быть использовано в многоцелевых станках, используемых для многокоординатной обработки. Способ заключается в том, что определяют координаты осей вращения рабочих органов станка, для чего осуществляют измерение координат произвольных точек калибровочной поверхности с помощью измерительного щупа. При этом в качестве калибровочной поверхности используют плоскости рабочих органов станка, параллельные соответствующим осям вращения, а касания измерительным щупом точек калибровочной плоскости осуществляют при различных углах поворота рабочих органов вокруг этих осей в перпендикулярной к ним плоскости. По измеренным координатам точек касания щупом калибровочной плоскости графически определяют положение осей вращения калибровочных плоскостей, совпадающих с осями вращения соответствующих рабочих органов станка. Найденные координаты осей вращения заносят в данные системы ЧПУ станка для его настройки. Изобретение позволяет упростить настройку станка и повысить ее точность. 1 ил., 1 табл.

Устройство для автоматического регулирования положения объекта по двум взаимно перпендикулярным направлениям относится к области приборостроения и может быть использовано для автоматического регулирования положения объекта по двум взаимно перпендикулярным направлениям. Технический результат заключается в расширении функциональных возможностей и исключении ручного управления оператора из процесса позиционирования рупора. Поставленная цель достигается тем, что устройство содержит перемещаемый объект, ходовые винты, электродвигатели, понижающие редукторы, блок управления приводами, абсолютные энкодеры угла поворота, цифровой выход которых подключен к измерительно-вычислительному комплексу. Измерительно-вычислительный комплекс через силовые модули управляет режимами функционирования привода: разгон, номинальное движение, торможение, останов. Измерительно-вычислительный комплекс выполняет измерение радиотехнических параметров, поступающих с контролируемого изделия. 2 з.п. ф-лы, 1 ил.

Изобретение относится к средствам для измерения координат центра и радиуса цилиндрических участков деталей. Данный способ включает в себя определение координат центра сферического наконечника радиусом Rн измерительной головки при каждом его касании с поверхностью изделия. Измерения выполняют не менее чем в трех точках радиусного участка, для которых определяют координаты центра сферического наконечника Xi и Yi. Вычисляют координаты центра B (xb; yb) и радиус Rb радиусного участка в измерительной системе координат Xизм., Yизм.. После чего выполняют измерения поверхностей конструкторских баз, не совпадающих с измерительными базами, и находят характерные точки конструкторских баз C (xc; yc) и D (xd; yd). По характерным точкам строят конструкторскую систему координат Xкон., Xкон., начало которой смещено относительно начала измерительной системы координат на величины xc и yc, а ее оси повернуты на угол α. В конструкторской системе координат определяют положение центра B радиусного участка относительно характерных точек конструкторских баз C и D по следующим зависимостям: Lx=|(xa-xc)cosα+(ya-yc)sinα|; Ly=|-(xa-xc)sinα+(ya-yc)cosα|; Kx=|((xa-xc)cosα+(ya-yc)sinα)-((xb-xc)cosα+(yb-yc)sinα)|; Ky=|(-(xa-xc)sinα+(ya-yc)cosα)-(-(xb-xc)sinα+(yb-yc)cosα)|; где LX, LY, KX, KY - линейные размеры положения центра радиусного участка относительно характерных точек конструкторских баз. Угол α определяют решением оптимизационной задачи F→min, целевая функция F которой представляет собой сумму отклонений tx, ty, px, py указанных выше расстояний от их значений LXcep, LYcep, KXсер, KYcep, соответствующих серединам полей допусков: F=tx+ty+px+py, tx=|LXcep-LX|; ty=|LYcep-Ly|; px=|KXcep-KX|; py=|KYcep-KY|, где LXcep, LYcep, KXcep, KYcep - середины полей допусков соответствующих линейных контрольных размеров в конструкторской системе координат: LXcep - середина поля допуска линейного контрольного размера CB по оси абсцисс; LYcep - середина поля допуска линейного контрольного размера CB по оси ординат; KXcep - середина поля допуска линейного контрольного размера BD по оси абсцисс; KYcep - середина поля допуска линейного контрольного размера BD по оси ординат. Была решена задача определения относительного положения центров цилиндрических участков детали и значений радиусов этих участков при произвольном или частичном базировании по конструкторским базам. Данное изобретение позволяет определять координаты центра и радиуса цилиндрических участков деталей при произвольном базировании по конструкторским базам. 5 ил.

Изобретение относится к инженерной биологии и биоиндикации окружающей среды измерениями качества ростовых органов различных видов растений, преимущественно древесных растений, например проб в виде листьев древесных растений с простой и небольшой листовой пластинкой: липы, клена полевого или американского, березы, тополя. Технический результат - повышение точности измерения высоты расположения учетного листа над почвой при долговременных наблюдениях за развитием и ростом отдельного учетного листа. На каждой выбранной ветви выделяют пробные листа, их отмечают метками, для измерения высоты листа дерева от почвы применяют миллиметровую линейку метровой длины. Причем за точку начала отсчета высоты принимают место присоединения листа к черешку, а при расположении листа над почвой более одного метра за промежуточные метки для измерения высоты принимают характерные места на одежде человека-измерителя. 4 з.п. ф-лы, 6 ил.
Наверх