Способ определения вязкости неньютоновских жидкостей

Изобретение относится к измерительной технике, а именно к способам измерения вязкости жидкостей. Способ определения вязкости неньютоновских жидкостей включает прокачку их через канал, а вязкость определяется из выражения , где: ηС - вязкость неньютоновской жидкости, Па·с; NС - полезная мощность, затрачиваемая на секундный сдвиг, Вт; r - радиус внутренней поверхности трубы, м; rСР - средний радиус потока неньютоновской жидкости, м; - средняя скорость потока водной суспензии, м·с-1; t - время истечения струи суспензии из насадки, с. Техническим результатом является упрощение способа определения вязкости неньютоновских жидкостей, главным образом, за счет использования в качестве входных параметров, значений мощности, затрачиваемой на секундный сдвиг, полученной с помощью измерительной техники.

 

Изобретение относится к измерительной технике, а именно к способам измерения вязкости жидкостей.

Известен способ измерения вязкости жидкости, включающий определение времени истечения ее фиксированного объема через капилляр с заданным диаметром живого сечения [1].

Недостатком способа [1] является невозможность измерения вязкости неньютоновских жидкостей.

Известен способ измерения вязкости жидкости, включающий прокачку жидкости через канал известного диаметра, определение напряжения и скорости сдвига на стенке канала [2].

Недостатком способа [2] является невозможность измерения зависимости вязкости от скорости сдвига при заданной скорости движения жидкости.

Известен способ измерения вязкости неньютоновских жидкостей, включающий их прокачку через цилиндрический канал, определение напряжения сдвига, скорости сдвига, профиля распределения скоростей потока в поперечном сечении канала и зависимости вязкости от скорости сдвига из выражения , где: η - вязкость жидкости, Па·с; τ(x) - напряжение сдвига, Па; γ′(x) - скорость сдвига, с-1; x - текущая координата вдоль оси канала, м [3].

Недостатком способа [3] является сложность, большая трудоемкость и длительность процесса определения напряжения сдвига, требующего достаточно дорогого аппаратурного оснащения.

Наиболее близким по технической сущности является способ определения вязкости неньютоновских жидкостей, включающий их прокачку через канал, расчет секундного расхода и средней скорости потока, при этом вязкость неньютоновских жидкостей определяется из выражения , где

ηв - вязкость воды (ньютоновской жидкости, принимается по справочным данным), Па·с;

ηс - вязкость суспензии (неньютоновской жидкости), Па·с;

- средняя скорость потока воды (расчетная величина), м·с-1;

- средняя скорость потока водной суспензии (неньютоновской жидкости, расчетная величина) м·с-1 [4].

Недостаток способа [4] заключается в необходимости использования реологических параметров промежуточной ньютоновской жидкости (воды) ηB, и, как следствие этого, с целью их нахождения, в введении дополнительных операций в цепочку основных.

Изобретение решает задачу упрощения способа определения вязкости неньютоновских жидкостей, с созданием предпосылок для усовершенствования экспресс - метода по его осуществлению, применительно к производственным условиям, например, при обработке и транспортировании по технологическим трубопроводам малоконсистентных древесноволокнистых водных суспензий.

Технический результат заключается в упрощении способа определения вязкости малоконсистентрых неньютоновских жидкостей [4], главным образом, за счет использования в качестве входных параметров, значений мощности, затрачиваемой на секундный сдвиг, полученной с помощью измерительной техники.

Для обеспечения технического результата, в способе определения вязкости неньютоновских жидкостей, включающем их прокачку через канал, расчет секундного расхода и средней скорости потока, согласно изобретению, вязкость определяется из выражения , где

ηС - вязкость неньютоновской жидкости, Па·с;

NС - полезная мощность, затрачиваемая на секундный сдвиг, Па·с;

r - радиус внутренней поверхности трубы, м;

rСР - средний радиус потока неньютоновской жидкости, м;

- средняя скорость потока водной суспензии, м·с-1;

t - время истечения струи суспензии из насадки, с.

В отличие от известных способов [1, 2, 3, 4], в предлагаемом решении, в качестве основных входных параметров, замеряются значения мощности NС, затрачиваемой на секундный сдвиг, время истечения струи из насадки t и радиус r внутренней поверхности трубы, рассчитывается значения среднего радиуса rСР, средней скорости потока в трубопроводе, концентрации С. При известных значениях данных входных параметров, задача определения вязкости ηС неньютоновской жидкости существенно упрощается. Кроме того, для создания компактного экспресс-метода измерения вязкости неньютоновских жидкостей в производственных условиях в предлагаемом решении (по сравнению с известными способами [1, 2, 3, 4]) потребуется недорогое и в конструктивном отношении более простое приборное оснащение. Представленная формула определения вязкости ηС неньютоновских жидкостей выведена авторами аналитическим путем и подтверждена результатами эксперимента. Экспериментальное определение вязкости было проведено в проблемной лаборатории кафедры «Машины и аппараты промышленных технологий» СибГТУ.

В качестве исследуемых жидкостей использовались водные суспензии целюлозы с концентрацией С=0,5; 1,0; 1,5%. Замеры производились при фиксированных входных параметрах: температура t=20°C; фиксированный объем пропускаемой через насадку исследуемой жидкости V=0,008 м3. Диаметр поперечного сечения канала d=0,02 м.

Пример 1. Концентрация 0,5%. Операции производились в следующей последовательности:

- рассчитывались секундный расход Q, средняя скорость и средний радиус rСР потока по известным зависимостям;

- замерялись время t истечения фиксированных объемов V исследуемых жидкостей из насадки, установленной на выходе из каналов и мощность NС, затрачиваемая на секундный сдвиг.

Расчет вязкости ηС производился для ламинарного режима движения потока суспензии, поскольку результаты проверочного расчета показали, что при концентрациях С=0,5% режим течения во всех рабочих органах установки ламинарный (Re<2320).

Пример 2. Концентрация 1%. Последовательность операций осуществлялась по аналогии, установленной в примере 1.

Расчет вязкости ηС производился для турбулентного режима движения потока суспензии, поскольку результаты проверочного расчета показали, что при концентрациях С=1% число Re находилось в пределах 14148…16960.

Пример 3. Концентрация 1,5%. Последовательность операций осуществлялась по аналогии, установленной в примере 1.

Расчет вязкости ηС производился для турбулентного режима движения потока, поскольку установлено, что при концентрациях С=1,5% число Re находилось так же, как и в примере 2, в пределах 14148…16960.

После подстановки результатов расчета и замеров в представленную зависимость были определены значения вязкости исследуемых водных суспензий целлюлозы примеров 1-3. Результаты эксперимента приведены в таблице.

Таким образом, по сравнению с существующими способами [1, 2, 3, 4], использование предлагаемого решения упрощает процесс определения вязкости малоконсистентных неньютоновских жидкостей. За счет этого создаются предпосылки для осуществления контроля данного параметра в производственных условиях, например, при размоле древесно-волокнистой массы, поступающей на стадию размола в виде малоконсистентных водных суспензий целлюлозы.

Кроме этого, можно предположить, что контроль вязкости неньютоновских жидкостей позволит предотвратить возможность возникновения аварийных ситуаций, часто имеющих место при неконтролируемом пропуске консистентной волокнистой массы через массопровод и соединенные с ним рабочие полости технологического оборудования. Использование предлагаемого решения способствует повышению эффективности технологических процессов.

Источники информации

1. Цветков В.Н, Эскин В.Е., Френкель С.Я. Структура макромолекул в растворах. М.: Наука, 1964.

2. Мидлман С. Течение полимеров. М.: Мир, 1971.

3. SU №1716388, МПК G01N 11/04, заяв. 30.05.1989 г., опубл. 29.02.1992 г., бюл. №8.

4. RU №2441217, МПК G01N 11/04, заяв. 28.10.2010 г., опубл. 27.01.2012 г., бюл. №3.

Способ определения вязкости малоконсистентных неньютоновских жидкостей, включающий их прокачку через канал, расчет секундного расхода и средней скорости потока, отличающийся тем, что вязкость определяется из выражения
, где
ηС - вязкость неньютоновской жидкости, Па·с;
NС - полезная мощность, затрачиваемая на секундный сдвиг, Вт;
r - радиус внутренней поверхности трубы, м;
rСР - средний радиус потока неньютоновской жидкости, м;
- средняя скорость потока водной суспензии, м·с-1;
t - время истечения струи суспензии из насадки, с.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры.

Изобретение относится к измерительной технике, в частности к измерениям вязкости анизотропных жидкостей, т.е. жидкостей, которые имеют разные величины вязкости в зависимости от геометрии измерений и скорости сдвигового потока.

Изобретение относится к измерительной технике, а именно к способам измерения вязкости жидкостей. .

Изобретение относится к охране природных ресурсов и может быть использовано при мониторинге природных сред в нефтедобывающих районах. .

Изобретение относится к области исследования вязкостных свойств жидких сред. .

Изобретение относится к медицине, а именно к биохимии, и может быть использовано для определения реологических характеристик биологических жидкостей (моча, кровь, лимфа и др.).

Изобретение относится к измерительной технике, в частности к измерениям вязкости неньютоновских жидкостей. .
Изобретение относится к измерению целенаправленных изменений физико-химических свойств воды и водных растворов, подвергнутых энергоинформационному воздействию. .

Изобретение относится к области реологии разбавленных растворов полимеров, а также поверхностно-активных веществ (ПАВ), и может быть использовано для определения эффективности противотурбулентных присадок (ПТП), используемых при перекачке углеводородных жидкостей по трубопроводам. Турбулентный реометр содержит установленные на штативе расходную емкость с шаровым краном и трубкой Мариотта, трубку малого внутреннего диаметра для прохождения маловязкой углеводородной жидкости в турбулентном режиме течения, электромагнитный клапан с реле времени для задания отрезка времени открытия клапана, приемную емкость и технические весы для измерения массы жидкости в приемной емкости. Способ определения эффективности ПТП заключается в том, что в расходную емкость через шаровый кран заливают маловязкую углеводородную жидкость, закрывают шаровый кран для обеспечения поддержания постоянного давления в расходной емкости, задают посредством реле отрезок времени и запускают открытие электромагнитного клапана. После автоматического срабатывания реле времени закрывается электромагнитный клапан, после чего взвешивают на технических весах наполненную приемную емкость. После этого вводят в жидкость ПТП в определенной концентрации, выполняют вышеперечисленные действия и вычисляют снижение гидродинамического сопротивления после введения ПТП. Вышеперечисленные действия выполняют для ряда значений концентраций ПТП в жидкости и затем оценивают эффективность ПТП, получая зависимость величины снижения гидродинамического сопротивления от значения концентрации ПТП. Техническим результатом является упрощение конструкции турбулентного реометра и повышение надежности результатов измерений эффективности ПТП. 2 н. и 3 з.п. ф-лы, 1 пр., 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от сдвиговых скоростей деформаций, давления и температуры. Инерционный способ измерения вязкости включает прокачку испытуемой среды через канал формы тор под действием изменяющихся во времени сил инерции и трения среды, возникших в результате резкой остановки вращающегося вокруг своей оси тора, и определение параметров движения среды, а именно касательного напряжения и сдвиговой скорости деформации на поверхности канала. При этом в процессе инерционного движения среды измеряют только момент результирующей силы трения, по значениям которого в каждый момент времени определяют величину касательного напряжения, затем численным решением уравнения движения сплошной среды определяют сдвиговую скорость деформации и вязкость. Техническим результатом является повышение точности при минимальном количестве измеряемых параметров определять вязкость сред со сложными реологическими свойствами, зависящими одновременно от сдвиговых скоростей деформаций, давления и температуры в широком диапазоне перечисленных параметров. 2 табл.

Изобретение относится к области промысловой геологии и может быть использовано в процессе добычи углеводородов из подземных геологических формаций. В данном документе описан способ измерения вязкости неньютоновской жидкости для поточного измерения и управления процессом. Процесс включает примешивание добавок к базовому флюиду для формирования неньютоновской жидкости. Неньютоновская жидкость подается в устройство для поточного измерения вязкости для получения результатов измерения реологических параметров. Затем введение добавок к базовому флюиду корректируется с учетом измеренных реологических параметров. Также раскрыта система, предназначенная для достижения указанных целей. Технический результат – повышение результативности корректировки процесса добычи углеводородов из подземных геологических формаций. 3 н. и 17 з.п. ф-лы, 8 ил.
Наверх