Тепловой тест-объект


 


Владельцы патента RU 2549072:

Федеральное государственное бюджетное учреждение "З Центральный научно-исследовательский институт" Министерства обороны Российской Федерации (RU)

Устройство для контроля параметров тепловизионных систем относится к оборудованию для контроля параметров наземных тепловизионных приборов (ТВП) наблюдения и прицеливания военного назначения в полевых условиях и может быть использовано при испытаниях и оценке качества ТВП. Достигаемый результат - обеспечение оценки параметров ТВП в реальных условиях их эксплуатации, повышение объективности получаемых результатов, снижение требований к оператору. Устройство для контроля параметров тепловизионных систем включает тепловой излучатель, выполненный в виде матрицы тепловыделяющих элементов (2), установленный на панель из материала с низкой теплопроводностью (1), цифровые датчики температуры (7), установленные на тепловыделяющих элементах, устройство управления на базе микропроцессора (6), обратная связь которого с тепловым излучателем осуществляется с помощью сигналов от цифровых датчиков температуры, а также источник питания (4). Панель имеет размеры реального наблюдаемого объекта. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к оборудованию для контроля параметров наземных тепловизионных приборов (ТВП) наблюдения и прицеливания военного назначения в полевых условиях, а именно к тепловым тест-объектам, и может быть использовано при испытаниях и оценке качества ТВП.

Широко известно, что при испытаниях тепловизионных приборов наблюдения и прицеливания военного назначения в натурных условиях, в первую очередь для определения дальности разведки целей, используются реальные наблюдаемые объекты - цели (например, образцы бронетанковой техники), имеющие сложную тепловую сигнатуру. При этом фиксируется большая номенклатура параметров внешних условий и наблюдаемой цели для последующего нормирования результатов испытаний к заданным в требованиях на приборы условиям [1].

Этот метод имеет ряд существенных недостатков:

- параметры внешних условий, наблюдаемой цели и фона являются случайными неуправляемыми факторами, в связи с чем для получения статистически устойчивых результатов требуется проведение значительного количества опытов (десятки, сотни) при различных сочетаниях влияющих факторов. При этом факторное пространство должно, по возможности, равномерно охватывать значения нормированных параметров для их последующей статистической обработки;

- наблюдение реальных объектов приводит к значительному разбросу результатов оценок по дальности их разведки различными операторами, что снижает достоверность оценок;

- применение реальных наблюдаемых объектов (например, образцов бронетанковой техники) связано со значительными материальными и временными затратами.

Известны и широко применяются при лабораторных исследованиях и испытаниях тепловые тест-объекты (миры), аналогичные тест-объектам, применяемым в оптике.

Преимущество таких тест-объектов состоит, прежде всего, в высокой объективности и повторяемости получаемых результатов при оценке качества тепловизионных приборов, т.к. зрительная задача при этом случае заключается в уверенном различении штрихов тепловой миры и мало зависит от опыта работы оператора с прибором.

Многочисленными исследованиями доказано [1], что стадия решения задачи разведки реального наблюдаемого объекта (обнаружение, распознавание или идентификация) однозначно определяется количеством теплых и холодных штрихов миры, приходящихся на ее минимальный размер. Так, например, при обнаружении (выделение на фоне местности) наблюдаемого объекта с 50% вероятностью необходима одна пара штрихов, при распознавании (определение типа наблюдаемого объекта) - 4 пары, а при идентификации (определение марки наблюдаемого объекта) - 6 пар штрихов [1].

При этом размеры миры должны соответствовать размерам проекции наблюдаемого объекта на вертикальную плоскость, а тепловой контраст штрихов - среднему тепловому контрасту реального наблюдаемого объекта.

Наиболее близким по технической сущности является устройство для контроля параметров тепловизионных систем [2], включающее тепловой излучатель, содержащий нагреватель и теплоизлучающую панель, перед которой с воздушным зазором устанавливается сменный тест-объект в виде пластины с прорезями - теплыми штрихами. Холодными штрихами является поверхность самой пластины. Устройство управления на базе микропроцессора обеспечивает регулировку температуры теплоизлучающей панели. Контроль температуры теплоизлучающей панели и пластины с прорезями - теплыми штрихами для обеспечения требуемого теплового контраста осуществляется с использованием установленных на них цифровых датчиков температуры.

Изменение количества пар штрихов осуществляется за счет замены пластины с необходимым количеством прорезей на ней.

Недостатками данного устройства является то, что оно является имитатором реальной цели с уменьшенными размерами и предназначено для применения в лабораторных условиях. Для изменения формы, размеров и направления тепловых штрихов необходим набор соответствующих пластин с прорезями. Кроме того, лабораторные условия не обеспечивают адекватное моделирование внешних условий наблюдения (прозрачность атмосферы, наличие осадков и т.п.).

Указанные недостатки известного устройства для контроля параметров тепловизионных систем не позволяют его использовать в реальных полевых условиях при оценке дальности разведки целей через тепловизионные приборы наблюдения и прицеливания военного назначения.

Целью предлагаемого изобретения является:

- обеспечение оценки параметров наземных тепловизионных приборов наблюдения и прицеливания военного назначения в реальных условиях их эксплуатации;

- повышение объективности получаемых результатов оценки;

- снижение требований к оператору, а также сокращение материальных и временных затрат на проведение испытаний.

Указанная цель достигается путем изменения конструкции устройства для контроля параметров тепловизионных систем.

Заявляемое устройство (см. рисунок) включает: панель 1 из материала с низкой теплопроводностью, на которую установлена матрица тепловыделяющих элементов 2 в виде квадратов из резистивного материала с зазором между ними; электрическую питающую шину 3; многоканальный источник электрического питания 4; цифровую управляющую шину 5; устройство управления 6 на базе микропроцессора; цифровые датчики температуры 7 на каждом элементе матрицы; сигнальные шины 8, 10 и коммутирующее устройство 9.

Работа устройства для контроля параметров тепловизионных систем осуществляется следующим образом. В устройство управления 6 загружают базу данных для формирования наблюдаемого объекта требуемой геометрической формы с заданной разностью температур «наблюдаемый объект-фон». В базе данных содержатся различные образы наблюдаемых объектов, которые используются устройством управления для формирования их теплового изображения с помощью матрицы тепловыделяющих элементов 2.

Микропроцессор устройства управления 6 через цифровую шину 5 подает управляющие сигналы на многоканальный источник электрического питания 4, который через шину 3 подает соответствующие напряжения на отдельные элементы матрицы тепловыделяющих элементов 2, нагревая их таким образом, что из них формируется тепловой наблюдаемый объект (например, тепловой штриховой тест-объект, изображение реальной цели и т.п.) определенной геометрической формы с заданной разностью температур. Поддержание заданной разности температур осуществляется с использованием сигналов обратной связи от датчиков температуры 7, установленных на каждом элементе матрицы, которые через шину 8 и коммутирующее устройство 9 подаются через шину 10 на микропроцессор устройства управления 6. Микропроцессор устройства управления 6, сравнивая заданную и фактическую температуру элементов матрицы 2, обеспечивает коррекцию напряжения питания элементов 2 через многоканальный источник питания 4.

Размер и количество элементов матрицы тепловыделяющих элементов 2 выбирается исходя из решаемых задач по разведке целей. Так, для контроля параметров наземных тепловизионных приборов наблюдения и прицеливания военного назначения в полевых условиях целесообразно выбирать размеры элементов матрицы, исходя из необходимости решения задачи идентификации малоразмерной цели (например, расчет ПТУР), при этом количество элементов матрицы должно обеспечивать ее размеры, соответствующие размерам проекции крупноразмерной цели типа «танк». Таким образом, размер элементов матрицы должен быть равен 5050 мм, а их количество обеспечивать общий размер матрицы элементов не менее 82,5 м.

Преимуществами заявляемого изобретения перед известными техническими решениями являются:

- возможность применения предлагаемого устройства в реальных условиях эксплуатации оцениваемых тепловизионных приборов;

- возможность оперативного формирования тепловых изображений наблюдаемых объектов различной конфигурации при поддержании заданных температурных параметров «цель - фон» в течение необходимого времени;

- повышение достоверности получаемых результатов оценки за счет снижения требований к оператору;

- снижение материальных и временных затрат на проведение испытаний.

Указанные преимущества заявляемого изобретения и его возможности позволяют отказаться от использования реальных наблюдаемых объектов при оценке параметров наземных тепловизионных приборов наблюдения и прицеливания военного назначения и использовать предлагаемое устройство в качестве «образцового, эталонного» средства измерения на всех этапах испытаний приборов, что позволит обеспечить единство измерений оцениваемых параметров.

1. Устройство для контроля параметров тепловизионных систем, включающее тепловой излучатель, установленный на панель из материала с низкой теплопроводностью, цифровые датчики температуры, устройство управления на базе микропроцессора, обратная связь которого с тепловым излучателем осуществляется с помощью сигналов от цифровых датчиков температуры, а также источник питания, отличающееся тем, что тепловой излучатель выполнен в виде матрицы тепловыделяющих элементов, управление нагревом каждого элемента осуществляется устройством управления, цифровые датчики температуры установлены на тепловыделяющих элементах, панель имеет размеры реального наблюдаемого объекта.

2. Устройство по п. 1, отличающееся тем, что формирование наблюдаемого объекта требуемой геометрической формы с заданной разностью температур «наблюдаемый объект-фон» осуществляется матрицей тепловыделяющих элементов.

3. Устройство по пп. 1 и 2, отличающееся тем, что устройство управления содержит базу данных различных наблюдаемых объектов.

4. Устройство по п. 1, отличающееся тем, что размер одного тепловыделяющего элемента матрицы составляет 5050 мм.

5. Устройство по п. 1, отличающееся тем, что тепловыделяющие элементы матрицы устанавливаются на панель из материала с низкой теплопроводностью с зазором, минимизирующим тепловой обмен между элементами матрицы.

6. Устройство по п. 1, отличающееся тем, что электропитание тепловыделяющих элементов матрицы осуществляется от многоканального управляемого источника питания.



 

Похожие патенты:

Способ включает установку мишени с нанесенными на ней знаками на конечном расстоянии перед индикатором, установку неподвижно на оптической оси со стороны наблюдателя диафрагмы в виде пластины, отображение с помощью индикатора меток на фоне знаков мишени, выявление с помощью диафрагмы ошибок совмещения изображения меток индикатора со знаками мишени, на основании которых судят о необходимости проведения юстировки индикатора.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам измерения деформаций длинномерных конструкций, например артиллерийских стволов различных длин и калибров.

Изобретение относится к области военной техники, в частности к устройствам, обеспечивающим подготовку боевых машин реактивной артиллерии к стрельбе. .

Изобретение относится к бронетехнике и может быть использовано в конструкциях танков, боевых машин пехоты и самоходных артиллерийских систем. .

Изобретение относится к боевым машинам, оснащенным прицелом-дальномером и комплектом для выверки нулевой линии прицеливания. .

Изобретение относится к области контрольно-измерительной техники, более конкретно - к устройствам для контроля параметров лазерных каналов управления приборов наведения при их сборке, юстировке и испытаниях.

Изобретение относится к испытательной технике, в частности к полунатурному моделированию. .

Изобретение относится к способам проверки средств прицеливания и наводки, устанавливаемых на самолетах, и может быть использовано для настройки прицелов, устанавливаемых на самолетах-перехватчиках, в процессе их настройки после производственного изготовления.

Изобретение относится к области испытаний и проверки работоспособности головок самонаведения (ГСН). .

Изобретение относится к учебным тренажерам боевых расчетов зенитно-ракетных комплексов. Учебный тренажер содержит рабочее место (РМ) 1 командира и оператора пусковой установки (ПУ), РМ 7 руководителя тренировки, РМ 11 начальника станции, РМ 16 офицера управления ПУ, РМ 19 оператора второго, РМ 24 оператора первого, РМ 34 инструктора ПУ, РМ 38 командира зенитно-ракетного комплекса, сетевое оборудование, обеспечивающее управление и коммутацию в тренажере.

Изобретение относится к лазерным учебно-тренировочным средствам и может использоваться для имитации стрельбы из стрелкового оружия и гранатометов с имитацией поражения и обстрела цели.

Изобретение относится к средствам для обучения, тренировки и контроля процесса прицеливания. Стрелковый тренажер, установленный сбоку стрелкового оружия, содержит продольное основание, предплечник из съемного соединительного устройства, закрепляемого на предплечье стрелка, и поводков с шарниром на основании тренажера, взаимодействующих с предплечьем стрелка через соединительное устройство, двуплечий рычаг, шарнирно установленный на основании и взаимодействующий одним плечом с водилом на поводке предплечника, прицельные приспособления из мушки и целика с прорезью, установленные в одной плоскости с зазором, видеоустройство, изображение мишени.

Изобретение относится к учебно-тренировочным средствам и может быть использовано для обучения специалистов (номеров расчета) подразделений реактивных систем залпового огня сухопутных войск (РСЗО СВ), а также для комплексной тренировки специалистов звена управления подразделений РСЗО СВ.
Изобретение относится к техническим средствам обучения и подготовки операторов переносных зенитных ракетных комплексов (ПЗРК), используемым в процессе учебных стрельб с пуском боевых ракет.

Изобретение относится к оптическому приборостроению и может быть использовано для имитации стрельбы прямой наводкой в широком диапазоне дальностей. Лазерный имитатор стрельбы содержит оптически связанные объектив, транспарант, осветитель и лазер с устройством питания, при этом он оснащен сканирующим устройством, расположенным между лазером и транспарантом, и приводом, связанным со сканирующим устройством.
Изобретение относится к области спортивных высших достижений и может быть использовано при подготовке стрелков преимущественно в биатлоне. Способ обучения стрельбе при переменном ветре осуществляют с использованием компьютерного комплекса.

Изобретение относится к техническим средствам обучения и тренировки стрелков-зенитчиков переносных зенитных ракетных комплексов (ПЗРК). Учебно-тренировочный комплект содержит изделие тренировочно-практическое, представляющее собой пусковую трубу, в которой установлен имитатор ракеты; механизм тренировочно-практический, механизм учебный, прибор контроля, источник питания, двигатель стартовый, имитатор двигателя стартового, блок контроля, зарядное устройство и комплект кабелей.

Изобретение относится к средствам для обучения, тренировки и контроля процесса прицеливания. Стрелковый тренажер содержит оружие, формирователь изображения мишени, формирователь изображения прорези прицела, формирователь изображения мушки, установленный на шарнире, проекционное устройство, нижний и верхний поводки, установленные на шарнире, водило, экран, установленный на оружии.

Изобретение относится к тренажерам для обучения и тренировки операторов переносных зенитных ракетных комплексов. .

Изобретение относится к техническим средствам обучения и тренировки операторов стрелков-зенитчиков переносных зенитных ракетных комплексов. Пульт инструктора включает в себя электронно-вычислительную машину в составе вычислителя с подключенными к нему клавиатурой, манипулятором «мышь» и видеомонитором, первый и второй приемопередающие модули. Первый приемопередающий модуль установлен в пульте инструктора и подключен к одному из портов вычислителя электронно-вычислительной машины. Имитаторы боевых средств выполнены в виде пусковой трубы и пускового механизма учебного. Второй приемопередающий модуль установлен в пусковом механизме учебном. В состав тренажера входят имитаторы боевых средств различных типов переносных зенитных ракетных комплексов, имитатор воздушной цели с автопилотом, системой навигации и первым радиомодемом. Второй радиомодем установлен в пульте инструктора и подключен к одному из портов вычислителя электронно-вычислительной машины. 1 з.п. ф-лы, 1 ил.
Наверх