Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий



Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий
Ультразвуковая визуализация волн сдвига с формированием сфокусированных пучков сканирующих линий

 


Владельцы патента RU 2552894:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Группа изобретений относится к системам и способам диагностической ультразвуковой визуализации. Система содержит матричный датчик, передающий толкающий импульс вдоль предварительно заданного вектора для создания волны сдвига и импульсы слежения вдоль линий слежения, соседних с вектором толкающего импульса, и принимающий эхо-сигналы из точек вдоль линий слежения. Система также содержит память А-линий для сохранения данных эхо-сигналов линии слежения, детектор движения, реагирующий на данные линии слежения, для обнаружения движения в результате волны сдвига, проходящей через позиции линии слежения, детектор скорости, который измеряет скорость волн сдвига, проходящих через позиции линии слежения. Устройство отображения отображает результаты измерения волн сдвига. Система дополнительно содержит многолинейный формирователь пучка, соединенный с матричным датчиком, который управляет матричным датчиком для повторной передачи в последовательности с чередованием во времени сфокусированных импульсов слежения вдоль линий слежения с профилем пучка, который облучает ультразвуком множество соседних линий слежения, и, в ответ на передачу импульсов слежения, для одновременного приема эхо-сигналов вдоль множества соседних линий слежения для воспроизведения когерентных эхо-сигналов вдоль каждой из множества соседних линий слежения. Использование изобретения обеспечивает быстрый сбор данных о волне сдвига короткой продолжительности. 2 н. и 11 з.п. ф-лы, 7 ил.

 

Настоящее изобретение относится к медицинским диагностическим ультразвуковым системам и, в частности, к ультразвуковым системам, которые выполняют измерения ригидности или эластичности тканей, с использованием волн сдвига.

Одной из давно существующих целей диагностической визуализации является точное определение характеристик ткани. Врачу требуется получать область диагностики органа тела и использовать систему визуализации для идентификации характеристик ткани в изображении. Теоретически, врачу необходимо, чтобы система визуализации идентифицировала патологическое изменение как злокачественное или доброкачественное. Хотя упомянутой цели еще не удалось достигнуть в полном объеме, тем не менее, диагностическая визуализация может обеспечивать клинические критерии, относящиеся к составу ткани. Одним из методов в данной области является эластография, с помощью которой измеряют эластичность или ригидность тканей в теле. Например, опухоли или образования молочной железы с высокой ригидностью могут быть злокачественными, тогда как более мягкие и более податливые образования, вероятно, должны быть доброкачественными. Поскольку известно, что ригидность образования коррелируется со злокачественностью или доброкачественностью, то эластография снабжает врача другими сведениями, поддерживающими диагностику и определение режима лечения.

Эластография, как первоначально предполагалось, оценивала ткань в теле, под воздействием давления сжатия. Когда ультразвуковой датчик плотно прижимают к телу, то нижерасположенная мягкая ткань будет сжиматься в большей степени, чем нижерасположенная плотная ткань. Но эластография может быть очень зависимой от оператора, при этом, результаты зависят от того, где и какой величины давление прикладывают к телу. Целесообразно располагать возможностью оценивать эластичность с помощью способа, не настолько зависит от оператора.

Альтернативным способом измерения эластичности является измерение волн сдвига. Когда в какой-то точке на теле нажимают и, затем, прекращают нажим, нижележащая ткань прижимается вниз, затем восстанавливается обратно, когда сжимающее усилие отпускают. Однако, поскольку ткань, испытывающая действие сжимающего усилия, постоянно соединена с окружающей тканью, то несжимаемая ткань, поперечная относительно вектора усилия, будет реагировать на перемещение вверх-вниз сжимаемой ткани. Эффект колебаний в данном поперечном направлении, называемый волной сдвига, является откликом окружающей ткани на направленное вниз сжимающее усилие. Кроме того, выяснилось, что усилие, необходимое для выталкивания ткани вниз, может быть создано давлением излучения от ультразвукового импульса, и для восприятия и измерения движения ткани под действием волн сдвига можно использовать прием ультразвука. Скорость волн сдвига определяется локальными механическими свойствами ткани. Волна сдвига будет распространяться с одной скоростью сквозь мягкую ткань и с другой, более высокой скоростью сквозь плотную ткань. Посредством измерения скорости волны сдвига в точке в теле получают информацию относительно характеристик ткани, например, о модуле упругости при сдвиге, модуле Юнга и динамической упругости при сдвиге. Поперечно распространяющаяся волна сдвига имеет небольшую скорость, обычно, несколько метров в секунду или меньше, что делает волну сдвига доступной для обнаружения, хотя данная волна быстро затухает через, самое большее, несколько сантиметров. Смотри, например, патент США 5606971 (Sarvazyan) и патент США 5810731 (Sarvazyan et al.). Поскольку одинаковый “толкающий импульс» можно повторять для каждого измерения, то метод волн сдвига допускает объективное количественное определение характеристик ткани с помощью ультразвука. Кроме того, скорость волн сдвига не зависит от интенсивности толкающего импульса, что делает измерение менее зависимым от пользователя.

В обычной эхо-импульсной ультразвуковой технологии, ультразвуковой импульс посылается из датчика, и эхо-сигналы отражаются от ткани, с которой встречается импульс, принимаются непосредственно. Однако, поскольку волны сдвига распространяются в поперечном направлении, их невозможно непосредственно принимать непосредственно из-за отсутствия поперечно расположенного акустического окна для приемника. Смотри, например, фиг. 2 в патенте Сарвазяна с соавторами (Sarvazyan et al.), где предлагается принимать волны сдвига с другой стороны ткани от излучателя, при измерении волн сдвига в молочной железе. Но приведенный метод требует отдельных излучателей и приемников, но различно расположенные акустические окна не всегда имеются в наличии. Таким образом, исследователи искали косвенные способы измерения волны сдвига. Общий способ решения упомянутой задачи состоит в получении последовательных наборов данных изображений ткани, затем, обработки данных для обнаружения распространения волны сдвига сквозь ткани, проявляющегося в результирующем движении ткани, вызванном волной сдвига. Смотри патенты Сарвазяна (Sarvazyan) и Сарвазяна с соавторами (Sarvazyan et al.), в которых описан упомянутый способ. Собранные данные эхо-сигналов, когда применяют ультразвуковую технологию в противоположность МРТ (магнитно-резонансной томографии), можно обрабатывать методами, известными в ультразвуковой технологии, для обнаружения движения, включая доплеровский метод и корреляцию данных последовательных эхо-сигналов.

Однако для получения серии наборов данных требуется время, и, как упоминалось выше, волны сдвига быстро затухают в ткани, что создает проблему различения движения с достаточными подробностями для измерения скорости распространения волны сдвига небольшой амплитуды, которая, обычно, вызывает смещение ткани меньше, чем 30 микрометров. Решение упомянутой проблемы предложено Финком с соавторами (Fink et al.) в патенте США 7,252,004, в котором предлагается наблюдать распространение волны сдвига посредством быстрого получения изображений из несфокусированных плоских волн, каждая из которых действует ультразвуком на большое пространство ткани и повторяется с частотой, по меньшей мере, 500 повторений в секунду и, предпочтительно, в диапазоне от 1000 до 5000 повторений в секунду. Вместо получения изображения посредством посылки и приема отдельных линий, данных по полю изображения, что влечет за собой полный цикл посылки-приема для каждой линии, Финк с соавторами (Fink et al.) предложили облучать ультразвуком всю область интереса (ROI) одной несфокусированной волной, затем собирать эхо-сигналы, происходящие в результате распространения волны сквозь ткань в течение последующего периода приема. (Сарвазян (Sarvazyan) использует аналогичный способ посредством параллельного соединения всех элементов своего преобразователя во время приема.) Поскольку каждый опрос области интереса (ROI) требует распространения только одной волны, то наборы данных могут последовательно собираться с высокой частотой, которая требуется согласно Финку с соавторами (Fink et al.). Хотя для несфокусированной волны характерны недостаточные отношение сигнала к шуму и разрезающая способность фокусировки линий изображения, Финку с соавторами (Fink et al.) предполагают скорректировать упомянутый недостаток высокой частотой сбора данных. Однако желательно располагать возможностью наблюдения и измерения скорости распространения волны сдвига с высокой точностью и высоким отношением сигнала к шуму, причем, с помощью обычных ультразвуковых систем.

В соответствии с принципами настоящего изобретения, предлагаются система и способ диагностической ультразвуковой визуализации, которые дают пользователю возможность собирать данные изображений с высоким разрешением, достаточным для измерения скорости волны сдвига, распространяющейся сквозь ткань. Один или более толкающих импульсов посылают в ткань с помощью ультразвукового датчика, чтобы сжимать ультразвуком ткань в направлении вектора толкающих импульсов. Немедленно после этого, датчиком посылаются и принимаются сфокусированные следящие импульсы в окрестности вектора толкающего импульса, который возбуждает волну сдвига. Выборка каждого вектора следящего импульса производится периодически, с чередованием во времени, так что движение, вызываемое волной сдвига, можно обнаруживать, когда оно происходит в позиции каждого вектора следящего импульса, предпочтительно, посредством корреляции данных эхо-сигналов от последовательных опросов вектора. По мере того, как волна сдвига двигается в поперечном направлении от вектора толкающего импульса, позиционирование следящих импульсов также можно перемещать в поперечном направлении, чтобы следовать за распространением волны сдвига. Данные от периодически производимых выборок векторов следящих импульсов обрабатываются для получения моментов времени, в которые волна сдвига вызывает максимальное смещение в каждой точке вектора следящего импульса, предпочтительно, методами кросс-корреляции, подбора аппроксимирующей кривой или интерполяции последовательных измерений смещения. Анализ моментов времени, в которые точки на соседних выборочных векторах испытывают максимальное смещение, дает результат измерения, соответствующий скорости волны сдвига в конкретных позициях векторов, при этом, изменения скорости указывают на ткани разной ригидности или эластичности. Так как волны сдвига быстро затухают, то данные о волне сдвига, обычно, невозможно собрать со всего поля изображения, с помощью единственного вектора толкающего импульса. Поэтому, процесс повторяют в другой позиции в ткани, для получения результатов измерений скорости волны сдвига в другой области ткани. Процесс повторяют, пока данные о волне сдвига не собраны по всему требуемому полю изображения. Информация относительно скорости, предпочтительно, представляется в виде двух- или трехмерного изображения ткани, цветокодированного данными о скорости волны сдвига в точках на изображении.

НА ЧЕРТЕЖАХ:

Фиг. 1 - блок-схема системы диагностической ультразвуковой визуализации, выполненной в соответствии с принципами настоящего изобретения.

Фиг. 2a-2d - изображения посылки последовательности толкающих импульсов на разные глубины для создания фронта волны сдвига.

Фиг. 3 - пространственные изображения последовательности толкающих импульсов вдоль вектора толкающего импульса, получаемого фронта волны сдвига и серии векторов следящих импульсов.

Фиг. 4 - изображение посылки и приема по 4-линейной многолинейной схеме для формирования четырех соседних векторов следящих импульсов по многолинейной схеме.

Фиг. 5 - изображение четырех поперечно соседствующих групп векторов следящих импульсов в 4-линейной многолинейной схеме.

Фиг. 6 - кривые смещения волны сдвига в двух позициях по мере того, как волна сдвига распространяется сквозь ткань.

Фиг. 7a-7c - пространственная последовательность с чередованием во времени векторов толкающих импульсов, распределенных по полю изображения.

На фиг. 1 представлена, в виде блок-схемы, ультразвуковая система, выполненная в соответствии с принципами настоящего изобретения, для измерения волн сдвига. Ультразвуковой датчик 10 содержит матрицу 12 преобразовательных элементов для посылки и приема ультразвуковых сигналов. Матрица может быть одномерной или двумерной матрицей преобразовательных элементов. Матрица каждого типа может сканировать 2-мерную плоскость, и двумерную матрицу можно применять для сканирования объемной области перед матрицей. Элементы матрицы подсоединены к формирователю 18 пучка при посылке и многолинейному формирователю 20 пучка при приеме переключателем 14 режимов приема/ посылки (T/R) 14. Координация посылки и приема формирователями пучков осуществляется под управлением контроллера 16 формирователей пучков. Многолинейный формирователь пучка при приеме создает несколько пространственно разделенных линий приема (A-линий) эхо-сигналов в течение одного интервала посылки-приема. Эхо-сигналы обрабатываются путем фильтрации, подавления шумов и т.п. в процессоре 22 обработки сигналов, затем сохраняются в памяти 24 A-линии. Отличающиеся по времени выборки A-линий, относящиеся к одной и той же позиции пространственного вектора, связываются между собой в ансамбль эхо-сигналов, относящихся к общей точке в поле изображения. Радиочастотные эхо-сигналы последовательно производимых выборок A-линий от одного пространственного вектора взаимно коррелируют в кросс-корреляторе 26 радиочастотных сигналов A-линий, чтобы сформировать последовательность выборок смещения ткани для каждой выборочной точки на векторе. В альтернативном варианте, A-линии от пространственного вектора можно обрабатывать по доплеровской частоте для обнаружения движения волны сдвига вдоль вектора, или можно воспользоваться другими фазочувствительными методами. Пиковый детектор 28 волнового фронта способен реагировать на обнаружение смещения волны сдвига вдоль вектора A-линии для обнаружения максимума смещения волны сдвига в каждой выборочной точке на A-линии. В предпочтительном варианте осуществления, данная задача выполняется подбором аппроксимирующей кривой, хотя, при желании, можно воспользоваться другими интерполяционными методами. Момент времени, в который наблюдается максимум смещения волны сдвига, отмечается в связи с моментами времени того же события в других позициях A-линии, при этом, все моменты отмечаются в общей системе отсчета времени, и полученная информация вводится в детектор 30 скорости волнового фронта, который вычисляет скорость волны сдвига дифференцированием по моментам времени максимального смещения на соседних A-линиях. Полученная информация о скорости подается в карту 32 отображения скорости, которая указывает скорость волны сдвига в разных точках пространства в 2-мерном или 3-мерном поле изображения. Карта отображения скорости вводится в процессор 34 изображений, который обрабатывает карту скорости, предпочтительно, с наложением анатомического ультразвукового изображения ткани, для отображения на устройстве 36 отображения изображений.

На фиг. 2a-2d показана посылка последовательности сфокусированных толкающих импульсов с высоким значением механического импульса (MI) (например, с MI, максимум, 1,9, чтобы не выйти за диагностические пределы FDA (Управления по контролю за продуктами и лекарствами США)) вдоль направления одного вектора, для создания фронта волны сдвига. Применяют импульсы с высоким значением MI и большой продолжительностью, чтобы посылать достаточно энергии для смещения ткани вниз вдоль вектора посылки и вызывать образование волны сдвига. Как показано на фиг. 2a, датчик 10 на поверхности 11 кожи посылает первый толкающий импульс 40 в ткань, с профилем 41a, 41b пучка на заданную глубину фокусировки, указанную заштрихованным участком 40. Данный толкающий импульс будет смещать ткань в фокусе вниз, что имеет следствием распространение фронта 42 волны сдвига в сторону от смещенной ткани.

На фиг. 2b изображен второй толкающий импульс 50, посылаемый датчиком 10 вдоль того самого вектора и сфокусированный на заштрихованном участке 50 большей глубины. Упомянутый второй толкающий импульс 50 смещает ткань на глубине фокусировки и, тем самым, вызывает распространение фронта 52 волны сдвига 52 в сторону от смещенной ткани. Таким образом, оба фронта 42 и 52 волны сдвига распространяются в поперечном направлении сквозь ткань, при этом, первоначальный фронт 42 волны предшествует второму фронту волны.

На фиг. 2c и 2d показана посылка датчиком 10 еще двух толкающих импульсов 60 и 70, при этом, каждый импульс посылается на последовательно большую глубину и создает распространяющийся в сторону фронт 62 и 72 волны сдвига. На фиг. 2d показано, что составной волновой фронт от четырех толкающих импульсов, указанный штриховыми линиями 75a и 75b, продолжается на значительную глубину в ткани, от небольшой глубины первого толкающего импульса 40 до наибольшей глубины четвертого толкающего импульса 70. Упомянутый фронт позволяет измерять волну сдвига на значительную глубину ткани. В нижеописанном исполнении, приведенный метод применяют для обнаружения распространения волны сдвига на глубину 6 см, подходящую глубину для визуализации и диагностики молочной железы.

Следует понимать, что вдоль вектора толкающего импульса можно посылать большее или меньшее число толкающих импульсов, в том числе, один толкающий импульс. Несколько толкающих импульсов могут посылаться в любом порядке, при этом, порядок определяет форму и направление составного фронта волны сдвига. Например, если толкающие импульсы, показанные на фиг. 2a-2d, посылались в последовательности от самого глубокого (70) до самого неглубокого (40), то составной фронт волны сдвига, показанный на фиг. 2d, будет иметь наклон, обратный наклону, показанному на фиг. 2d. В предпочтительном варианте осуществления, каждый толкающий импульс является длительным импульсом продолжительностью от 50 до 200 микросекунд. Например, типичная продолжительность равна 100 микросекундам. Ультразвук, формируемый в течение импульса продолжительностью 100 микросекунд, представляет собой импульсы волн сжатия и может иметь частоту, например, 7 или 8 МГц. Толкающие импульсы сильно сфокусированы, предпочтительно, с обратным относительным числом 1 или 2. В исполнении с последовательностью из четырех толкающих импульсов, показанных на фиг. 2a-2d, толкающий импульс посылается через каждые 2,5 миллисекунд, что обеспечивает посылку толкающих импульсов с частотой 400 Гц. В другом исполнении, все четыре толкающих импульса посылаются в одной последовательности для возбуждения полного фронта волны сдвига перед началом отслеживания A-линий.

На фиг. 3 показано другое применение четырех толкающих импульсов для создания составного фронта волны сдвига. Четыре толкающих импульса посылаются вдоль векторов 44, 54, 64 и 74, которые, как показано, выровнены вдоль направления одного вектора, показанного на фиг. 3. Когда сначала посылается самый неглубокий толкающий импульс вдоль вектора 44, а затем последовательно посылаются более глубокие толкающие импульсы, фронты волн сдвига от соответствующих толкающих импульсов будут распространяться, как показано волнами 46, 56, 66 и 76, к моменту времени вскоре после того, как был послан последний толкающий импульс (вектор 74). По мере того, как волны 46, 56, 66 и 76 сдвига распространяются в сторону от вектора толкающего импульса, волны опрашиваются следящими импульсами 80, показанными в виде пространственного ряда вдоль верхней стороны чертежа. Следящие импульсы могут иметь место между, а также после толкающих импульсов.

В соответствии с принципами настоящего изобретения, скорость поперечно распространяющейся волны сдвига обнаруживают измерением смещения ткани, вызываемого волной сдвига по мере того, как волна сдвига распространяется сквозь ткань. Измерение выполняется с помощью чередующихся во времени выборочных импульсов, посылаемых вблизи вектора толкающего импульса, как показано на фиг. 5. В приведенном примере, толкающий(ие) импульс(ы) 40 посылается(ются) вдоль вектора 40 толкающего импульса, чтобы возбуждать поперечно распространяющуюся волну сдвига. Выборки векторов A-линий, соседних с вектором 40 толкающего импульса, производятся выборочными импульсами T1, T2, T3, T4 и T5, посылаемыми вдоль каждого вектора в последовательности с чередованием во времени. Например, производится выборка в позиции A1 первого вектора первым импульсом T1, затем в позиции A2 второго вектора следующим импульсом T2, затем A3, A4 и A5. Затем снова производится выборка в позиции A1 вектора, и последовательность повторяется. Поскольку выборки производятся с чередованием во времени, то, в приведенном примере, выборка в каждой из пяти позиций векторов производится один раз через каждые пять выборочных импульсов. В приведенном примере, импульс в каждую позицию вектора посылается пятьдесят пять раз в течение общего времени слежения 27,5 мс. Каждый импульс дает, в результате, эхо-сигналы, возвращающиеся вдоль вектора, которые оцифровываются быстродействующим аналого-цифровым (A/D) преобразователем. Таким образом, для каждой выборочной точки вдоль каждого вектора существует ансамбль из 55 выборок, при этом, каждая выборка снимается с частотой одна пятая от частоты импульсов последовательности T1-T5 выборочных импульсов. Частота отсчетов будет выбираться с учетом частотного состава обнаруживаемого смещения волны сдвига, чтобы соответствовать критерию Найквиста на взятие выборок. Поскольку целью взятия выборок является определение и отслеживание эффекта смещения волны сдвига по мере того, как упомянутая волна распространяется сквозь ткань, то позиции векторов можно располагать ближе друг к другу для медленно распространяющихся волн сдвига и дальше друг от друга для быстрее распространяющихся волн сдвига. Можно также использовать другие последовательности взятия выборок векторов с чередованием во времени. Например, выборки нечетных векторов можно производить в последовательности, за которой следует взятие выборок четных векторов. В другом примере, можно с чередованием во времени производить выборки в позициях A1-A3 векторов, затем в позициях A2-A4 векторов, затем в позициях A3-A5 векторов, чтобы отслеживать смещение волны сдвига, по мере ее распространения. Исходя из потребностей ситуации, можно также использовать другие последовательности. Затем, ансамбли чередующихся во времени выборок в каждой точке, вдоль каждого выборочного вектора обрабатываются для вычисления момента времени максимального смещения ткани в каждой точке каждого вектора, как подробно поясняется ниже.

В соответствии с дополнительным аспектом настоящего изобретения, многолинейную посылку и прием используют так, что один следящий импульс может одновременно производить выборки из множества соседних, тесно расположенных позиций A-линий. На фиг. 4 представлен предпочтительный метод многолинейной посылки и приема. Как показано на фиг. 4, один импульс отслеживания A-линий, с профилем 82a, 82b пучка, который облучает ультразвуком несколько позиций сканирующих линий при приеме, посылается так, как указано широкой стрелкой A#. В предпочтительном варианте, следящий импульс является, так называемым, «широким импульсом», описанным, например, в патенте США 4644795 (Augustine). В приведенном примере, ультразвуком облучают четыре позиции A1-1, A1-2, A1-3 и A1-4 сканирующих линий при приеме. Эхо-сигналы от четырех сканирующих линий при приеме (4-линейная схема) принимаются в ответ на один излученный импульс и соответственно обрабатываются и суммируются для формирования когерентных эхо-сигналов вдоль каждой из сканирующих линий при приеме. Формирователи пучков, способные формировать несколько упомянутых одновременных линий, описаны, например, в патентах США 5318033 (Savord), 5345426 (Lipschutz), 5469851 (Lipschutz) и 6695783 (Henderson et al.). Упомянутые многолинейные формирователи пучков, обычно, применяются для уменьшения времени сбора данных и, тем самым, для повышения частоты кадров динамических ультразвуковых изображений, которые особенно полезны для визуализации бьющегося сердца и кровотока при проведении эхокардиографии в реальном времени. Упомянутые формирователи пучков пригодны также при 3-мерной ультразвуковой визуализации для того, чтобы можно было обеспечивать частоту кадров отображения в реальном времени. По данному вопросу смотри патент США 6494838 (Cooley et al.). В исполнении настоящего изобретения, многолинейный сбор данных дает двойное преимущество: допускает высокоплотное расположение выборочных линий и быстрый сбор данных о волне сдвига короткой продолжительности, которая распространяется только на небольшое расстояние сквозь ткань перед рассеянием вследствие затухания. Несмотря на возможность применения многолинейности более высокого порядка, при которой выборки собирают вдоль большего числа A-линий одновременно и, следовательно, с более высокой частотой выборок, такой подход потребует более широкого пучка (A#) посылки для одновременного направления ультразвука вдоль большего числа сканирующих линий при приеме. В результате, более широкий пучок посылки будет снижать отношение сигнала к шуму в исполнении более высокого порядка.

На фиг. 5 поясняется использование 4-линейного приема для посылки и приема вдоль каждого выборочного вектора A1-A5. Первый следящий импульс T1 посылают вблизи вектора 44 толкающего импульса для облучения ультразвуком четырех позиций от A1-1 до A1-4, и, в ответ, принимается четыре A-линии многолинейной схемы из прилегающей поперечной области A1. Когда четыре линии многолинейной схемы центрированы относительно посылаемого следящего импульса, то эхосигналы принимаются вдоль двух A-линий с каждой стороны от центра в центре пучка следящего импульса, как указано позициями A1-1 и A1-2 слева от центра и A1-3 и A1-4 справа от центра. В предпочтительном варианте, A-линии расположены с интервалами 0,5 мм друг от друга. Волны сдвига, обычно, перемещаются со скоростью 1-10 метров в секунду, и, следовательно, следящие импульсы периодически посылаются в области A1-A5 с чередованием во времени, и выборки A-линий принимаются из позиций A-линий в течение временных интервалов между толкающими импульсами (когда упомянутые интервалы существуют), и в течение 20 мс после последнего толкающего импульса, после чего волна сдвига выходит из односантиметрового окна A1-A5 стробирования. Поскольку волны сдвига могут содержать частотные составляющие в диапазоне от приблизительно 100 Гц до приблизительно 1000 Гц, то, согласно теории дискретизации, каждая A-линия должна иметь частоту выборок 2 кГц. Приведенная частота дает, в результате, набор (ансамбль) из пятидесяти пяти выборок A-линии каждой выборочной точки на каждой A-линии многолинейной схемы.

В примере, показанном на фиг. 5, пять следящих импульсов T1-T5 посылаются в последовательных окнах A1-A5 стробирования, прилегающих к вектору 44 толкающему импульсу, для взятия выборок эффекта смещения волны сдвига по мере того, как распространяется волна. Типичный выборочный импульс является коротким импульсом, обычно, одно- или двухпериодным, с частотой, подходящей для прохождения внутрь на исследуемую глубину, например, 7-8 МГц. Каждый следящий импульс смещен на 2 мм от соседних с ним импульсов, что дает, в результате, двадцать A-линий, разделенных интервалом 0,5 мм, в 4-линейной многолинейной схеме на суммарном расстоянии один сантиметр. Существуют различные способы опроса окон стробирования. Один способ состоит в отборе выборок только из области A1, пока обнаруживается волна сдвига, затем, в начале отбора выборок в области A2, затем в области A3 и т.д. Другой способ состоит в чередовании во времени взятия выборок, как описано выше, взятии выборок с помощью следящих импульсов T1-T5 в последовательности, затем, в повторении последовательности. При использовании последнего способа, пять окон стробирования с двадцатью позициями следящих A-линий могут одновременно отслеживать эффект волны сдвига. После того, как волна сдвига проходит через ближайшее окно A1 стробирования, затем, через соседние окна, отбор выборок из упомянутого окна можно прекратить, и время взятия выборок можно отдать остальным окнам стробирования, через которые еще распространяется волна сдвига. Взятие выборок продолжается, пока волна сдвига не распространится за пределы одного см., области взятия выборок, при этом, к данному моменту времени волна сдвига, обычно, затухает ниже определимого уровня. В среднем, волны сдвига имеют время ослабления 10 мс.

Моменты времени выборок в позициях следящих A-линий должны быть привязаны к общей оси времени, когда следящие импульсы чередуются во времени так, что результаты можно использовать для выполнения непрерывного измерения времени и, следовательно, скорости на протяжении односантиметровой области взятия выборок. Например, поскольку выборочные импульсы для окна A2 стробирования не посылаются, пока не проходит 50 микросекунд после соответствующих выборочных импульсов для окна A1, то между моментами времени выборок из двух соседних окон существует 50-микросекундное смещение по времени. Упомянутую разновременность следует учитывать при сравнении моментов времени максимального смещения в соответствующих окнах, причем учитывать с накоплением по всему односантиметровому окну стробирования. Привязка моментов времени выборок каждого выборочного вектора к общей системе отсчета времени может решить проблему смещенных моментов времени выборок.

Следует понимать, что волна сдвига распространяется радиально в сторону от вектора, в позиции которого толкающий импульс сместил ткань. Упомянутое распространение означает, что волну сдвига можно отслеживать с каждой стороны от вектора толкающего импульса в плоскости 2-мерного изображения, проходящей через ткань. В примере, приведенном на фиг. 5, показано, что волну сдвига отслеживают вправо от вектора 44 толкающего импульса, хотя, волну сдвига можно также отслеживать по мере того, как она распространяется влево от вектора. Волну сдвига можно также отслеживать одновременно с обеих сторон от вектора толкающего импульса с помощью чередующихся во времени следящих импульсов с обеих сторон от вектора толкающего импульса, но в отсутствие возможности взятия выборок по всей сантиметровой области с обеих сторон от толкающего импульса, без потери плотности выборочных линий, частоты взятия выборок сканирующих линий (PRF (частоты следования импульсов)), расстояния отслеживания волны сдвига или некоторого их сочетания.

Поскольку область интереса (ROI) для диагностики, обычно, больше, чем один сантиметр в ширину, то процедуру, показанная на фиг.5, повторяют с толкающими импульсами, посылаемыми в отличающихся поперечных позициях по полю изображения. Тем самым, поле изображения опрашивается в областях шириной один см, и результаты для областей отображаются с прилеганием один к другому для представления изображения всей области интереса (ROI). В предпочтительном исполнении применен датчик L12-5 компании Philips Healthcare, который имеет апертуру 5 см. Поле изображения шириной четыре см опрашивают в четырех соседних или частично совмещенных областях шириной один см, которые, затем, отображаются бок о бок или с полным или частичным наложением на устройстве отображения.

На фиг. 6 показана последовательность значений смещения для двух соседних в поперечном направлении точек на двух соседних A-линиях, например, A1-3 и A1-4, на фиг. 5. Кривая 100 представляет смещение во времени, вызванное проходом волны сдвига через точку на A-линии A1-3, и кривая 120 представляет смещение в соседней точке A-линии A1-4. Точки 102-118 значений смещения ткани вычисляют посредством локальных взаимных корреляций данных радиочастотных сигналов (например, 10-30 выборок радиочастотных сигналов по глубине), собранных с течением времени, приблизительно, на глубине выборочной точки на A1-3, чтобы вывести значения локальных смещений с течением времени в точке на глубине. Точки 102-118 значений смещения, обнаруженного в последовательные моменты времени (по y-оси), при графическом нанесении в виде функции времени, соединяют для формирования первой кривой 100 смещения. В точке на второй A-линии A1-4, отнесенной вправо от точки на первой A-линии, последовательность 122-136 значений смещения, сформированных посредством локальной взаимной корреляцией, можно соединить для формирования второй кривой 120 смещения. Поскольку, в приведенном примере, волна сдвига распространяется слева направо, то вторая кривая 120 для крайней правой A-линии сдвинута вправо (по времени) от первой кривой 100 смещения. Точную привязку по времени прохода фронта волны из одной точки в следующую точку измеряют по обнаруженному максимуму или точке перегиба каждой кривой смещения, обозначенных позициями 200 и 220 в приведенном примере. Для нахождения максимума кривой можно применить различные методы. В предпочтительном варианте осуществления, значения смещения каждой кривой обрабатывают посредством подбора аппроксимирующих кривых по значениям, чтобы сформировать полные кривые 100, 120 смещения и максимумы кривых. Другой метод состоит в интерполяции дополнительных точек между обнаруженными точками для поиска максимума. Еще один метод состоит в определении наклонов кривой с каждой стороны от максимума и определении максимума по пересечению наклонных линий. Еще один подход заключается во взаимной корреляции данных кривой. Когда максимумы смещения волны сдвига в последовательных позициях А-линий обнаруживаются пиковым детектором 28 волнового фронта, то отмечаются моменты времени проявления относительно обнаружения точек на кривых. Затем, разность упомянутых моментов времени, Δt, с учетом смещений моментов времени выборок, и интервалы между А-линиями (например, 0,5 мм) могут быть использованы детектором 30 скорости волнового фронта для определения скорости волны сдвига в то время, когда волна сдвига проходила между двумя позициями А-линий. После того, как вся область интереса (ROI) опрошена вышеописанным способом, и кривые смещения и моменты времени проявления максимумов определены для каждой выборочной точки на каждом векторе Α-линии, скорость распространения волны сдвига может быть вычислена от точки к точке по всей области интереса. Упомянутая двумерная матрица значений скоростей кодирует цветом или кодирует иным способом отображаемое изменение, чтобы формировать карту отображения скоростей. Карта отображения скоростей представляется на устройстве отображения 36, предпочтительно, с наложением изображения В-режима области интереса и с пространственным совмещением с упомянутым изображением.

В вышеописанном примере, волны сдвига обнаруживались и измерялись по мере того, как они распространялись горизонтально через область интереса. Однако, многие патологические изменения имеют круглую форму или иначе проявляются в виде двумерных объектов на 2-мерном изображении. Для точного определения местоположения границы круглого патологического изменения было бы желательно, теоретически, направлять волны сдвига на патологическое изменение с направлений в пределах полных 360° вокруг патологического изменения. Направление волн сдвига вдоль одного набора направленных траекторий и сочетание результатов с измерениями, снятыми с волн сдвига, распространяющихся по другим направленным траекториям через область интереса (ROI), может сформировать более точные и надежные изображения патологических изменений и их границ. Один способ решения данной задачи состоит в обеспечении флуктуаций векторов и последовательностей толкающих импульсов по полю изображения, как показано на фиг. 7a-7c. На данных фигурах показана серия толкающих импульсов в фиксированной области интереса шириной 5 см. Толкающие импульсы следуют в разных последовательностях, чередуются в пространстве и создаются с флуктуациями в пространстве для опроса области интереса с разнонаправленными волнами сдвига. Кроме того, временное и пространственное чередование снижает накопление энергии в любой конкретной точке в поле изображения, которое может превосходить требуемые тепловые пределы в теле. Сканирование, показанное на фиг. 7a, начинается с вектора P1 толкающего импульса в центре поля изображения (точка 2,5 см), с четырех толкающих импульсов 1-4, которые следуют от небольшой глубины до значительной глубины в поле изображения. Как изложено выше, данные четыре толкающих импульса будут создавать составной фронт волны сдвига, который наклонен для распространения в направлении немного вниз, как показано стрелками 301 и 302. Толкающий импульс вдоль вектора P2 посылается с левой стороны поля изображения (точка 0,5 см), на значительном удалении влево от предыдущего толкающего импульса. Так как последовательные вектора толкающих импульсов не соседствуют друг с другом, а широко разнесены в пространстве, то тепловые эффекты двух векторов толкающих импульсов разнесены настолько, что не могут накапливаться в какой-то одной точке. Аналогичным образом, третий вектор P3 толкающего импульса расположен далеко справа в поле изображения (точка 4,5 см), следующий вектор P4 толкающего импульса находится слева от центра поля (точка 1,5 см), и т.д. Девять векторов толкающих импульсов, посылаемых вышеописанным способом с пространственным разнесением, показаны на фиг. 7a.

Видно также, что последовательность импульсов векторов изменяется. Вектора P1-P5 используют последовательность толкающих импульсов, начинающуюся с самой малой глубины и заканчивающуюся на максимальной глубине (1-4), тогда как вектора Ρ69 используют последовательность от большой до малой глубины (4-1). Описанный подход приводит к чередованию в последовательности толкающих импульсов, от вектора к вектору по полю изображения.

Последовательность импульсов, представленная на фиг. 7b, следует за последовательностью импульсов на фиг. 7a и начинается с вектора P1 толкающего импульса с левой стороны поля изображения (точка 0,5 см). Упомянутый вектор толкающего импульса значительно удален от предыдущего вектора, который был вектором P9, находившимся справа от центра поля изображения на фиг. 7a. На фиг. 7b показано также, что вектор P1 характеризуется последовательностью импульсов, обратной пространственно соответствующему ему вектору P2 на фиг. 7a. Последовательность вектора P2 на фиг. 7b составлена от большой до малой глубины, а последовательность вектора P2 на фиг. 7a была составлена от малой до большой глубины. Данная схема приводит к распространению волн сдвига от вектора P1 на фиг. 7b немного вверх (смотри стрелки 304 и 306), тогда как волны сдвига от вектора P2 на фиг. 7a распространялись немного вниз (смотри стрелки 301 и 302). Кроме того, вектор P1 на фиг. 7b сдвинут немного влево от точки 0,5 см поля изображения, тогда как вектор P2 на фиг. 7a (и все остальные вектора на фиг. 7a) совмещен с точкой 0,5 см поля. Упомянутый сдвиг выполнен по полю изображения, в чем можно убедиться путем сравнения совмещения пяти векторов под скобкой 310, которые совмещены с сантиметровыми отметками, с пятью векторами под скобкой 312, которые, все вместе, изображены сдвинутыми влево от сантиметровых отметок. Сочетание упомянутых разностей дополнительно уменьшает накопление энергии в конкретной точке в изображении, а также, как видно на фигуре, направляет волны сдвига на фиг. 7a вдоль траекторий распространения, отличающихся от траекторий на фиг. 7b, Как упоминалось выше, вектора последовательно посылаемых толкающих импульсов расположены с широким разнесением, и порядок следования толкающих импульсов чередуется от вектора к вектору по полю изображения. При желании, точки фокусировки толкающих импульсов также можно изменять от вектора к вектору.

Продолжение приведенной последовательности изменения посылки показано на фиг. 7c. В приведенной последовательности девяти векторов толкающих импульсов заметно, что вектора толкающих импульсов сдвинуты вправо от сантиметровых отметок, что можно видеть путем сравнения векторов под скобкой 314 с векторами под скобками 310 и 312. При использовании вышеописанных комбинаций последовательностей и пространственного сдвига и разнесения импульсов, эффекты нагревания можно минимизировать, и измерения скорости от различно направленных волн сдвига можно объединять путем усреднения или подобным образом для обеспечения более надежного количественного определения эластичности.

1. Система диагностической ультразвуковой визуализации для анализа волн сдвига, содержащая:
ультразвуковой матричный датчик (10), который передает толкающий импульс вдоль предварительно заданного вектора для создания волны сдвига, передает импульсы слежения вдоль линий слежения, соседних с вектором толкающего импульса, и принимает эхо-сигналы из точек вдоль линий слежения;
память (24) А-линий для сохранения данных эхо-сигналов линии слежения;
детектор движения, реагирующий на данные линии слежения, для обнаружения движения в результате волны сдвига, проходящей через позиции линии слежения;
детектор (30) скорости, который измеряет скорость волн сдвига, проходящих через позиции линии слежения;
устройство отображения (36) для отображения результатов измерения волн сдвига;
причем система отличается тем, что дополнительно содержит:
многолинейный формирователь пучка (20, 18), соединенный с матричным датчиком, который управляет матричным датчиком для повторной передачи в последовательности с чередованием во времени сфокусированных импульсов слежения (80) вдоль линий слежения с профилем пучка, который облучает ультразвуком множество соседних линий слежения, и, в ответ на передачу импульсов слежения, для одновременного приема эхо-сигналов вдоль множества соседних линий слежения для воспроизведения когерентных эхо-сигналов вдоль каждой из множества соседних линий слежения.

2. Система диагностической ультразвуковой визуализации по п. 1, в которой детектор движения обнаруживает смещение ткани, вызываемое волнами сдвига.

3. Система диагностической ультразвуковой визуализации по п. 2, в которой детектор движения дополнительно содержит кросс-коррелятор (26) данных эхо-сигналов линии слежения и пиковый детектор (28) смещения.

4. Система диагностической ультразвуковой визуализации по п. 3, в которой детектор скорости выполнен с возможностью определения скорости посредством сравнения моментов наступления двух максимумов смещения.

5. Система диагностической ультразвуковой визуализации по п. 1, в которой устройство отображения отображает двухмерное изображение значений скорости волны сдвига.

6. Система диагностической ультразвуковой визуализации по п. 5, в которой значения скоростей волны сдвига кодируются цветом на анатомическом изображении.

7. Система диагностической ультразвуковой визуализации по п. 1, в которой детектор движения выполнен с возможностью обнаружения момента времени максимального смещения ткани во множестве точек выборки вдоль каждой из позиций линии слежения.

8. Система диагностической ультразвуковой визуализации по п. 7, в которой детектор движения дополнительно выполнен с возможностью обнаружения значений смещения посредством локальной взаимной корреляции данных эхо-сигналов, полученных из позиции линии слежения.

9. Система диагностической ультразвуковой визуализации по п. 8, в которой детектор движения дополнительно выполнен с возможностью обнаружения момента времени максимального смещения ткани посредством подбора аппроксимирующей кривой для множества значений смещения.

10. Система диагностической ультразвуковой визуализации по п. 8, в которой детектор движения дополнительно выполнен с возможностью обнаружения момента времени максимального смещения ткани посредством интерполяции множества значений смещения.

11. Способ управления работой системы диагностической ультразвуковой визуализации для измерения волн сдвига, при этом способ содержит этапы на которых:
передают толкающий импульс вдоль вектора толкающего импульса;
передают множество импульсов слежения;
принимают эхо-сигналы в ответ на передачу сигналов слежения;
обрабатывают эхо-сигналы для определения значений скорости волны сдвига во множестве точек в двух или трех направлениях в области интереса; и
отображают двух- или трехмерное изображение значений скорости волны сдвига,
причем способ отличается тем, что
импульсы слежения сфокусированы и передаются вдоль множества линий слежения, соседних с вектором толкающего импульса, причем импульсы слежения имеют профиль пучка, который облучает ультразвуком множество соседних линий слежения, причем импульсы слежения передаются вдоль каждой линии слежения множество раз с чередованием во времени, и
отличается тем, что
принятые эхо-сигналы являются сфокусированными эхо-сигналами, принятыми одновременно от множества линий слежения, облученных ультразвуком в ответ на передачу импульса слежения.

12. Способ по п. 11, в котором этап обработки дополнительно содержит этап, на котором обрабатывают эхо-сигналы для определения движения ткани, происходящего от волн сдвига.

13. Способ по п. 12, в котором этап обработки дополнительно содержит этап, на котором обрабатывают эхо-сигналы для определения движения ткани в точках в области интереса.



 

Похожие патенты:

Изобретение относится к медицине, а именно к ультразвуковой диагностике, и может быть использовано для диагностики заболеваний и пороков развития толстой кишки у детей.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для профилактики и ранней диагностики постмастэктомических осложнений. Осуществляют ультразвуковую оценку изменений m.

Изобретение относится к медицинской технике, а именно к ультразвуковым устройствам на основе катетера для определения температуры. Устройство содержит удлиненное тело, имеющее проксимальный конец, дистальный конец, область дистального конца и продольную ось, проходящую вдоль направления удлинения, один или более ультразвуковых преобразователей для генерации акустического излучения, расположенных в области дистального конца внутри удлиненного тела, передающий элемент, расположенный на траектории лучей акустического излучения, являющийся, по существу, прозрачным для акустического излучения.
Изобретение относится к медицине, а именно к колопроктологии, гастроэнтерологии и ультразвуковой диагностике детского возраста. Проводят ультразвуковое трансабдоминальное сканирование толстой кишки без предварительной подготовки пациента в положении на спине в двух перпендикулярных проекциях - продольной и поперечной.
Изобретение может быть использовано в медицине, а именно в оперативной гинекологии. В процессе проведения операции осуществляют заполнение полости малого таза стерильным физиологическим раствором с таким расчетом, чтобы органы-мишени погрузились в жидкость.

Изобретение относится к медицине, в частности к стоматологии, и предназначено для проведения эхоостеометрии челюстей у пациентов в ретенционном периоде ортодонтического лечения.

Изобретение относится к медицинской технике, а именно к средствам распознавания подвижных анатомических структур, в частности, для обнаружения сердечных сокращений плода.

Изобретение относится к ультразвуковым диагностическим системам. Система формирования изображений содержит ультразвуковой зонд, работающий на ультразвуковой допплеровской частоте f0 передачи, допплеровский демодулятор, который создает сигналы допплеровского смещения из скорости кровотока в полосе аудиочастот, дисплей допплеровской информации, допплеровскую аудиосистему и чувствительную к сигналам допплеровского смещения, которая создает допплеровский аудиосигнал со смещенным основным тоном, не изменяя отображаемую скорость кровотока.

Изобретение относится к медицинской технике, а именно к направляющим системам для биопсии. Многопозиционная направляющая система для биопсии содержит двумерный матричный ультразвуковой преобразователь, элементы которого расположены в направлении возвышения и в азимутальном направлении, и направляющую биопсийной иглы для ее направления вдоль траектории биопсии.

Изобретение относится к медицинской технике, а именно к управлению абляцией. Устройство (110) управления абляцией содержит секцию (115) мониторинга и секцию (120) управления для регистрации (S820) с помощью характеристической кривой (515) одного или более значений смещения, полученных при мониторинге смещения, и прекращения, в реальном времени, абляции в точке абляции, когда достигается заданный размер поражения.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано при лечении кисты Бейкера. Под контролем УЗ-датчика в полость кисты Бейкера вводят пункционную иглу. В просвет иглы вводят торцовый световод и под контролем УЗ-датчика подводят его до соустья. Осуществляют воздействие лазерным излучением с длиной волны 1470 нм, мощностью излучения 8 Вт, длительностью импульса 0,2-0,5 с и продолжительностью 4-7 с до облитерации соустья. Из того же прокола и тем же световодом производят коагуляцию стенок кисты мощностью излучения 8 Вт, длительностью импульса 0,2-0,5 с и продолжительностью 7-10 с. Способ обеспечивает эффективную облитерацию крупного полостного образования без термического повреждения окружающих тканей, отсутствие рецидивов заболевания за счет нагрева остатков внутриполостной серозной жидкости и денатурации внутреннего слоя кисты и соустья, что приводит к их прочному склеиванию. 1 пр.

Изобретение относится к медицине, в частности к урологии, и может быть использовано при проведении дистанционной литотрипсии для контроля за дезинтеграцией конкрементов высокой плотности в почках. Проводят комплексное ультразвуковое обследование с помощью ультразвукового аппарата Toshiba Aplio XG V4. С помощью методики ASQ осуществляют построение графика функции плотности конкремента с определением значения индекса плотности. При значениях индекса плотности конкремента выше 5,5 сеанс дистанционной литотрипсии проводят с величиной ударноволнового импульса 14-15 кВ. При снижении значения индекса плотности конкремента в пределах от 5,5 до 3,6 сеанс дистанционной литотрипсии проводят с уменьшением величины ударноволнового импульса до 12-13 кВ. При снижении значения индекса плотности конкремента от 3,5 до 2,0 сеанс дистанционной литотрипсии прекращают. Способ позволяет повысить точность контроля дезинтеграции конкремента почек путем оценки его структурной плотности, что позволяет уменьшить травматизацию почечной паренхимы и снижает вероятность возникновения осложнений. 4 ил., 2 пр.

Изобретение относится к медицинской технике, а именно к средствам с повышенной эхогенностью для получения ультразвуковых изображений. Интервенционное устройство содержит интервенционное устройство, для которого должно быть получено ультразвуковое изображение, имеющее внешнюю поверхность, содержащую одну или более топографических неровностей в других случаях гладкой внешней поверхности интервенционного устройства и полимерную пленку, которая находится в тесном контакте с внешней поверхностью и закрывает по меньшей мере участок одной или более топографических неровностей, при этом натяжение полимерной пленки и резонансная характеристика полимерной пленки являются регулируемыми. В способе повышения эхогенности формируют одну или более топографических неровностей в других случаях гладкой внешней поверхности интервенционного устройства и размещают полимерную пленку в тесном контакте с внешней поверхностью, причем натяжение полимерной пленки является регулируемым. Регулируют эхогенный отклик интервенционного устройства посредством визуализации устройства и регулирования натяжения полимерной пленки, при этом регулировка натяжения изменяет резонансную характеристику полимерной пленки, покрывающей одну или более топографических неровности. Использование изобретения позволяет улучшить видимость объектов в ультразвуке. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к медицинской технике, а именно к средствам с повышенной эхогенностью для получения ультразвуковых изображений. Устройство содержит интервенционное устройство, изображение которого должно быть получено посредством ультразвука, и эхогенный полимерный рукав, расположенный рядом с интервенционным устройством и содержащий биосовместимую деформируемую мембрану, которая охватывает по меньшей мере часть интервенционного устройства. Топография эхогенного полимерного рукава является регулируемой посредством его осевого сжатия, которое изменяет длину эхогенного полимерного рукава относительно интервенционного устройства и образует морщины на биосовместимой деформируемой мембране, морщины являются видимыми для ультразвука и повышают эхогенность интервенционного устройства. Способ повышения эхогенности включает размещение биосовместимой деформируемой мембраны рядом с интервенционным устройством и сжатие рукава вдоль оси для изменения его длины и образования морщин на биосовместимой деформируемой мембране. Во втором варианте выполнения устройства механическая деформация эхогенного полимерного рукава изменяет его толщину и образует морщины на биосовместимой деформируемой мембране. Использование изобретения улучшает видимость объектов в ультразвуке. 3 н. и 13 з.п. ф-лы, 4 ил.
Изобретение относится к медицине, а именно к гастроэнтерологии, колопроктологии и ультразвуковой диагностике, и может быть использовано для дифференциальной диагностики хронических воспалительных заболеваний кишечника у детей. Проводят ультразвуковое трансабдоминальное исследование тонкой и толстой кишки в продольной и поперечной проекциях. Трансабдоминальное исследование проводят нативно в положении пациента на спине. Для визуализации всех отделов тонкой кишки в качестве ориентиров принимают петли кишки без гаустр. Для визуализации толстой кишки в качестве ориентиров принимают гаустры. С помощью импульсной доплерометрии определяют скорость кровотока в ветвях мезантериальных артерий. Проводят трансперинеальное исследование аноректальной зоны в положении пациента на левом боку с согнутыми ногами. Датчик устанавливают непосредственно в анальную ямку, смещая его от лона к крестцу в процессе сканирования в двух проекциях - продольной и продольно-косой. В качестве ориентиров принимают крестец, симфиз, анальный канал. Оценивают состояние дистального отдела ампулы прямой кишки. Полученные показатели сравнивают с критериями нормы. При наличии изменений со стороны тонкой кишки: увеличении толщины стенки более 2 мм, повышении ее эхогенности, сужении просвета кишки; при наличии изменений со стороны толстой кишки: сглаженности гаустр, бугристости контуров, увеличении толщины стенки более 2,5 мм, толщины ее слизистого слоя - более 1 мм, а подслизистого - более 0,5 мм, отсутствии четкой дифференцировки слоев, повышении эхогенности подслизистого слоя, сужении просвета кишки, повышении скорости кровотока в ветвях мезантериальных артерий более 7,0 см/сек; при наличии изменений близлежащих органов: повышении эхогенности большого сальника, окутывании сальником измененных воспалительным процессом петель толстой и тонкой кишки, увеличении длины мезантериальных и парааортальных лимфатических узлов более 10 мм, наличии свободной жидкости в брюшной полости; при наличии изменений со стороны аноректальной зоны: увеличении толщины стенки ампулы прямой кишки более 2,5 мм, повышении эхогенности перинеальной подкожно-жировой клетчатки, наличии аноректальных свищей и парапроктитов судят о наличии гиперплазии стенки тонкой, толстой кишки в пораженных отделах, гиперплазии мезантериальных, парааортальных лимфатических узлов, реактивных изменений большого сальника, а также наличии воспалительного поражения перинеальной области и диагностируют болезнь Крона. При наличии изменений со стороны только толстой кишки: сглаженности гаустр, ровности контуров, увеличении толщины ее стенки более 2,5 мм, толщины слизистого слоя - более 1 мм, подслизистого - более 0,5 мм, снижении ее четкой дифференцировки, понижении эхогенности подслизистого слоя, отсутствии сужения просвета кишки, повышении скорости кровотока в ветвях мезантериальных артерий более 7,0 см/сек; при наличии изменений близлежащих органов: увеличении длины мезантериальных, парааортальных лимфатических узлов более 10 мм, отсутствии реактивных изменений сальника, увеличении толщины стенки ампулы прямой кишки более 2,5 мм без поражения перинеальной области судят о гиперплазии стенки толстой кишки и мезантериальных, парааортальных лимфатических узлов и диагностируют неспецифический язвенный колит. Способ позволяет осуществить раннюю дифференциальную диагностику хронических воспалительных заболеваний кишечника за счет использования точных качественных и количественных ультразвуковых критериев. 2 пр.

Изобретение относится к медицине, а именно к акушерству. У беременных на сроке гестации 22-32 недели методом УЗДГ определяют индекс резистентности глазных и маточных артерий. Дополнительно с помощью УЗИ определяют площадь диска зрительных нервов. Рассчитывают коэффициент преэклампсии Р по формуле: Р=ИРга×ИРма×Sдзн, где ИРга - индекс резистентности глазной артерии, ИРма - индекс резистентности маточной артерии, Sдзн - площадь диска зрительного нерва. При коэффициенте преэклампсии Р более 0,75 диагностируют доклиническую стадию преэклампсии. Способ обеспечивает повышение точности диагностики доклинической стадии преэклампсии за счет определения клинически значимых ультразвуковых критериев данной патологии. 2 табл., 4 пр.
Изобретение относится к медицине, а именно к проктологии, и может быть использовано при выборе метода оперативного лечения женщин с пролапсом тазовых органов. Осуществляют ультрасонографическое исследование с использованием мультичастотного внутриполостного ректовагинального датчика. Предварительно внутривлагалищно вводят латексный контейнер, наполненный 150,0 мл физиологического раствора. Выявляют дефект фасции ректовагинальной перегородки через переднюю стенку прямой кишки в области истончения ректовагинальной перегородки. Определяют с помощью УЗИ площадь выявленного дефекта. Если его площадь менее 8 см2, осуществляют консервативное лечение. Если площадь дефекта фасции ректовагинальной перегородки 8-16 см2, выполняют трансвлагалищную пластику тазового дна, дополненную 11-часовой трансанальной мукопексией. Если площадь дефекта фасции ректовагинальной перегородки более 16 см2, выбирают тактику операции с использованием системы Prolift и устанавливают задний сетчатый протез. Способ обеспечивает профилактику развития рецидивов пролапса тазовых органов, позволяет уменьшить травматичность вмешательства и снизить число осложнений, связанных с использованием синтетических материалов за счет предварительной точной оценки размеров дефекта фасции ректовагинальной перегородки и выбора адекватной хирургической тактики. 3 пр.

Изобретение относится к медицине, а именно к методам лучевой диагностики, и может быть использовано в эндокринологии при проведении обследования больных с вторичным гиперпаратиреозом. Проводят ультразвуковое исследование области шеи больного. Определяют качественные и количественные параметры состояния каждой паращитовидной железы, по значениям которых оценивают морфологический вариант гиперплазии. В качестве качественных параметров используют эхогенность и структуру каждой измененной паращитовидной железы. В качестве количественного параметра используют показатель индекса резистентности во внутрижелезистых сосудах. Диффузную гиперплазию паращитовидной железы диагностируют в случае ее однородной структуры при отсутствии в ней внутрижелезистого кровотока, либо в случае ее однородной структуры при значении индекса резистентности во внутрижелезистых артериях меньшем 0,65. Узловую гиперплазию диагностируют в случае однородной структуры паращитовидной железы при значении индекса резистентности в сосудах внутри железы равном или большем 0,65, либо в случае ее неоднородной структуры при любом значении индекса резистентности во внутрижелезистых артериях. Способ позволяет повысить точность диагностики морфологических вариантов гиперплазии паращитовидных желез за счет выбора в качестве качественного параметра структуры каждой измененной паращитовидной железы, в качестве количественного параметра - индекса резистентности во внутрижелезистых сосудах. 1 табл., 4 пр.
Изобретение относится к медицине, в частности к онкологии, и может быть использовано для диагностики новообразований молочной железы. Предложен скрининг новообразований молочной железы путем ее инфракрасной термографии. Пациентку устанавливают к исследователю полубоком, выбирают для исследования молочную железу с другой стороны. Осуществляют определение температуры до, во время и после обдувания молочной железы потоком воздуха при температуре ниже температуры ее поверхности. При этом в качестве аппарата лучевой диагностики используют тепловизор с функцией изображения молочной железы на экране в цветах от красного до фиолетового в зависимости от ее локальной температуры соответственно в диапазоне +26-+37°С. В качестве обдувающего устройства используют бытовой фен с функцией создания равномерного потока холодного воздуха. Обдувают железу с расстояния 5-15 см с интенсивностью потока воздуха, обеспечивающего в срок от 10 до 60 секунд понижение температуры кожи железы на несколько градусов. При наличии участка с локальной гипо- или гипертермией производят термографический снимок железы. Конкретизируют форму, размер и локализацию этого участка, устанавливая наличие новообразования. При равномерности температуры поверхности молочной железы устанавливают однородность структуры железы, после чего проводят по той же методике исследование второй молочной железы. Способ обеспечивает эффективное и безопасное обнаружение новообразований и может быть использован для своевременной диагностики и, следовательно, массовой профилактики злокачественных опухолей молочной железы. 1 пр.

Изобретение относится к медицине, а именно к детской гастроэнтерологии и гепатологии, и может быть использовано для диагностики степени поражения структуры печени и выраженности портальной гипертензии. Оценивают в баллах выраженность фиброза и наличие цирроза печени по шкале Metavir при фиброэластометрии и по шкале Desmet при морфологическом исследовании печени. Оценивают показатели выраженности портальной гипертензии: с помощью УЗИ оценивают увеличение диаметра воротной вены, диаметра селезеночной вены, длину селезенки в процентах от максимально допустимой нормы, которую определяют по росту ребенка. Увеличение указанных показателей на 0-4% оценивают в 4 балла, на 5-24% - в 3 балла, на 25-49% - в 2 балла, на 50-95% - в 1 балл, на 96-100% - в 0 баллов каждый. Наличие реканализации пупочной вены, асцита, гидроперикарда, гидроторакса оценивают в 0 баллов, их отсутствие - в 4 балла каждый. С помощью ФЭГДС определяют наличие варикозного расширения вен пищевода и оценивают степень его выраженности в баллах: отсутствие нарушений оценивают в 4 балла, 1 степень - в 3 балла, 2 степень - в 2 балла, 3 степень - в 1 балл, 4 степень - в 0 баллов. Баллы суммируют. При сумме баллов 38-40 делают заключение об отсутствии нарушений структуры печени и портальной гипертензии. При сумме 30-37 баллов - о незначительном нарушении структуры печени и незначительной портальной гипертензии. При сумме 20-29 баллов - об умеренном нарушении структуры печени и умеренной портальной гипертензии. При сумме 3-19 баллов - о тяжелом нарушении структуры печени и тяжелой портальной гипертензии. Способ позволяет повысить эффективность диагностики заболеваний печени за счет выявления объективных критериев оценки степени нарушения структуры печени и выраженности портальной гипертензии. 7 табл., 3 пр.
Наверх