Способ получения модифицированной серы


 


Владельцы патента RU 2554585:

Общество с ограниченной ответственностью Научно Промышленное Предприятие "ПромСпецМаш" (RU)

Изобретение относится к области производства композиций, содержащих модифицированную серу, которые могут быть использованы для производства строительных материалов - серных бетонов и сероасфальтобетонов, применяемых в различных отраслях строительства, в том числе транспортном, гидротехническом, гидромелиоративном и др. Способ получения модифицированной серы заключается в том, что расплавленную серу подают в реактор при температуре 120-135°С, после чего в реактор вводят соли аммония и/или калия в количестве от 0,001 до 0,005 мас.% от массы серы, перемешивают их в течение 5-10 минут, после чего вводят 5-этилиден-2-норборнен в количестве от 0,08 до 0,1 мас.% от массы серы и осуществляют перемешивание в течение 20-50 минут. Результат заключается в том, что происходит стабилизация продукта, реакция модификации становится необратимой и, как следствие, отсутствует деструкция. 2 табл., 5 пр.

 

Изобретение относится к области производства композиций, содержащих модифицированную серу, которые могут быть использованы для производства строительных материалов - серных бетонов и сероасфальтобетонов, применяемых в различных отраслях строительства, в том числе транспортном, гидротехническом, гидромелиоративном и др.

Приготовление серного бетона не может быть осуществлено на основе технической серы, так как при переходе серы из расплава в твердое состояние вследствие процессов кристаллизации и перекристаллизации происходят изменения ее плотности, что вызывает значительные усадочные деформации, что приводит к возникновению трещин и другим деструктивным процессам. Снижение объемных деформаций может быть достигнуто за счет применения модифицированной серы, представляющий собой сополимер неорганической серы в разных аллотропных состояниях.

Производство сероасфальтового бетона с частичной заменой битумного вяжущего технической серой не обеспечивает возможность укладки и уплотнения покрытия из сероасфальтобетонной смеси за счет узкого интервала температур, обеспечивающего эффективное ее уплотнение. В связи с этим для производства сероасфальбетонных смесей требуется модифицированная сера, представляющая собой сополимер, обеспечивающий возможность укладки и достижения требуемого уплотнения сероасфальтобетонной смеси.

Таким образом, известно, что для производства сероасфальтобетона и серного бетона требуется модифицированная сера, представляющая собой сополимеры, включающие в себя различные аллотропные состояния серы при наличии полимерной фазы порядка 30%, то есть сополимерной серы.

Физико-механические свойства полимерной серы значительно отличаются от обычной ромбической, призматической и пластической. Такая сера нерастворима в органических растворителях, имеет более высокие прочностные характеристики, лучшую адгезию к минеральным наполнителям и бетону, меньшие деформации усадки. При формировании серных бетонов и сероасфальтобетонов при использовании модифицированной серы существенно снижаются внутренние напряжения, возникающие в материалах в процессе их остывания.

Полимерную серу можно получить, если расплавленную серу с температурой до 180°С, при которой практически вся сера перешла в полимерное состояние, резко охладить. Однако полимерная сера - термодинамически неустойчивый материал, при нормальной температуре она постепенно переходит в обычную ромбическую серу. Таким образом, переход из мономерного в полимерное состояние в сере является фазовым, он носит флуктуационный, межфазный характер, как и в кристаллических полимерах, и с течением времен подвергается деструкции.

Для стабилизации полимерной серы используют различные стабилизаторы структуры.

В связи с этим известны способы получения сополимеров серы за счет введения галогенов, терпентинов, соснового масла, соснового дегтя, однако они не обеспечивают стабильности и улучшения физико-механических характеристик, .

Наиболее широкое распространение в качестве модификатора серы получил дициклопентадиен (ДЦПД). Однако недостатками модифицированной серы с использованием ДЦПД являются длительность процесса модификации и высокая токсичность. Сера, модифицированная ДЦПД, характеризуется пониженной щелочестойкостью и стойкостью к действию бактерий, в том числе серных.

Наиболее близким техническим решением является модификация серы за счет введения 5-этилиден-2-норборнена в соответствии с патентом ЕА 013639 В1, 30.10.2010.

При этом сера приобретает свойства пластичности и обеспечивается более прочное соединение серы с инертным наполнителем, однако полученный продукт имеет недостатки:

1) повышенная температура проведения реакции, не менее 135 градусов;

2) время модификации 3-5 часов;

3) пониженная щелочестойкость и стойкость к серным бактериям;

4) высокое содержание модификатора 5-этилиден-2-норборнена 0,6-3,5%;

5) обладает способностью к деструкции.

Для устранения этих недостатков в заявленном изобретении предлагается дополнительно с 5-этилиден-2-норборнена вводить соли аммония и/или калия в количестве 0,001-0,005 мас.%, в результате чего достигается:

1) снижение температуры проведения реакции до 120 градусов;

2) время проведения реакции снижается до 20-50 минут;

3) обеспечение щелочестойкости и стойкости к серным бактериям;

4) уменьшение количества модификатора 5-этилиден-2-норборнена 0,08-0,1 мас.%;

5) повышение адгезионных свойств модифицированной серы к каменному материалу (заполнителю).

В основу изобретения поставлена задача усовершенствования технологии получения модифицированной серы путем введения соли аммония и/или калия, в результате чего происходит стабилизация продукта, реакция модификации становится необратимой и как следствие отсутствует деструкция (не разрушаются полимерные связи).

Поставленная задача решается и указанный технический результат достигается в способе получения модифицированной серы для производства серного бетона и сероасфальтобетонной смеси, заключающемся в том, что расплавленная сера подается в реактор при температуре 120-135°С, после чего в реактор вводятся соли аммония и/или калия в количестве от 0,001 до 0,005 мас.% от массы серы, перемешивают их в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве от 0,08 до 0,1 мас.% от массы серы и осуществляют перемешивание в течение 20-50 минут.

Наилучший вариант осуществления изобретения.

В расплавленную серу (техническую) при температуре 120-135°С вводятся соли аммония, например персульфат аммония, в количестве 0,001-0,005 мас.% и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводятся соли аммония, например сульфат аммония, в количестве 0,001-0,005 мас.% и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводятся соли калия, например персульфат калия, в количестве 0,001-0,005 мас.% и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводятся соли калия, например сульфат калия, в количестве 0,001-0,005 мас.% и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводится смесь соли аммония и калия, например персульфат аммония и персульфат калия, в количестве 0,001-0,005 мас.% (в любых соотношениях между собой) и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводится смесь соли аммония и калия, например персульфат аммония и сульфат калия, в количестве 0,001-0,005 мас.% (в любых соотношениях между собой) и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводятся соли аммония и калия, например сульфат аммония и персульфат калия, в количестве 0,001-0,005 мас.% (в любых соотношениях между собой) и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

В расплавленную серу (техническую) при температуре 120-135°С вводится смесь соли аммония и калия, например сульфат аммония и сульфат калия, в количестве 0,001-0,005 мас.% (в любых соотношениях между собой) и осуществляется перемешивание в течение 5-10 минут, после чего вводится 5-этилиден-2-норборнен в количестве 0,08-0,1 мас.% и осуществляется перемешивание в герметично закрытом сосуде в течение 20-50 минут.

Содержание солей аммония и/или калия может составлять от 0,001 до 0,005 мас.%. Так как такого количества достаточно для получения стойкости в отношении аллотропных конформаций и замедленной кристаллизации в присутствии зернистого неорганического материала, такого как наполнитель и/или заполнитель при производстве серного бетона или сероасфальтбетонной смеси. Меньшее количество солей аммония и/или калия вызывает снижение стойкости в отношении аллотропных конформации. Большее количество не проявляет заметного эффекта в обеспечении стабильности модифицированной серы.

Содержание 5-этилиден-2-норборнен составляет от 0,08 до 0,1 мас.%, что обеспечивает желаемый модифицирующий эффект. Меньшее количество 5-этилиден-2-норборнен может иметь следствием пониженное содержание полимерной составляющей в модифицированной сере, что приводит к возрастанию усадочных деформаций при производстве серобетона и приводит к узкому интервалу температур при уплотнении сероасфальтобетонных смесей. Большее количество 5-этилиден-2-норборнен приводит к образованию значительного количества полимерной серы, что способствует тому, что модифицированная сера характеризуется гетерогенным составом, который в меньшей степени подходит в качестве модифицированной серы, предназначенной для производства серного бетона и сероасфальтобетонных смесей.

Расплавленная сера подается в реактор при температуре 120-135°С потому, что температура плавления серы 119°С, реакция модификации экзотермична, в связи с этим наблюдается значительный разогрев смеси на 10-15°С. В связи с тем что температура выше 159°С не допускается в связи с лавинообразным образованием полимерной серы, температуру ограничиваем 135°С.

После чего в реактор вводятся соли аммония и/или калия в количестве от 0,001 до 0,005 мас.%, например персульфат калия, и осуществляют перемешивание расплавленной серы с персульфатом калия и/или аммония в течение 5-10 минут, исключительно для перемешивания.

Далее вводится 5-этилиден-2-норборнен в количестве от 0,08 до 0,1 мас.% от массы серы и осуществляют перемешивание в течение 20-50 минут. За этот промежуток времени происходит образование сополимерной серы. При этом за 20-30 минут образуется сополимерная сера, предназначенная для производства сероасфальтобетонных смесей, а за 30-50 минут образуется сополимерная сера, предназначенная для производства серобетонных смесей.

Образцы модифицированной серы готовили следующим образом.

В расплавленную серу (техническую) в количестве 1000 кг при температуре 125°С вводили сульфат аммония в количестве 0,01 кг и осуществляли перемешивание в течении 5 минут, после чего вводили 5-этилиден-2-норборнен в количестве 1,0 кг, и осуществляли перемешивание в герметично закрытом сосуде в течении 30 минут.

Полученную массу смешивали с заранее разогретыми до температуры 125°С песком кварцевым молотым (остаток на сите №0,08 20%) и песком кварцевым в соотношении:

- сера модифицированная - 27 мас.%;

- песок кварцевый молотый (остаток на сите №0,08 20%) - 21 мас.%;

- песок кварцевый - 52 мас.%.

Полученной смесью заполняли предварительно нагретые до температуры 100°С формы-балочки размером 40×40×160 мм. Формы со смесью остужали в естественных условиях при температуре 20°С. В результате получали образцы размером 40×40×160 мм, которые испытывались на прочность.

Примеры образцов модифицированной серы с различным процентным содержанием компонентов приведены в таблице 1.

Прочностные характеристики образцов, полученных на указанных составах модифицированной серы, приведены в таблице 2. Прочность на растяжение при изгибе и прочность на сжатие определялась в соответствии с методикой ГОСТ 310.4-81 на образцах в возрасте 7 суток.

Как видно из таблицы 2, прочностные свойства полученного материала значительно улучшены по сравнению с прототипом.

Способ получения модифицированной серы для производства серного бетона и сероасфальтобетонной смеси, заключающийся в том, что расплавленную серу подают в реактор при температуре 120-135°С, после чего в реактор вводят соли аммония и/или калия в количестве от 0,001 до 0,005 мас.% от массы серы, перемешивают их в течение 5-10 минут, после чего вводят 5-этилиден-2-норборнен в количестве от 0,08 до 0,1 мас.% от массы серы и осуществляют перемешивание в течение 20-50 минут.



 

Похожие патенты:

Изобретения относятся к дорожно-строительным материалам. Сыпучая добавка для асфальтобетонной смеси, содержащая (мас.

Изобретение относится к области битумов, в частности к битумно-полимерным композициям, использующимся в промышленности и/или в дорожном строительстве. Для получения композиции битум/полимер используют маточный раствор, не содержащий масла минерального происхождения, содержащий по меньшей мере одно масло растительного и/или животного происхождения, от 20 до 50 мас.% сополимера, основанного на конъюгированных диеновых единицах и ароматических моновиниловых углеводородных единицах, по отношению к массе маточного раствора, содержащий или не содержащий по меньшей мере один сшивающий агент, где указанное масло растительного и/или животного происхождения является кислотой, причем показатель кислотности, измеренный по стандарту NF EN ISO 660, составляет от 50 до 300 мг КОН/г.

Изобретение относится к способу получения битумов нефтяных дорожных и может быть использовано в дорожной, строительной и нефтеперерабатывающей отраслях промышленности.

Изобретение относится к способу получения битумов нефтяных дорожных и может быть использовано в дорожной, строительной и нефтеперерабатывающей отраслях промышленности.
Изобретение относится к строительным материалам и может быть использовано для дорожных, кровельных, изоляционных, герметизирующих работ. В способе приготовления резинобитумной композиции смесь резиновой крошки и битума активируют ультразвуком при соотношении, мас.%: резиновая крошка - 13-50, битум - остальное.
Изобретение относится к добавкам, которые предназначены для применения в битуме и модифицированном полимером битуме. Добавка получена путем смешивания друг с другом: (a) серы, (b) вулканизированного каучука, например отходов из вулканизированного каучука; (c) жирной кислоты и (d) битума.
Изобретение относится к области производства дорожно-строительных материалов и может быть использовано для ремонта аэродромных и дорожных покрытий, в частности, для выполнения оперативного, аварийного восстановления разрушенных участков асфальтобетонных покрытий.

Изобретение относится к способу получения поперечно-сшитых композиций полимера и битума без использования какого-либо сшивающего агента. В способе получения поперечно-сшитых композиций полимера и битума без использования какого-либо сшивающего агента по меньшей мере один битум и по меньшей мере одну полимерную композицию, содержащую по меньшей мере 80 мас.%, относительно массы полимерной композиции, диблок-сополимера моновинилароматического углеводородного блока и сопряженного диенового блока, обладающего молекулярной массой большей или равной 80000 г/моль и содержанием звеньев с двойными связями в положении 1-2, происходящих из сопряженного диена, большим или равным 15 мас.% относительно общей массы сопряженных диеновых звеньев, приводят в контакт при температуре от 180°C до 220°C, в течение периода времени от 8 ч до 48 ч.
Изобретение относится к составу и способу получения мастичной композиции, применяемой для защиты металлических поверхностей, резервуаров, бетонных и кирпичных поверхностей, а также в качестве компонента для производства антикоррозионных мастик, лаков, эмалей.
Изобретение относится к способу получения битумных композиций и может найти применение в дорожном строительстве, производстве кровельных материалов и гидроизоляции.
Изобретение относится к добавкам, которые предназначены для применения в битуме и модифицированном полимером битуме. Добавка получена путем смешивания друг с другом: (a) серы, (b) вулканизированного каучука, например отходов из вулканизированного каучука; (c) жирной кислоты и (d) битума.
Изобретение относится к резинотехнической промышленности, в частности к производству резиновых смесей для изготовления изделий различного целевого назначения, эксплуатирующихся в условиях низких температур.

Изобретение относится к маканым изделиям на основе натурального латекса, в частности к защитным перчаткам, используемым как средства индивидуальной защиты в составе комплектов для защиты персонала на химически опасных объектах.

Изобретение относится к технологии резинотехнических изделий. Резиновая смесь содержит, мас.% : каучук СКИ-3 67,60-68,80, стеариновую кислоту 1,30-1,40, оксид цинка 3,30-3,50, серу газовую 1,50-1,60, сульфенамид Т 0,40-0,50, технический углерод N330 23,60-24,10, модификатор N-алкил-4-нитрозо-3-метил-5-(2-нафтил)-пиразол 0,30-2,10.

Изобретение относится к созданию резиновой композиции на основе гидрированного бутадиен-нитрильного каучука с повышенным содержанием акрилонитрила и малой непредельностью и может быть использовано в резиновой и резинотехнической промышленности для изготовления многослойных резинокордных изделий, эксплуатирующихся в условиях воздействия динамических нагружений, топлив и масел при повышенных температурах в течение длительного времени.

Изобретение относится к резиновой композиции, которая не содержит цинк или содержит меньше чем 0,5 масс.ч. цинка, которую можно использовать для производства шин.
Изобретение относится к вулканизованному каучуку и способу его получения. Способ получения вулканизованного каучука включает первую стадию замешивания S-(3-аминопропил)тиосерной кислоты и/или ее металлической соли, каучукового компонента, наполнителя и серного компонента для получения замешанного продукта, где серный компонент представляет собой порошкообразную серу, осажденную серу, коллоидальную серу, нерастворимую серу или высокодиспергированную серу, и вторую стадию проведения тепловой обработки замешанного продукта, полученного на первой стадии, где условия по температуре при тепловой обработке находятся в диапазоне от 120 до 180°C.

Изобретение относится к каучуковой композиции из диеновых каучуков, не содержащей цинк или содержащей меньше 0,5 мас.% цинка в расчете на эластомер и приемлемой для изготовления пневматических шин и протекторов шин.

Изобретение относится к диеновым каучуковым композициям, усиленным неорганическим наполнителем, которые можно использовать, в частности, для производства шин или полуфабрикатов для шин, в том числе протекторов.
Изобретение относится к области нефтепереработки, в частности к способу получения модифицированного олигомерно-сернистого битума. Для получения модифицированного битума осуществляют подготовку сырья путем вакуумной перегонки мазута в вакуумной колонне при остаточном давлении верха колонны 15-25 мм рт.ст.

Изобретения относятся к дорожно-строительным материалам. Сыпучая добавка для асфальтобетонной смеси, содержащая (мас.
Наверх