Способ картографирования земной поверхности бортовой радиолокационной станцией

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Достигаемый технический результат - стабилизация положения зоны картографирования по курсу летательного аппарата. Способ картографирования земной поверхности бортовой радиолокационной станцией основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании покадрового радиолокационного изображения поверхности Земли, причем перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата, а граница, с которой начинает формироваться каждый последующий кадр, меняется на противоположную. Способ может быть реализован радиолокационной станцией, состоящей из бортовой цифровой вычислительной машины, блока управления лучом, антенны, передатчика, приемника, блока формирования радиолокационного изображения земной поверхности, индикатора. 4 ил.

 

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах.

Известен способ картографирования земной поверхности [«Многофункциональные радиолокационные системы» под ред. Б.Г. Татарского, М. Дрофа, 2007 г. стр. 24, 25, 174-195], основанный на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении (сканировании) луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения поверхности Земли. Синтезирование апертуры антенны позволяет искусственно более чем на порядок обострить луч, используя зависимость доплеровского смещения частоты отраженного сигнала от углового положения отражающего элемента поверхности, что обеспечивает разделение целей, находящихся внутри луча. Однако синтезирование апертуры антенны в зоне углов порядка ±10° в горизонтальной плоскости (по азимуту) относительно строительной оси (курса) летательного аппарата представляет большие сложности ввиду незначительной разницы в передней зоне доплеровского смещения частоты отраженного сигнала. Этот недостаток не позволяет произвести картографирование земной поверхности с высоким разрешением в указанной зоне обзора, что, в свою очередь, не дает возможности использовать вооружение летательного аппарата при работе по объектам, расположенным в «слепой зоне» по его курсу.

Наиболее близким по технической сущности является «Способ картографирования земной поверхности бортовой радиолокационной станцией», описанный в [RU 2423724 опубликовано 10.07.2011, МПК G01S 13/89 (2006.01)]. Способ основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения. При этом перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата от начального значения Ф0 с соблюдением условия |Фтектек|≥φ, где Фтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны. При достижении углового положения луча антенны ≥Ф0 осуществляется его мгновенный переброс в азимутальной плоскости до другой границы заданного сектора, после чего продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до исходного значения Ф0 при соблюдении условия |Фтектек|≥φ.

В этом способе за счет маневра летательного аппарата типа «змейка» обеспечивается синтезирование апертуры антенны в передней зоне обзора, что позволяет получить высокую разрешающую способность при картографировании земной поверхности в этой зоне. Однако такой подход в случае непрерывного картографирования земной поверхности (получении нескольких кадров карты подряд) приведет к изменению траекторного курса летательного аппарата (ЛА). Это потребует от летчика постоянного контроля курса, что приведет к потере времени на его коррекцию. В противном случае это приведет к смещению заданной зоны картографирования относительно курса ЛА, а в конечном итоге к срыву поставленной задачи по применению вооружения при работе по объектам, расположенным по курсу ЛА.

Техническим результатом предлагаемого способа является стабилизация положения зоны картографирования по курсу летательного аппарата. Это достигается контролем траекторного курса летательного аппарата при картографировании земной поверхности.

Сущность изобретения состоит в том, что способ картографирования земной поверхности БРЛС основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании покадрового радиолокационного изображения поверхности Земли. При формировании каждого кадра карты перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата от начального значения Ф0 с соблюдением условия |Фтектек|≥φ, где Фтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны. При достижении углового положения луча антенны ≥Ф0 осуществляется его мгновенный переброс в азимутальной плоскости до другой границы заданного сектора, после чего продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до исходного значения Ф0 при соблюдении условия |Фтектек|≥φ.

Новым признаком заявляемого способа является то, что граница, с которой начинает формироваться каждый последующий кадр, меняется на противоположную, причем переброс луча антенны при формировании кадров карты, начинающихся с левой границы заданного сектора углов, осуществляется при достижении лучом антенны значения угла Φ0+φ, а при формировании кадров начинающихся с правой границы - при достижении лучом антенны значения угла Φ0-φ.

На фиг. 1 представлена радиолокационная станция для осуществления способа.

На фиг. 2 показаны процессы построения нечетного кадра карты при перемещении луча антенны и изменении курса ЛА:

где а) заданный сектор картографирования с начальным значением курса ЛА Ф0 и начальным положением луча антенны, соответствующим границе заданного сектора картографирования;

б) часть карты, построенная при перемещении луча антенны до значения Φ0+φ и изменении курса ЛА до значения Φ10+2φ (φ - минимальное значение угла отклонения луча антенны от курса летательного аппарата, при котором обеспечивается синтезирование апертуры антенны);

в) часть карты и положение луча антенны после переброса до другой границы заданного сектора картографирования;

г) карта, построенная во всем заданном секторе картографирования, при изменении курса ЛА и перемещении луча антенны.

На фиг. 3 показаны процессы построения четного кадра карты при перемещении луча антенны и изменении курса ЛА:

где а) заданный сектор картографирования с начальным значением курса ЛА Ф0 и начальным положением луча антенны, соответствующим границе заданного сектора картографирования;

б) часть карты, построенная при перемещении луча антенны до значения Ф0-φ и изменении курса ЛА до значения Φ10-2φ;

в) часть карты и положение луча антенны после переброса до другой границы заданного сектора картографирования;

г) карта, построенная во всем заданном секторе картографирования, при изменении курса ЛА и перемещении луча антенны.

На фиг. 4 показаны траектории полета ЛА при картографировании:

- по способу, описанному в прототипе (фиг. 4а);

- по предлагаемому способу (фиг. 4б), где

Φ - курс ЛА;

t0-t1 - временной интервал построения первого кадра карты;

t1-t2 - временной интервал построения второго кадра карты и т.д.

Способ картографирования земной поверхности может быть реализован при работе радиолокационной станции, состоящей из бортовой цифровой вычислительной машины (БЦВМ) 1, блока управления лучом (БУЛ) 2, антенны 3, передатчика 4, приемника 5, блока формирования радиолокационного изображения земной поверхности 6, индикатора 7. Первый выход БЦВМ 1 соединен с входом БУЛ 2, а второй выход - с входом передатчика 4, выход которого соединен со вторым входом антенны 3. Первый вход антенны 3 соединен с выходом БУЛ 2, причем выход антенны 3 подключен к входу приемника 5, выход которого соединен с входом блока формирования радиолокационного изображения земной поверхности 6, выход которого соединен с входом индикатора 7. Третий выход БЦВМ 1 является внешним выходом БРЛС и подключается к входу пилотажно-навигационного комплекса (ПНК) летательного аппарата.

Антенна 3 излучает в пространство импульсы сигнала, поступающие на ее второй вход с выхода передатчика 4, по командам, поступающим на его вход со второго выхода БЦВМ 1. При перемещении луча антенны 3 по командам управления, поступающим на ее первый вход с блока управления лучом 2, управляемым с первого выхода БЦВМ 1, производится облучение земной поверхности. Отраженные от земной поверхности сигналы принимаются антенной 3. С выхода антенны 3 сигналы поступают на вход приемника 5. С выхода приемника 5 сигналы поступают в блок формирования радиолокационного изображения земной поверхности 6, а с его выхода - на вход индикатора 7.

Режим картографирования включается подачей на БЦВМ 1 команды «Карта» из кабины летательного аппарата. При наличии этой команды в БЦВМ 1 производится расчет начального положения луча антенны для формирования нечетных и четных кадров карты, которое определяется заданным сектором углов картографирования. При формировании нечетных кадров он устанавливается на границу (например, левую) заданного сектора углов по азимуту (фиг. 2а), а при формировании четных кадров карты он устанавливается на правую границу зоны обзора (фиг. 3а). Рассчитанные в БЦВМ 1 координаты положения луча антенны передаются с ее первого выхода на БУЛ 2, в котором вырабатываются соответствующие команды управления лучом антенны 3. После начальной установки луча антенны 3 начинается его перемещение в азимутальной плоскости с одновременным изменением курса летательного аппарата от начального значения Ф0 при выполнении условия |Φтектек|≥φ, где Фтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны. Требуемая скорость перемещения луча антенны 3 определяется командами управления, поступающими с первого выхода БЦВМ 1 на вход БУЛ 2, а управление курсом летательного аппарата осуществляется сигналами, поступающими с третьего выхода БЦВМ 1 на вход пилотажно-навигационного комплекса (ПНК) летательного аппарата. При достижении углового положения луча антенны значения Φ0+φ (при формировании нечетных кадров) и Φ0-φ (при формировании четных кадров), а курса летательного аппарата значений Φ10+2φ и Φ10-2φ (фиг. 2б и фиг. 3б) осуществляется мгновенный переброс луча в азимутальной плоскости до другой границы заданного сектора (фиг. 2в и фиг. 3в). После этого продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до исходного значения Ф0 при соблюдении условия |Фтектек|≥φ. При достижении курса летательного аппарата значения Ф0 луч антенны достигает значения Φ0+φ при формировании нечетных кадров (фиг. 2г), либо Φ0-φ при формировании четных кадров фиг. 3г, при котором процесс картографирования заканчивается. Как видно из фиг. 2 и фиг. 3, за счет изменения курса в процессе перемещения луча антенны при формировании нечетных и четных кадров карты обеспечивается условие, при котором положение луча антенны отличается от текущего курса на величину φ, т.е. выполняется условие |Фтектек|≥φ, позволяющее обеспечить синтезирование апертуры антенны.

В приемнике 5 осуществляется синтезирование апертуры антенны, основанное на использовании различия доплеровского смещения сигналов, отраженных от земной поверхности в пределах главного луча антенны 3. С выхода приемника 5 сигналы через блок формирования радиолокационного изображения земной поверхности 6 поступают на индикатор 7, где осуществляется отображение карты поверхности Земли в заданном секторе углов по азимуту.

Поскольку в процессе картографирования каждый нечетный кадр начинает формироваться от левой границы заданного сектора картографирования, а каждый четный кадр - от правой границы заданного сектора картографирования, то достигается стабилизация положения зоны картографирования, путем контроля курса ЛА (фиг. 4б), в отличие от прототипа (фиг. 4а), что является техническим результатом изобретения.

Предлагаемый режим картографирования целесообразно реализовывать, используя режим автоматического управления летательным аппаратом с помощью системы автоматического управления.

Способ картографирования земной поверхности бортовой радиолокационной станцией, основанный на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании покадрового радиолокационного изображения поверхности Земли, причем перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата от начального значения Φ0 с соблюдением условия |Φтектек|≥φ, где Φтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны, а при достижении углового положения луча антенны ≥Φ0 осуществляется его мгновенный переброс в азимутальной плоскости до другой границы заданного сектора, после чего продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до исходного значения Φ0 при соблюдении условия |Φтектек|≥φ, отличающийся тем, что граница, с которой начинает формироваться каждый последующий кадр, меняется на противоположную, причем переброс луча антенны при формировании кадров карты, начинающихся с левой границы заданного сектора углов, осуществляется при достижении лучом антенны значения угла Φ0+φ, а при формировании кадров карты, начинающихся с правой границы заданного сектора углов, переброс луча антенны осуществляется при достижении лучом антенны значения угла Φ0-φ.



 

Похожие патенты:

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах.

Изобретение относится к радиолокации и может использоваться для определения состояния морской поверхности, а также для решения задач экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти.
Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах.

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - получение повышенного разрешения за счет обработки сигнала.

Изобретение относится к бортовым радиолокационным станциям (БРЛС) летательных аппаратов, применяющим синтезирование апертуры антенны, и может использоваться в гражданской и военной авиации.

Изобретение относится к радиолокационным системам отображения данных, а именно к системам и способам трехмерной визуализации яркостной радиолокационной карты местности, и может применяться в охранных радиолокационных системах.

Изобретение относится к радиолокационной технике, в частности к бортовым радиолокационным станциям (РЛС) воздушных судов, применяющим метод синтезирования апертуры антенны.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях для улучшения обнаружения радиолокационных сигналов на фоне пассивных помех.

Группа изобретений относится к области радиовидения и может быть использована при проектировании радиотехнических систем. Достигаемый технический результат - снижение уровня помех на выходе отдельного канала формирования радиоголограммы без качественного увеличения его стоимости. Указанный результат достигается за счет разноса частот электромагнитной волны W1, которой облучают объект, и электромагнитной волны W2, которой облучают пространственную плоскость или некоторую криволинейную поверхность, на величину Δf, формирования радиоголограммы объекта в виде амплитудно-фазового распределения сигнала биений с разностной частотой Δf амплитуды суммы отраженной от объекта электромагнитной волны W3 и электромагнитной волны W2 по области регистрации радиоголограммы, зафиксированного относительно сигнала с частотой f0=Δf. При этом на выходе отдельного канала регистрации радиоголограммы отсутствуют фликкер-шум и постоянная составляющая, обусловленная мощностью электромагнитной волны W2, что позволяет повысить чувствительность регистрирующей матрицы без качественного увеличения ее стоимости. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области радиолокации и может быть использовано для мониторинга протяженных сред и объектов. Достигаемый технический результат - повышение скорости мониторинга протяженных сред и объектов, а также уменьшение габаритов фокусирующей системы. Способ основан на излучении зондирующих сигналов и последующем приеме отраженных сигналов с помощью зонной пластинки, сфокусированной на точку объекта, положение которой в продольном направлении зависит от частоты, при этом для излучения зондирующих сигналов используют передающую антенну, размещенную на оси системы в пределах непрозрачной для радиоволн первой зоны Френеля осесимметричной зонной пластинки; ширина луча передающей антенны соответствует угловому сектору зоны мониторинга, а ширина спектра излучаемого ею сигнала соответствует глубине этой зоны, причем для одновременного приема сигналов, отраженных от точек протяженного объекта, расположенных на одинаковой дальности, применяют матрицу приемных элементов, помещенную на фокальной поверхности осесимметричной зонной пластинки, после чего используют принятые элементами матрицы приемных элементов сигналы определенной частоты для построения картины сцены, соответствующей конкретному по дальности сечению. 5 ил., 1 табл.

Изобретение относится к формированию изображения сверхвысокого разрешения. Достигаемый технический результат - получение увеличенного разрешения. Указанный результат достигается за счет того, что радар сверхвысокого разрешения использует генератор импульсного сигнала, распространяющий пакеты импульсов радиочастотной энергии. Один импульс каждого пакета представляет собой служебный импульс, а остальные импульсы распространяются к объекту. Решетчатое секционное распознающее устройство собирает импульсы, отраженные от объекта. Кроме того, служебные импульсы распространяются через виртуальную линзу. Виртуальное сканирующее распознающее устройство распознает виртуальное служебное электрическое поле. Процессор рассчитывает виртуальное служебное электрическое поле, присутствующее на сканирующем распознающем устройстве. Кроме того, схема совпадений рассчитывает кросс-временную корреляционную функцию электрических полей отраженных импульсов, собирающихся посредством решетчатого секционного распознающего устройства и виртуального служебного электрического поля. Схема совпадений использует результаты кросс-временной корреляционной функции для создания пикселей изображения объекта. 4 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью на базе доплеровской радиолокационной станции (РЛС) с четырехэлементной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в зоне видимости РЛС в виде совокупности пространственных координат отражающих элементов поверхности с повышенной точностью определения координат и расширением зоны видимости РЛС. Способ формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской РЛС заключается в определении пространственных координат отражающих элементов поверхности, расположенных в элементах разрешения дальности и доплеровской частоты, и основан на совместном применении селекции по доплеровской частоте и фазового метода измерения координат. 4 табл.

Настоящее изобретение относится к области обеспечения безопасности, а именно к сканирующему устройству формирования топографического изображения в миллиметровом диапазоне волн для досмотра людей. Устройство содержит первый трансивер (40) миллиметрового диапазона с антенной решеткой (41) для передачи и приема первого сигнала миллиметрового диапазона, второй трансивер (40′) миллиметрового диапазона с антенной решеткой (41′) для передачи и приема второго сигнала миллиметрового диапазона, который выполнен с возможностью перемещения в направлении, противоположном направлению движения первого трансивера миллиметрового диапазона, соединительный элемент (26, 27) для соединения между собой первого трансивера (40) и второго трансивера (40′) и приводное устройство (50), приводящее в движение один из двух трансиверов миллиметрового диапазона. Первый трансивер (40) и второй трансивер (40') перемещаются в противоположных направлениях. Достигается высокое качество построения изображения при упрощении конструкции устройства. 18 з.п. ф-лы, 9 ил.

Изобретение относится к области радиолокации и может быть использовано для решения задач радиолокационного мониторинга ограниченных участков земной поверхности, представляющих интерес. Достигаемый технический результат - упрощение возможности получения высокодетального изображения ограниченного по площади участка земной поверхности и снижение затрат на его получение. Указанный технический результат достигается за счет того, что осуществляют прямой синтез апертуры при когерентной обработке выходных откликов по меньшей мере четырех приемопередатчиков. Приемопередатчики неподвижно установлены по окружности вокруг исследуемого объекта. Главные лучи диаграммы направленности реальной антенны направлены в центр наблюдаемого участка. При этом выходные отклики формируются в течение времени tобр, отводимого на работу отдельно взятого приемо-передающего элемента при последовательном их электронном переключении. 2 з.п. ф-лы, 4 ил.

Сканирующее устройство формирования трехмерного голографического изображения, в миллиметровом диапазоне волн, которое обеспечивает реализацию способа исследования объекта, включает в себя модуль трансивера миллиметрового диапазона, содержащий антенную решетку, направляющее устройство рельсового типа, с которым соединен модуль трансивера. При этом сканирование, выполняемое модулем трансивера миллиметрового диапазона, представляет собой плоскостное сканирование. При этом сканирующее устройство формирования трехмерного голографического изображения выполнено с возможностью осуществления трехмерного сканирования. Направление сканирования может варьироваться путем изменения ориентации направляющего устройства рельсового типа. Технический результат заключается в упрощении конструкции и ускорении процесса сканирования объекта при помощи длин волн миллиметрового диапазона. 2 н. и 15 з.п. ф-лы, 2 ил.

Изобретение относится к способам отображения радиолокационной информации на экранах индикаторов радиолокационных станций (РЛС). Достигаемый техническим результат - повышение достоверности и информативности радиолокационной информации о параметрах воздушных, надводных и наземных объектов. Указанный результат достигается за счет приема радиолокационной станцией (РЛС) отраженных от объектов радиосигналов, преобразования принятых от объектов сигналов в цифровую форму, отображения преобразованных сигналов на плоском экране в виде световых меток на плоскости z0y, а азимутальных и дальностных шкал в виде пересекающихся линий также на плоскости z0y, при этом плоскость экрана z0y виртуально наклоняют в плоскостях z0x и y0x, метку от объекта переносят параллельно оси 0z и высвечивают выше наклоненной плоскости экрана на величину высоты объекта и превращают в виртуальную метку, к этой виртуальной метке добавляют черточку параллельно оси 0z, со шкалой высоты на черточке, в направлении наклоненной плоскости экрана, черточку высоты одним концом упирают в виртуальную метку от объекта, а вторым концом упирают в точку реальных значений азимута и дальности объекта на наклоненном экране, на котором высвечивается точка со значениями азимута и дальности объекта относительно точки стояния РЛС, а наклоненная плоскость экрана отображает или плоскость горизонта земли или плоскость поверхности земли относительно точки стояния РЛС (в зависимости от режима работы РЛС), при этом длина черточки высоты, со шкалой высоты, характеризует высоту объекта над горизонтом или над уровнем земли (в зависимости от режима работы РЛС). Скорость и направление перемещения объекта в пространстве отображаются черточкой-вектором скорости, начало которого упирается в высвечиваемую виртуальную метку объекта, а направление черточки-вектора скорости характеризует направление перемещения объекта в пространстве относительно точки стояния РЛС, и кроме этого на черточку-вектор скорости наносят шкалу скорости, которая характеризует величину скорости перемещения объекта в пространстве, а плоскость, характеризующую поверхность земли, отображают в виде части сферической поверхности, радиус которой пропорционален радиусу земли в точке стояния РЛС, а периметр сферической поверхности ограничивают дальностью обнаружения РЛС, в то же время, радиус сферической поверхности оперативно изменяют по желанию оператора, от пропорционального радиуса земли до бесконечности, превращая тем самым кривизну линии земли в прямую линию, то есть в линию горизонта, а наклон плоскостей z0y и y0x изменяют от 0 до 90 градусов, превращая изометрическое изображение обозреваемого РЛС пространства в декартово изображение, а псевдообъемное четырехмерное изображение - в трехмерное плоскостное изображение, то есть в трехмерный индикатор азимут - дальность - скорость или в трехмерный индикатор дальность - высота - скорость, а плоскость, характеризующую поверхность земли, поворачивают по желанию оператора вокруг оси, проходящей через точку стояния РЛС и перпендикулярной в этой точке к плоскости поверхности земли. Рядом с точкой, отображающей объект, отображают по желанию оператора модели-портреты объектов, взятые из банка данных РЛС, конфигурация которых пропорциональна конфигурации и размеру обнаруженных объектов. 4 ил.

Изобретение относится к бортовой информационной системе с антенной (2) для приема спутниковых данных географического положения. Техническим результатом является повышение качества приема слабых сигналов географического положения. Упомянутый технический результат достигается тем, что заявленная бортовая информационная система содержит устанавливаемый во внутреннем пространстве транспортного средства корпус (1) и модуль для обработки спутниковых данных географического положения; антенна (2) для приема спутниковых данных географического положения расположена на корпусе (1) бортовой информационной системы так, что во встроенном состоянии направление приема направлено во внутреннее пространство транспортного средства. 2 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью радиометра со сканирующей по азимуту и углу места антенной. Достигаемый технический результат направлен на восстановление изображений объектов при шаге сканирования антенны радиометра по углу места, большем, чем шаг дискретизации искомого изображения. Указанный результат достигается за счет того, что формируют расширенную матрицу наблюдений путем интерполяции недостающих строк с последующей обработкой расширенной матрицы в частотной области с помощью восстанавливающего фильтра, что позволяет получать неискаженное изображение объектов. 4 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Достигаемый технический результат - стабилизация положения зоны картографирования по курсу летательного аппарата. Способ картографирования земной поверхности бортовой радиолокационной станцией основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании покадрового радиолокационного изображения поверхности Земли, причем перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата, а граница, с которой начинает формироваться каждый последующий кадр, меняется на противоположную. Способ может быть реализован радиолокационной станцией, состоящей из бортовой цифровой вычислительной машины, блока управления лучом, антенны, передатчика, приемника, блока формирования радиолокационного изображения земной поверхности, индикатора. 4 ил.

Наверх