Способ получения сорбента для очистки растворов от ионов тяжелых металлов



Способ получения сорбента для очистки растворов от ионов тяжелых металлов
Способ получения сорбента для очистки растворов от ионов тяжелых металлов

 


Владельцы патента RU 2561117:

Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) (RU)

Изобретение относится к получению сорбентов для очистки растворов от ионов тяжелых металлов. Согласно способу нитраты алюминия, магния и натрия растворяют в азотной кислоте с добавлением этилового спирта, в полученную смесь вливают тетраэтоксисилан. Далее проводят осаждение геля состава (0.19-0.21)Na2O (0.9-1.1)MgO (0.9-1.1)Al2O3 (3,9-4.1)SiO2 введением раствора NH4OH до величины pH, равной 5,9-6,1. После сушки и прокаливания геля осуществляют гидротермальную обработку при температуре 350°C и давлении 70 МПа в течение трех суток. Продукты кристаллизации промывают дистиллированной водой и высушивают. Изобретение обеспечивает получение сорбента с повышенной ёмкостью по ионам свинца и меди. 2 табл.

 

Изобретение относится к извлечению ионов тяжелых металлов, преимущественно свинца и меди, из водных растворов и может найти применение на предприятиях химической, металлургической, целлюлозно-бумажной промышленности, в гальванических производствах, а также в системах водоочистки.

Токсичные свойства тяжелых металлов, таких как свинец и медь известны уже довольно давно, однако пристальное внимание им стало уделяться только в последние десятилетия. Это связано, в первую очередь, с усилением их роли в биологических процессах, обусловленных увеличением поступления этих элементов в окружающую среду в ходе хозяйственной деятельности человека. Эти токсичные металлы очень опасны даже при малых концентрациях и могут стать причиной интоксикации.

Известны способы извлечения ионов тяжелых металлов из сточных вод с помощью природных минеральных адсорбентов.

Известен сорбент для очистки воды от ионов тяжелых металлов, состоящий из измельченного цеолита, нанофазного гидроксида железа и нанофазного бемита, см. патент РФ 2328341. Сорбент позволяет улавливать ионы мышьяка разной валентности, кадмия, меди, свинца и хрома. Недостатком данного сорбента является сложность композиции и ее приготовления, а также возможность эффективного использования сорбента только для растворов с низкими концентрациями извлекаемых ионов (Cd2+ - 0,1 мг/л, Cu2+ - 2,5 мг/л, Pb2+ - 0,3 мг/л, AsQ43- - 2,5 мг/л, CrO42- - 1,0 мг/л).

Известен способ очистки сточных вод от тяжелых металлов, согласно которому в очищаемую воду добавляют известковое молоко, сульфат железа и цеолит, отличающийся тем, что цеолит добавляют первым, а известковое молоко и сульфат железа - после перемешивания цеолита с водой, затем воду последовательно отстаивают, осветленную воду аэрируют, обрабатывают импульсными барьерными разрядами из расчета затрат электроэнергии не менее 50 Вт·ч/м3 воды и фильтруют, причем используют природный цеолит, измельченный до фракции не более 0,3 мм, см. патент РФ 2397959.

Предложенный способ обеспечивает существенное повышение степени очистки сточных вод от большого числа разновидностей тяжелых металлов, в том числе от урана, свинца и молибдена. Недостатком данного способа также является сложность сорбентной композиции и технологии очистки.

Наиболее близким к заявляемому является способ очистки сточных вод от ионов тяжелых металлов по патенту РФ 2079444. По данному способу очищаемую воду заливают в емкость 8-10 л через фильтрозагрузку, содержащую 2-слойный фильтр (сверху вниз по ходу течения воды): глинистый цеолит (моноклинный клиноптилолит) с примесью 10-15 об. % монтмориллонита 95-98 мм высотой с размером фракций 1-3 мм и 4-5 мм в соотношении 1:1 и слой фильтроперлита высотой 2-5 мм с размером фракций 0,01-0,1 мм. По прошествии 50-60 мин фильтрозагрузку вынимают, а очищенную воду сливают. Технический результат - повышенное улавливание примесей и запахов ароматических нефтепродуктов, увеличение степени Очистки от ионов Zn2+ и Pb2+, а также срока службы фильтра. Согласно второму варианту изобретения в фильтрозагрузку дополнительно вводят слой фильтроперлита, выше слой цеолита с параметрами, такими же, как и у нижнего слоя. Этот вариант реализуют в случае сильного загрязнения очищаемой воды взвешенными частицами и/или в случае понижения скорости фильтрования. Недостатками заявленного способа являются сложность композиции, способа фильтрации, и возможность использования сорбента для очистки растворов в узком диапазоне концентраций свинца - до 3.53 мг/л.

Задачей изобретения является упрощение технологии получения композиционно простого сорбента, обеспечивающего эффективную очистку растворов от ионов тяжелых металлов.

Согласно изобретению способ получения сорбента для очистки растворов от ионов тяжелых металлов заключается в том, что готовят исходный гель, для чего необходимые количества нитратов алюминия, магния и натрия растворяют в азотной кислоте с добавлением этилового спирта, а в полученную смесь вливают тетраэтоксисилан, затем проводят осаждение полученного раствора раствором NH4OH до величины pH, равной 5.9-6.1, а полученный гель сушат при температуре 100°C в течение 30 ч, а затем прокаливают при 500°C в течение 1 ч, после чего осуществляют гидротермальную обработку высушенного и прокаленного геля состава (0.19-0.21)Na2O-(0,9-1.1)MgO-(0.9-1.1)Al2O3-(3.9-4.1)SiO2 в стальных автоклавах с платиновыми тиглями при температуре 350°C и давлении 70 МПа в течение трех суток, затем продукты кристаллизации промывают дистиллированной водой и сушат при 80°C в течение 12 ч.

Технический результат, достигаемый при использовании изобретения заключается в том, что глинистые минералы, в частности монтмориллониты, являются хорошими сорбентами благодаря их структурным особенностям. Уникальные текстурные и физико-химические свойства этих материалов, такие как развитая удельная поверхность, регулярное распределение микропор, термическая стабильность и наличие активных центров различной природы, открывают широкие возможности для их применения в адсорбционных процессах. В тоже время природные минералы отличаются различным химическим и минералогическим составом, зависящим от месторождения, что сказывается на постоянстве таких характеристик как поверхностный заряд, катионно-обменная емкость (КОЕ), структурные и микроструктурные характеристики, что сказывается на процессе адсорбции. Направленный синтез позволяет получить материалы с заданными воспроизводимыми характеристиками.

В результате реализации заявленного способа получают слоистый алюмосиликат со структурой монтмориллонита Na1.0Al1.0Mg1.0Si4O10(OH)2·H2O, являющийся высокоэффективным регенерируемым сорбентом ионов свинца и меди из водных растворов в рабочем диапазоне концентраций свинца - до 300 мг/л, и до 200 мг/л для ионов меди.

Сорбент получен путем гидротермальной обработки высушенного геля соответствующего состава ((0.19-0.21)Na2O-(0.9-1.1)MgO-(0.9-1.1)Al2O3-(3,9-4.1)SiO2) в стальных автоклавах с платиновыми тиглями. Исходные гели готовили с использованием тетраэтоксисилана ТЕОС ((C2H5O)4Si, о.с.ч.,), Mg(NO3)2·6H2O (х.ч.), Al(NO3)3·9H2O (х.ч.), HNO3 (х.ч., 65 мас. %), NH4OH (о.с.ч.) и этилового спирта.

Необходимые количества нитратов алюминия (8,43 г), магния (2,88 г) и натрия (0,57 г) растворяли в 5 мл 0.25 М азотной кислоте и добавляли 85 мл этилового спирта. В полученную смесь вливали 10 мл ТЕОС. Затем проводили осаждение полученного раствора 0.2 М раствором NH4OH до величины pH, равной 5.9-6.1. Полученный гель сушили при температуре 100°C в течение 30 ч, а затем прокаливали при 500°C в течение 1 ч с целью разложения нитратов, удаления воды, органических соединений и образования геля на основе соответствующих оксидов. Полученные гели обрабатывали гидротермально, варьировали различные параметры синтеза - температуру (Т), время синтеза (t) и давление за счет изменения коэффициента заполнения (к.з.) реакционных сосудов. Продукты кристаллизации промывали дистиллированной водой и сушили при 80°C в течение 12 ч. В таблице 1 приведены условия получения сорбента по заявленному способу.

Фазовый состав продукта определен по результатам рентгенофазового анализа, проведенного с использованием порошкового дифрактометра D8-Advance (Bruker), CuKα излучение.

Сорбционную способность по отношению к ионам свинца и меди изучали в статическом режиме по следующей методике: к навеске сорбента (0.2 г), помещенной в колбу, прибавляли определенное количество раствора (100 мл), содержащего ионы извлекаемого металла заданной концентрации (50-300 мг/л). Фазы выдерживали в контакте в течение определенного времени (60 минут) при перемешивании в изотермических условиях при температуре (25±1)°C. После обработки адсорбент отфильтровывали и промывали дистиллированной водой. Содержание щелочных ионов тяжелых металлов в исследуемых образцах и модельных растворах определяли методом пламенной фотометрии на атомно-абсорбционном спектрометре iCE3000.

Процент сорбции был вычислен при принятии за 100% исходной концентрации Pb2+(Cu2+). Данные по сорбционной способности заявляемого сорбента приведены в таблице 2.

Способ позволяет получить слоистый алюмосиликат со структурой монтмориллонита Na1.0Al1.0Mg1.0Si4O10(OH)2·H2O, являющийся высокоэффективным регенерируемым сорбентом ионов свинца и меди из водных растворов в рабочем диапазоне концентраций свинца - до 300 мг/л и до 200 мг/л для ионов меди.

Способ получения сорбента для очистки растворов от ионов тяжелых металлов, заключающийсяся в том, что готовят исходный гель, для чего необходимые количества нитратов алюминия, магния и натрия растворяют в азотной кислоте с добавлением этилового спирта, в полученную смесь вливают тетраэтоксисилан, затем проводят осаждение геля раствором NH4OH до величины pH, равной 5.9-6.1, полученный гель сушат при температуре 100°C в течение 30 ч, затем прокаливают при 500°C в течение 1 ч, после чего осуществляют гидротермальную обработку высушенного и прокаленного геля состава (0.19-0.21)Na2O (0.9-1.1)MgO (0.9-1.1)Al2O3 (3,9-4.1)SiO2 в стальных автоклавах с платиновыми тиглями при температуре 350°C и давлении 70 МПа в течение трех суток, затем продукты кристаллизации промывают дистиллированной водой и сушат при 80°C в течение 12 ч.



 

Похожие патенты:

Изобретение относится к нанодисперсной системе на основе глины для получения полиуретанового нанокомпозита и способу ее получения. Нанодисперсная система содержит предварительно вспученную неорганическую глину, не модифицированную органическим противоионом, и изоцианат, не модифицированный органическим ониевым ионом, причем указанная предварительно вспученная неорганическая глина расщепляется на тонкие пластинки с образованием указанной нанодисперсной системы на основе глины.

Изобретение относится к химической промышленности, в частности к процессам модификации полимеров и получения ингибитора деструкции полимеров. .

Изобретение относится к способу синтеза глинистых частиц. .

Изобретение относится к способам модифицирования слоистых наносиликатов, предназначенных для изготовления полимерных нанокомпозитов. .

Изобретение относится к способу получения биоцида, который заключается в активации бентонита Na-формы ионами натрия путем его обработки водным раствором хлористого натрия с последующим удалением анионов хлора при промывке и фильтровании полученного полуфабриката.
Изобретение относится к методам химического модифицирования монтмориллонитовых глин. .
Изобретение относится к способу получения гранулятов из глины, а также к грануляту, полученному этим способом. .

Изобретение относится к спиртовой и кормовой промышленности и может найти применение при утилизации отходов - спиртовой барды. .

Изобретение относится к реагентам для переработки жидких отходов спиртового производства (барды). .

Изобретение относится к получению органофильных материалов, в частности порошкообразных органофильных бентонитов (бентонов). .

Изобретение описывает композицию и способ получения мезопористых кремнеземных материалов с хиральной структурой. Согласно способу полимеризуемый неорганический мономер взаимодействует в присутствии нанокристаллической целлюлозы (NCC) с образованием материала неорганического твердого вещества с нанокристаллитами целлюлозы, включенными в хиральную нематическую структуру.

Изобретение относится к средствам борьбы с загрязнениями объектов окружающей среды нефтью и нефтепродуктами. В качестве торфяной основы использован верховой сфагновый слаборазложившийся торф мохового типа, со степенью разложения не более 20%, зольностью не более 10%.

Изобретение относится к области ионного обмена и может быть использовано для извлечения индия из растворов и при получении веществ особой чистоты. Предложены два варианта способа получения комплексообразующего сорбента.

Изобретение относится к области получения самоочищающегося тканевого материала, обладающего фотокаталитической активностью под действием ультрафиолетового и видимого излучения и предназначенного для фотокаталитической деструкции опасных органических и неорганических веществ и макромолекул.

Изобретение относится к области промышленной экологии. Способ получения сорбента для очистки сточных вод включает взаимодействие элементной серы и гидроксида натрия в водном растворе в присутствии гидразингидрата.
Изобретение относится к области биологии и медицины и может быть использовано в клинической практике для терапии заболеваний, связанных с нарушениями липидного и липопротеинного обмена.

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота.

Изобретение относится к области очистки воды. Предложен способ получения средства для очистки воды на основе хлоралюминийсодержащего коагулянта.

Изобретение относится к переработке отходов борсодержащего минерального сырья и может быть использовано для производства высокоэффективных сорбентов. Способ включает обработку отходов борного производства (борогипса), содержащих дигидрат сульфата кальция и аморфный кремнезем.

Изобретение относится к получению композиционных сорбентов, предназначенных для использования в процессах очистки сточных и природных вод. Способ включает соосаждение при pH 8,9 гидроксидов магния и алюминия, взятых в мольном соотношении 4:1, формирование осадка, гранулирование методом высушивания.

Изобретение может быть использовано для детоксикации водоемов и очистки сточных вод, загрязненных солями мышьяка. Для осуществления заявленного способа детоксикацию сточных вод проводят с использованием сорбирующих материалов, состоящих из термически и химически модифицированного цеолита. Цеолит, прокаливают в течение 4 часов при температуре 250-300°С и дополнительно пропитывают рабочим раствором следующего состава: 5 г (NH2)2CO, 5 г NH4NO3, 40 мл дистиллированной воды, 2,5 г MnSO4, 7,5 мл гуминового препарата, полученного мокрой щелочной экстракцией из окисленного леонардита. Способ обеспечивает высокую эффективность при очистке вод с высокой концентрацией ионов мышьяка. При этом химические реагенты для модификации цеолита не только нетоксичны, но и являются важнейшими компонентами минерального питания и стимуляторами роста микроорганизмов, участвующих в биодеструкции компонентов сточных вод. 3 ил., 4 пр.
Наверх