Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления



Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления

 


Владельцы патента RU 2562616:

Вакуленко Александр Александрович (RU)
Геращенко Сергей Васильевич (RU)
Першикова Татьяна Валерьевна (RU)
Бондаренко Алексей Викторович (RU)
Лобанов Александр Александрович (RU)
Смирнов Антон Анатольевич (RU)

Изобретение относится к области радиотехнической разведки. Достигаемый технический результат - оперативная оценка наличия и характер траектории полета воздушного объекта (ВО). Указанный результат достигается за счет того, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных пеленгов по времени их поступления, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае принимают за маневр, при этом формирование начальной оценки приближенного вектора параметров траектории воздушного объекта и ковариационной матрицы ошибок на приемных постах производят по первому пеленгу, поступившему от одного из информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию отдельных пеленгов воздушного объекта по времени их поступления производят определенным образом. 2 н.п. ф-лы, 5 ил.

 

Изобретение относится к области радиотехнической разведки и может быть использовано для определения местоположения источника рассеянного радиоизлучения радиолокационными станциями воздушных объектов с помощью приемных постов с параллельным сканированием радиоизлучений по частоте.

Известен способ получения радиотехнической информации станциями радиотехнической разведки, входящими в состав многопозиционного комплекса пассивной локации, заключающийся в том, что разнесенными на местности приемными постами радиоизлученые от воздушных объектов данные направляют на центральный приемный пункт, где их преобразуют в единую центральную, например, декартову систему координат с началом в центральном приемном посту, все вновь полученные изменения положения воздушного объекта группируют по радиотехническим признакам и определяют местоположение воздушного объекта решением триангуляционной задачи - для приемных постов с параллельным сканированием радиоволн по частоте, где: xi, yi, zi - координаты приемного поста, x, y, z - координаты воздушного объекта, далее преобразованные результаты измерений отождествляют между собой и с построенными ранее траекториями и определяют принадлежность поступивших данных тем или иным воздушным объектам или уже имеющимся траекториям их полета, не отождествленные данные используют для завязки новых траекторий воздушных объектов [1].

Известно устройство многопозиционного комплекса пассивной локации, состоящее из нескольких информационных датчиков приемных постов станций радиотехнической разведки способных измерять в азимутальной и угломестной плоскостях направления движения воздушных объектов с излучающими радиоэлектронными средствами и фиксировать момент перехода от излучающих средств при смене направления движения воздушных объектов, приемных постов, способных параллельно сканировать по частоте и определять местоположение воздушного объекта решением триангуляционной задачи [1].

Реализация в станциях радиотехнической разведки синхронного сканирования по частоте и мгновенного кругового обзора по азимуту позволяет наряду с грубыми пеленгами - первичными измерениями типа «азимута» вычислять на центральном приемном посту комплекса пассивной локации разности времени приема сигналов. Однако излучение радиоэлектронных средств воздушных объектов обнаруживается не всеми приемными постами и имеет место неполнота обрабатываемой поступившей информации. Не предусмотрено отождествление и объединение векторов наблюдений с координатной информацией, характеризующейся неполнотой своего состава. Происходит и нерациональное использование в алгоритмах траекторного сопровождения воздушных объектов избыточной информации.

Известен способ получения радиотехнической информации станциями радиотехнической разведки, входящими в состав многопозиционного комплекса пассивной локации, заключающийся в том, что разнесенными на местности приемными постами радиоизлучения от воздушных объектов данные направляют на центральный приемный пост, где их преобразуют в единую центральную декартову систему координат с началом в центральном приемном посту, все вновь полученные пеленги или разности времен излучения сигналов от воздушных объектов группируют по радиотехническим признакам, после чего решают задачу отождествления частных трасс полета воздушных объектов и радиотехнических отметок, полученных в результате решения задачи определения местоположения воздушных объектов решением триангуляционной задачи

- для приемных постов с параллельным сканированием радиоволн по частоте, где xi, yi, zi - координаты приемных постов, x, y, z - координаты воздушного объекта, при этом отождествление трасс и радиотехнических отметок производят расчетом попадания отметки воздушного объекта в строб автосопровождения при выполнении условия d ( x э x ) 2 + ( y э y ) 2 , где d - строб автосопровождения, определяемый максимальной скоростью воздушного объекта и ошибками определения его координат, xэ, yэ - экстраполированные координаты воздушного объекта, причем в процессе трассового сопровождения воздушного объекта для снижения воздействия шума и для измерения положения объекта по каждой координате применяют α, β - фильтры, которые обеспечивают оценку положения и скорости воздушного объекта при его равномерном прямолинейном движении, далее результаты измерений отождествляют между собой и с построенными ранее траекториями и определяют принадлежность поступивших данных воздушным объектам или уже имеющимся траекториям их полета [2].

Однако α, β - фильтры в блоке трассового сопровождения воздушных объектов не позволяют получать четкие траектории движения воздушных объектов и их координаты в заданный момент времени. В многопозиционных комплексах пассивной локации, где единичные замеры от одного и того же воздушного объекта могут поступать на вторичную обработку от разных позиций воздушного объекта, причем нерегулярно во времени и с различной точностью, α, β - фильтры не эффективны.

Известно устройство многопозиционного комплекса пассивной локации, состоящее из нескольких информационных датчиков приемных постов станции радиотехнической разведки, способных измерять в азимутальных и угломестных плоскостях направления движения воздушных объектов с излучающими радиоэлектронными средствами и фиксировать момент перехода импульсов от излучающих средств при смене направления движения воздушных объектов, приемных постов, способных сканировать по частоте и определять местоположение воздушного объекта путем решения триангуляционной задачи, электронного блока автосопровождения воздушных объектов в стробе размером d ( x э x ) 2 + ( y э y ) 2 , а также из α, β - фильтров в блоке трассового сопровождения воздушных объектов [2].

В однопозиционных обзорных радиолокационных станциях, в которых единичные замеры поступают на вторичную обработку регулярно с периодом обзора, а их точность для каждого воздушного объекта неизменна в нескольких соседних периодах обзора, широко используют простейшие фильтры первого порядка (по каждой координате) с постоянными коэффициентами сглаживания α, β (так называемые «α, β - фильтры»). Эти фильтры при соответствующем выборе α, β обеспечивают оценку положения и скорости воздушного объекта при его равномерном прямолинейном движении с минимальной среднеквадратической ошибкой.

Наиболее близким по технической сути к предлагаемому является способ получения радиотехнической информации станциями радиотехнической разведки, входящими в состав многопозиционного комплекса пассивной локации, заключающийся в том, что разнесенными на местности приемными постами радиоизлучения от воздушных объектов данные направляют на центральный приемный пост, где их преобразуют в центральную декартову систему координат с началом в центральном приемном посту, все полученные первичные радиотехнические измерения привязывают к сопровождаемым радиотехническим траекториям воздушных объектов на множестве изолированных радиотехнических отметок, сформированным в течении нескольких циклов сканирования, выполняют процедуру обнаружения радиотехнических траекторий, которая состоит из следующих действий: вычисляют плоскостные координаты x, y, z воздушного объекта; определяют размеры стробов d привязки, исходя из максимальной скорости воздушных объектов и ошибок определения координат в стробе автозахвата d ( x э x ) 2 + ( y э y ) 2 , где x, y - координаты воздушного объекта, xэ, yэ - экстраполированные координаты воздушного объекта; производят завязку траекторий воздушных объектов путем вычисления начальных параметров возможной траектории нового воздушного объекта - координат, скорости, направления движения, ковариационной матрицы ошибок оценки этих параметров по отметкам, полученным в различных циклах сканирования воздушного объекта и содержащихся в стробах привязки; проверяют истинность завязываемых траекторий воздушных объектов и производят подтверждение их траекторий, принимают решение об обнаружении воздушного объекта в виде (k/n - l) при появлении k отметок в n смежных обзорах, при этом траекторию считают ложной при отсутствии отметок в n смежных обзорах и при отсутствии отметок в 1 смежных обзорах, а по измерениям, полученным многопозиционным комплексом пассивной локации, производят сопровождение воздушного объекта, причем в процессе трассового сопровождения воздушного объекта применяют фильтр Калмана, использующий вероятностную модель динамики воздушного объекта [3].

Известно устройство многопозиционного комплекса пассивной локации, состоящее из нескольких информационных датчиков приемных постов станции радиотехнической разведки, способных измерить в азимутальной и угломестной плоскостях направление движения воздушных объектов с излучающими радиотехническими средствами, фиксировать момент перехода импульсов от излучающих средств при смене направления движения воздушных объектов, сканировать по частоте и определять местоположение воздушного объекта путем решения триангуляционной задачи, центрального поста управления электронного блока автосопровождения воздушных объектов в стробе d ( x э x ) 2 + ( y э y ) 2 , где x, y - координаты воздушного объекта, xэ, yэ - экстраполированные координаты воздушного объекта, а также блока трассового сопровождения воздушных объектов с фильтром Калмана вероятностного моделирования динамики воздушного объекта [3].

В многопозиционных комплексах пассивной локации, где единичные замеры по одному и тому же воздушному объекту могут поступать на вторичную обработку от разных позиций нерегулярно во времени и с различной точностью, простейшие «α, β - фильтры» неэффективны, поэтому применяют более сложные фильтры Калмана в различных модификациях, хотя их реализация требует более высокой производительности вычислительных средств.

Для каждого момента времени tk+1 фильтр Калмана формирует сглаженную оценку вектора состояния X k + 1 на основе оценки X (полученной по предыдущим k наблюдениям воздушного объекта в моменты tk) и вновь поступившего замера X и з м ( k + 1 ) , а именно Pизм(k+1) - корреляционная матрица замера Xизм(k+1); Pk+1 - корреляционная матрица оценки X k + 1 , определяемая рекуррентным соотношением .

Выражения X k + 1 , Pk+1 с учетом модели движения полностью определяют алгоритм калмановской фильтрации при заданных начальных условиях. Результатами фильтрации на каждом шаге являются оптимальная сглаженная оценка вектора состояния X k + 1 и ее корреляционная матрица Pk+1.

Недостатком известного способа получения радиотехнической информации на радиотехническом комплексе является: неполнота полученной приемными постами и обрабатываемой центральным приемным постом информации о движущихся воздушных объектах; неполный состав координатной информации не отождествляется и не объединяется с векторами наблюдения за воздушными объектами; избыточная информация нерационально используется в алгоритмах траекторного сопровождения воздушных объектов.

Происходит задержка в обнаружении трассы воздушных объектов, срыв их трассы сопровождения. Снижается показатель непрерывного сопровождения цели. Увеличивается среднеквадратичное отношение ошибок определения координат и параметров движения траекторий сопровождаемых воздушных объектов, что значительно снижает качество сопровождения воздушных объектов в существующих многопозиционных комплексах пассивной локации. На этапе сопровождения воздушного объекта по радиотехнической информации не целесообразно производить пересчет наблюдаемых параметров в радиотехнические отметки с последующей фильтрацией результатов решения триангуляционной задачи.

Существующие алгоритмы обработки радиотехнической информации выполняются в два этапа с последующим этапом ее объединения. На первичном этапе ведут обнаружение сигналов, измерение параметров сигналов и наблюдаемых координат. На вторичном этапе обработки ведут привязку отметок, поступивших от одной цели по времени, и вычисление параметров траектории цели. В процессе вторичной обработки решается задача обнаружения и сопровождения трасс целей. Такое деление не учитывает особенности построения многопозиционного комплекса пассивной локации. Излучение радиоэлектронных станций воздушных объектов обнаруживается не всеми приемными постами, в этом случае наблюдается неполный вектор наблюдаемой информации, в отсутствии чего невозможно определение всех пространственных координат цели. Неполнота обрабатываемой информации приводит к задержке в обнаружении трассы, срыву трассы с сопровождения, что приводит к снижению показателя непрерывного сопровождения, а также к увеличению среднеквадратического отклонения ошибок определения координат и параметров движения траектории сопровождаемой цели.

Координаты ВО определяются только по минимально необходимому количеству первичных радиотехнических измерений, остальные измерения не учитываются при формировании отметки и в алгоритмах фильтрации.

Для существующих алгоритмов фильтрации необходимо одно измерение пеленга на цель минимум 2-мя приемными постами за один обзор, чтобы определить координату воздушного объекта и только потом его оценивать.

Отсутствуют методы использования в алгоритмах траекторного сопровождения избыточности первичных радиотехнических измерений от приемного поста. Из-за отсутствия определения приоритетности РТИ при определении координат ВО (расчета центра тяжести фигуры), а также при последующей фильтрации учета всего вектора наблюдаемой информации происходит ухудшение параметров движения траектории сопровождаемой цели.

Перечисленные факторы приводят к необходимости создания фильтра пеленговой информации в многопозиционных комплексах пассивной локации, который учитывает разновременность и неполноту наблюдаемых параметров.

Технический результат по предлагаемому способу получения радиотехнической информации станциями радиотехнической разведки в составе многопозиционного комплекса пассивной локации, заключающемуся в том, что разнесенными на местности приемными постами станции радиотехнической разведки через датчики с параллельным сканированием по частоте получают данные пассивного радиоизлучения от воздушных объектов - их пеленг, несущая частота бортового радиоэлектронного средства воздушного объекта и момент времени получения измерения пеленга, данные направляют на центральный приемный пост, преобразуют в единую центральную декартову систему координат с началом в центральном приемном посту и привязывают к имеющимся на сопровождении радиотехническим траекториям воздушных объектов, на множестве изолированных радиотехнических отметок по воздушному объекту, сформированном при сканировании, производят операцию фильтрации результатов решения триангуляционной задачи обнаружения радиотехнической траектории воздушного объекта в следующей последовательности:

определяют размеры стробов автозахвата d ( x э x ) 2 + ( y э y ) 2 воздушных объектов, где x, y - координаты воздушного объекта, xэ, yэ - экстраполированные координаты воздушного объекта, вычисляют начальные параметры траектории и их подтверждение по решению (k/n-l) об обнаружении при появлении k отметок в n смежных обзорах при отсутствии отметок в l смежных обзорах, устанавливают вектора S(t) состояния траектории воздушного объекта, составляют модель движения воздушного объекта как S(t+Δt)=FΔt·S(t), где Δt=tk+1-tk - период обзора, FΔt - матрица перехода траектории воздушного объекта при маневрировании, получают матрицу Hi(S) производной функции наблюдения βi(x, y)=h(S) для каждого информационного датчика, вычисляют экстраполированные значения вектора состояния Sk+1=FΔt·S(t) и алгоритмической ковариационной матрицы Qk+1=FΔt·Qk·(FΔt)T, экстраполированное значение пеленга βk+1(x,y), матрицу производной функции наблюдения в виде H i k + 1 ( S k + 1 ) , рассчитывают дисперсионную ошибку экстраполяции пеленга G k + 1 = H i k + 1 ( S k + 1 ) Q k + 1 [ H i k + 1 ( S k + 1 ) ] T , вычисляют разность экстраполированного пеленга и измеренного Δ β = β k + 1 β t k + 1 i k + 1 (при - π<Δβ≤π), определяют коэффициент усиления , где σβ - среднеквадратичная ошибка измерения пеленга, уточняют значение вектора состояния и алгоритмическую ковариационную матрицу , где E - диагональная единичная матрица, и производят оценку работы фильтра при сглаживании пеленга на станции радиотехнической разведки по частному показателю среднеквадратического отклонения ошибки измерения пеленга , где Nреал - количество реализаций (Nреал=1000), достигается тем, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных пеленгов по времени их поступления, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае - принимают за маневр, а формирование начальной оценки приближенного вектора параметров траектории воздушного объекта и ковариационной матрицы ошибок на приемных постах производят по первому пеленгу, поступившему от одного из информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию отдельных пеленгов воздушного объекта по времени их поступления производят следующим образом: задают вектор состояния траектории воздушного объекта в виде S(t)=(x, y, Vx, Vy, a x, a y), где Vx, Vy - проекции вектора скорости координат x, y; a x, a y - проекции ускорения координат x, y, фильтрацию координатной информации производят по зависимости , , где D - задаваемое расстояние от пеленгатора в направлении азимута при наличии априорной неопределенности по выбранной фиктивной дальности, выбираемое из предельных возможностей станции радиотехнической разведки, а измеренный азимут, поступивший на вход фильтра, пересчитывается в плоскостные координаты x, y; далее с учетом влияния ошибок экстраполяции производят обратный пересчет плоскостных координат в азимут при сглаживании пеленга, при этом матрицу производной функции наблюдения выражают в виде .

Операция по предлагаемой фильтрации данных на приемных постах станции радиотехнической разведки позволяет оперативно оценить наличие и характер траектории полета воздушного объекта, четко следить за траекторией его полета, корректировать траекторию полета воздушного объекта до полного ее уточнения по координатам и пеленгу.

Технический результат по предлагаемому радиотехническому комплексу пассивной локации, состоящему из приемных постов с информационными датчиками станции радиотехнической разведки, способных измерять в азимутальной и угломестной плоскостях направление движения воздушных объектов с излучающими радиотехническими средствами и фиксировать момент прихода импульсов от излучающих средств при смене направления движения воздушного объекта, сканировать по частоте и определять местоположение воздушного объекта путем решения триангуляционной задачи, и оснащенных электронным блоком автосопровождения воздушных объектов

в стробе размером d ( x i э x ) 2 + ( y i э y ) 2 где x, y - координаты воздушного объекта, xэ, yэ - экстраполированные координаты воздушного объекта, а также блоком трассового сопровождения воздушных объектов с фильтром Калмана динамики воздушных объектов, достигается тем, что фильтр динамики воздушных объектов на каждом из приемных постов составлен из электронного блока установки вектора состояния траектории воздушного объекта S(t)=(x, y, Vx, Vy, a x, a y), где Vx, Vy - проекции вектора скорости координат x, y; a х, a y - проекции ускорения координат x, y, производящего фильтрацию координатной информации по зависимости , , где D - задаваемое расстояние от пеленгатора в направлении азимута, блока пересчета измеренного азимута воздушного объекта в плоскостные координаты x, y, блока расчета ошибок экстраполяции и измерений и обратного пересчета плоскостных координат в азимут, блока составления матрицы производной функции наблюдения в виде , блока вычисления Δβ экстраполированного и измеренного пеленгов (при - π<Δβ≤π), блока определения коэффициента усиления k, блока уточнения вектора состояния S(t) и алгоритмической ковариационной матрицы, а также блока оценки работы фильтра при сглаживании пеленга.

Предлагаемая конструкция фильтра динамики воздушного объекта в отличии от существующих позволяет оценивать координаты сопровождения трассы воздушного объекта по информации от одного приемного поста. Приемные посты станции радиотехнической разведки позволяют оперативно оценивать наличие и характер траектории полета воздушного объекта, четко следить за траекторией его полета. Фильтрация данных на первичных постах позволяет корректировать траекторию полета воздушного объекта до полного ее уточнения.

Изобретение поясняется графическими материалами, где на фиг. 1 представлена блок-схема работы фильтра предлагаемой станции радиотехнической разведки, на фиг. 2 - оценка траектории прямолинейного, равномерного движения воздушного объекта и маневрирующего воздушного объекта; на фиг. 3 и 4 представлены результаты способов получения радиотехнической информации - пунктирной линией показаны ошибки измерения, сплошной линией - значения оцениваемого показателя предлагаемого способа, пунктирной линией (с точкой) - способа представленного в прототипе, на фиг. 3 приведены результаты измерения пеленга от времени наблюдения прямолинейного и равномерного движения воздушного объекта, на фиг. 4 - результаты измерения пеленга от времени для маневрирующего объекта, на фиг. 5 - блок-схема устройства станции радиотехнической разведки.

Устройство радиотехнического комплекса (фиг. 5) состоит из трех приемных постов с информационными датчиками 1 станции радиотехнической разведки, способных измерять в азимутальной и угломестной плоскостях направление движения воздушного объекта с излучающими радиотехническими средствами и фиксировать момент прихода импульсов от излучающих средств при смене направления движения воздушного объекта, сканировать по частоте и определять местоположение воздушного объекта путем решения триангуляционной задачи, и оснащенных антеннами 2 с устройством 3 их управления, с приемниками 4 радиотехнических сигналов излучаемых радиоэлектронными средствами воздушных объектов, связанными с устройством 5 измерения сдвига принимаемых сигналов по времени и с фильтрами 6 динамики движения воздушных объектов, состоящими из связанных: электронного блока 7 измерения пеленга на воздушный объект в начальный и последующий момент времени (t,t+1); блока 8 установки вектора состояния траектории воздушного объекта S(t)=(x, y, Vx, Vy, a x, a y), где Vx,Vy - проекции вектора скорости координат x, y; a x, a y - проекции ускорения координат x, y, производящего фильтрацию координатной информации по зависимости , , где D - задаваемое расстояние от пеленгатора в направлении азимута, блока 9 пересчета измеренного азимута воздушного объекта при дальности D в плоскостные координаты x, y; блока 10 расчета ошибок Q k + 1 э экстраполяции и измерений и обратного пересчета плоскостных координат в азимут; блока 11 моделирования движения воздушного объекта и составления матрицы перехода FΔt, блока 12 расчета матрицы производной функции наблюдения Hi(S); блока 13 вычисления Δβ экстраполированного и измеренного пеленгов (при - π<Δβ≤π); блока 14 определения коэффициента усиления k; блока 15 уточнения вектора состояния S(t) и алгоритмической ковариационной матрицы ошибок Q k + 1 э , а также устройства 17 вычисления уточненных координат (x, y) местоположения воздушного объекта.

Сущность представленного способа получения радиотехнической информации информационными датчиками с параллельным сканированием по частоте состоит в следующем.

Многопозиционный комплекс пассивной локации составляют из трех информационных датчиков приемных постов V={V1, V2, V3} радиотехнической разведки, которые располагают в точках с координатами (xi, yi, xi)T, где i = 1,3 ¯ . На каждом i-м посту измеряют пеленг β t k i k на воздушный объект с координатами (x, y)T, где tk - момент времени получения измерения пеленга (tk+1>tk). Устанавливают вектор состояния траектории воздушного объекта S(t)=(x, y, Vx, Vy, a x, a y), где Vx, Vy - проекции вектора скорости координат x, y; a х, a y - проекции ускорения координат x, y. При начальной оценке принимает значение где , D - задаваемое расстояние от пеленгатора в направлении азимута.

Для начальной алгоритмической ковариационной матрицы ошибок выбирают диагональную матрицу, диагональные элементы которой равны максимально возможным дисперсиям скорости и ускорения воздушного объекта в пределах априорной неопределенности, элементы верхней части матрицы размерностью 2×2 вычисляют по формуле

.

Модель движения цели составляют в виде S(t+Δt)=FΔt·S(t), где Δt=tk+1-tk - период обзора многопозиционного комплекса пассивной локации. Матрица перехода имеет вид

.

Функция наблюдения для каждого из информационных датчиков имеет вид: . Матрица производной функции наблюдения имеет вид .

При условии, что имеется некоторая начальная оценка вектора состояния Sk траектории цели и алгоритмическая ковариационная матрица ошибок оценивания вектора состояния в момент времени tk, и получено новое измерение пеленга β t k + 1 i k + 1 , дальнейшую фильтрацию данных и последующее уточнение оценки вектора состояния траектории цели выполняют в последовательности:

1) вычисляют экстраполированные значения вектора состояния и алгоритмической ковариационной матрицы

;

;

2) вычисляют экстраполированное значение пеленга

;

3) вычисляют матрицу производной функции наблюдения

;

4) рассчитывают дисперсию ошибки экстраполяции пеленга

;

5) вычисляют разность экстраполированного пеленга и измеренного Δ β = β k + 1 Э β t k + 1 i k + 1 , при условии, что - π<Δβ≤π;

6) определяют коэффициент усиления

, где σβ - среднеквадратическая ошибка измерения пеленга;

7) уточняют значение вектора состояния

8) уточняют алгоритмическую ковариационную матрицу

, где E - диагональная единичная матрица.

Далее осуществляют оценку работы триангуляционного способа определения местоположения пеленга непосредственно на станции радиотехнической разведки по частному показателю среднеквадратического отклонения ошибки измерения пеленга , где Nреал - количество реализаций (Nреал=1000).

Таким образом структурная схема фильтрации пеленгационной информации, полученной информационными датчиками по предлагаемому способу, имеет вид, представленный на фиг. 1.

Рассмотрим два варианта движения воздушного объекта относительно многопозиционного комплекса пассивной локации.

На фиг. 2 представлены трассы воздушного объекта движущегося прямолинейно и равномерно (вариант 1) и воздушного объекта, совершающего движение с маневром (вариант 2).

Задают следующие условия моделирвоания: темп обзора частотного диапазона станциями радиотехнической разведки - 5 с; скорость движения воздушного объекта - 300 м/с, его курсовая скорость - ≤5 м/с; среднеквадратичная ошибка измерения пеленга - σβ=0,5°.

В результате оценки плоскостных координат воздушных объектов при фильтрации предлагаемым способом и способом, представленным в прототипе, были получены результаты, которые представлены на фиг. 3, для прямолинейного движения воздушного объекта и на фиг. 4 - для маневрирующего воздушного объекта.

Представленные графики зависимости среднеквадратичных ошибок измерения пеленга от времени наблюдения воздушного объекта на фиг. 2 - для прямолинейного движения и на фиг. 4 - для маневрирующего воздушного объекта.

По предлагаемому способу получения радиотехнической информации блок 8 комплекса пассивной локации характеризуется применением новых операций, учитывающих при формировании вектора состояния траектории воздушного объекта все радиотехнические измерения, полученные на приемные посты без решения триангуляционной задачи по определению координат воздушного объекта.

Блок 9 пересчета измеренного азимута воздушного объекта при дальности D в плоскостные координаты x, y характеризуется применением новой операции - введением фиктивной дальности D для определения начальных координат x, y воздушного объекта по одному радиотехническому измерению, что позволяет отождествлять и объединять вектора наблюдения с неполным составом координатной информации с траекторией воздушного объекта, избегать длительность переходных процессов алгоритмов фильтрации, в частности: время перехода в установившийся режим, время от момента начала работы до времени стабилизации величины ошибки фильтрации.

Блок 10 расчета ошибок Q k + 1 э экстраполяции и измерений и обратного пересчета плоскостных координат в азимут отличается учетом в алгоритмической ковариационной матрице ошибок среднеквадратической ошибкой измерения пеленга заложенной в приемной антенне информационного датчика, а не взятого средневзвешенного квадратичного значения проекции угла на плоскость x, y - что приводит к дополнительной накладываемой ошибке.

Блок 12 расчета матрицы производной функции наблюдения Hi(S), отличающегося тем, что функция наблюдения задается проекцией модели изменения угла пеленга воздушного объекта на оси координат x, y.

Блока 13 вычисления Δβ экстраполированного и измеренного пеленгов (при - π<Δβ≤π) отличается тем, что ошибка вычисляется непосредственно между полученным измерением пеленга и экстраполированным его значением на следующий период обзора, в существующих данная операция выполняется для результата триангуляционной задачи - которая вносит свою ошибку в полученное измерение.

Устройства 17 вычисления уточненных координат (x, y) местоположения воздушного объекта отличается применением новых операций, учитывающих особенности построения комплекса и потока измерений, поступающих от станций радиотехнической разведки с параллельным сканированием, в условиях прогнозируемой радиоэлектронной обстановки и позволяет повысить качество сопровождаемой трассы (фиг. 3 и 4) - среднеквадратичное отклонение ошибки измерения пеленга в предлагаемом способе уменьшилось для прямолинейных участков движения воздушного объекта на 20%, а на участках маневрирования - на 30%.

Предлагаемые способ и радиотехнический комплекс получения радиотехнической информации позволяют проводить качественную фильтрацию и экстраполяцию параметров траектории излучающих воздушных объектов на многопозиционном комплексе пассивной локации уже по первичной радиотехнической информации, получаемый с применением даже одного из постов станций радиотехнической разведки.

Источники информации

1. Зайцев Д.В. Многопозиционные радиолокационные системы / Методы и алгоритмы обработки информации в условиях помех. - М.: Радиотехника, 2007. - с. 16-20.

2. Смирнов Ю.А. Радиотехническая разведка. - М., 1997. - с. 164, 165, 190-193, 203-205, 211.

3. Черняк B.C., Заславский Л.П., Осипов Л.В. Многопозиционные радиолокационные станции и системы «Зарубежная радиоэлектроника» №1 - 1987 - с. 11, 15-17, 29-33, 42-54 (прототип).

1. Способ получения радиотехнической информации станциями радиотехнической разведки в составе многопозиционного комплекса пассивной локации, заключающийся в том, что разнесенными на местности приемными постами станций радиотехнической разведки через датчики с параллельным сканированием по частоте получают данные пассивного радиоизлучения от воздушных объектов - их пеленг, несущая частота бортового радиоэлектронного средства воздушного объекта и момент времени получения измерения пеленга, данные направляют на центральный приемный пост, преобразуют в единую центральную декартову систему координат с началом в центральном приемном посту и привязывают к имеющимся на сопровождении радиотехническим траекториям воздушных объектов, на множестве изолированных радиотехнических отметок по воздушному объекту, сформированных при сканировании, производят операцию фильтрации результатов решения триангуляционной задачи обнаружения радиотехнической траектории воздушного объекта в следующей последовательности: определяют размеры стробов автозахвата d ( x э x ) 2 + ( y э y ) 2 воздушных объектов, где x, y - координаты воздушного объекта, xэ, yэ - экстраполированные координаты воздушного объекта, вычисляют начальные параметры траектории и их подтверждение по решению (k/n-l) об обнаружении при появлении k отметок в n смежных обзорах при отсутствии отметок в l смежных обзорах, устанавливают вектора S(t) состояния траектории воздушного объекта, составляют модель движения воздушного объекта как S(t+Δt)=FΔt·S(t), где Δt=tk+1-tk - период обзора, FΔt - матрица перехода траектории воздушного объекта при маневрировании, получают матрицу Hi(S) производной функции наблюдения βi(x, y)=h(S) для каждого информационного датчика, вычисляют экстраполированные значения вектора состояния Sk+1=FΔt·S(t) и алгоритмической ковариационной матрицы Qk+1=FΔt·Qk·(FΔt)T, экстраполированное значение пеленга βk+1(x, y), матрицу производной функции наблюдения в виде H i k + 1 ( S k + 1 ) , рассчитывают дисперсионную ошибку экстраполяции пеленга G k + 1 = H i k + 1 ( S k + 1 ) Q k + 1 [ H i k + 1 ( S k + 1 ) ] T , вычисляют разность экстраполированного пеленга и измеренного Δ β = β k + 1 β t k + 1 i k + 1 (при - π<Δβ≤π), определяют коэффициент усиления , где σβ - среднеквадратичная ошибка измерения пеленга, уточняют значение вектора состояния и алгоритмическую ковариационную матрицу , где E - диагональная единичная матрица, и производят оценку работы фильтра при сглаживании пеленга на станции радиотехнической разведки по частному показателю среднеквадратического отклонения ошибки измерения пеленга , где Nреал - количество реализаций (Nреал=1000), отличающийся тем, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных пеленгов по времени их поступления, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае принимают за маневр, а формирование начальной оценки приближенного вектора параметров траектории воздушного объекта и ковариационной матрицы ошибок на приемных постах производят по первому пеленгу, поступившему от одного из информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию отдельных пеленгов воздушного объекта по времени их поступления производят следующим образом: задают вектор состояния траектории воздушного объекта в виде S(t)=(x, y, Vx, Vy, ax, ay), где Vx, Vy - проекции вектора скорости координат x, y; ax, ay - проекции ускорения координат x, y, фильтрацию координатной информации производят по зависимости , , где D - задаваемое расстояние от пеленгатора в направлении азимута при наличии априорной неопределенности по выбранной фиктивной дальности, выбираемое из предельных возможностей станции радиотехнической разведки, а измеренный азимут, поступивший на вход фильтра, пересчитывается в плоскостные координаты x, y; далее с учетом влияния ошибок экстраполяции производят обратный пересчет плоскостных координат в азимут при сглаживании пеленга, при этом матрицу производной функции наблюдения выражают в виде .

2. Устройство радиотехнического комплекса пассивной локации, реализующее способ по п. 1, состоящему из приемных постов с информационными датчиками станции радиотехнической разведки, способных измерять в азимутальной и угломестных плоскостях направление движения воздушного объекта с излучающими радиотехническими средствами и фиксировать момент прихода импульсов от излучающих средств при смене направления движения воздушного объекта, сканировать по частоте и определять местоположение воздушного объекта путем решения триангуляционной задачи, и оснащенных электронным блоком автосопровождения воздушных объектов в стробе размером d ( x i э x ) 2 + ( y i э y ) 2 , где x, y - координаты воздушного объекта, xэ, yэ - экстраполированные координаты воздушного объекта, а также блоком трассового сопровождения воздушных объектов с фильтром Калмана динамики воздушных объектов, отличающееся тем, что фильтр динамики воздушных объектов на каждом из приемных постов составлен из электронного блока установки вектора состояния траектории воздушного объекта S(t)=(x, y, Vx, Vy, ax, ay), где Vx, Vy - проекции вектора скорости координат x, y; ax, ay - проекции ускорения координат x, y, производящего фильтрацию координатной информации по зависимости , , где D - задаваемое расстояние от пеленгатора в направлении азимута, блока пересчета измеренного азимута воздушного объекта в плоскостные координаты x, y, блока расчета ошибок экстраполяции и измерений и обратного пересчета плоскостных координат в азимут, блока составления матрицы производной функции наблюдения в виде , блока вычисления Δβ экстраполированного и измеренного пеленгов (при - π<Δβ≤π), блока определения коэффициента усиления k, блока уточнения вектора состояния S(t) и алгоритмической ковариационной матрицы, а также блока оценки работы фильтра при сглаживании пеленга.



 

Похожие патенты:

Изобретение относится к геофизике и может использоваться в системе мониторинга окружающей среды, сейсмического и инфразвукового мониторинга, МЧС России, контроля околоземного космического пространства для диагностики положения эпицентральной зоны потенциальных источников протяженных перемещающихся ионосферных возмущений (ПИВ).

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации, спутниковый способ навигации и дальномерный способ навигации.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) путем измерения его уровня сигнала с помощью двух стационарных постов радиоконтроля и одного мобильного в М точках (первый вариант) или двух мобильных постов радиоконтроля (второй вариант) в M1 и М2 точках их положения при независимом перемещении по нелинейной траектории без привлечения уравнений линий положения.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретения относятся к радиотехнике и могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности оценивания углов крена α, азимута θ и тангажа β ЛА.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов источника радиоизлучения и одновременно отраженных сигналов с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов).

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к области обнаружения в атмосфере объектов, преимущественно малозаметных, и их координатометрии. Согласно способу дальнего оптического обнаружения по признакам конденсационного следа в атмосфере обеспечивают оптимальные условия обзора с размещением приемных постов угломерной системы координатометрии на бортах барражирующих выше облаков беспилотных вертолетов.

Изобретение относится к обнаружению сигналов с линейной частотной модуляцией (ЛЧМ). Достигаемый технический результат - повышение достоверности обнаружения ЛЧМ-сигналов и возможность определения их характеристик в случае обнаружения.

Изобретение относится к гидроакустическим системам навигации подводных аппаратов относительно судна обеспечения и может быть использовано для определения координат буксируемого подводного аппарата (БПА), осуществляющего гидролокацию рельефа дна.

Изобретение относится к области навигационных систем и может быть использовано для позиционирования удаленного объекта на основе нескольких пространственно разнесенных дальномерно-угломерных приборов (ПДУ). Достигаемый технический результат - повышение точности и скорости позиционирования, обеспечение надежности и живучести системы позиционирования. Указанный результат достигается за счет того, что дальномерный узел наводчика наводит свой ПДУ на объект и определяет расстояние и угловые координаты объекта, по этим измерениям вычисляют первое приближение координат объекта, которые передают на остальные дальномерные узлы, которые по этим координатам прицеливают свои ПДУ и определяют расстояния до объекта, затем по измеренным расстояниям вычисляют второе приближение координат объекта, используя для этого расстояние от дальномерного узла наводчика и множество сочетаний расстояний от дальномерных узлов до объекта, взятых попарно, и передают координаты объекта на остальные дальномерные узлы, которые по этим координатам заново прицеливают свои ПДУ и определяют расстояния до объекта, затем по измеренным расстояниям вычисляют третье приближение координат объекта и так далее, пока разница в определении координат объекта в двух соседних, по порядку выполнения, приближениях координат объекта не станет менее порогового значения. Для дальномерных узлов, расстояния которых до объекта определяют координаты объекта, отклоняющиеся от приближений координат объекта более, чем на величину порогового значения, выполняют дополнительное прицеливание ПДУ путем их пробных угловых перемещений, при этом расстояния от дальномерных узлов до объекта, определяющие координаты объекта, отклоняющиеся от приближений координат объекта более, чем на величину порогового значения, исключают из вычислений координат объекта. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области испытательной и измерительной техники, а именно к способам определения пространственных координат и энергетических характеристик взрыва боеприпасов. Способ определения координат взрыва и энергетических характеристик боеприпаса при испытаниях включает размещение на испытательной площадке геодезически привязанных к системе ее пространственных координат нескольких видеорегистраторов (видеокамер) с устройством временной синхронизации их работы, реперных знаков в поле обзора видеорегистраторов, последующую регистрацию объекта при его срабатывании посредством скоростной фотосъемки с нескольких позиций. Скоростную фотосъемку осуществляют методом, обеспечивающим визуализацию фронта воздушной ударной волны, с последующей раскадровкой отснятого материала и выбором для определения координат взрыва двух снимков, полученных с наиболее дальней дистанции относительно точки взрыва, соответствующих одному моменту времени с начала съемки. Достигается повышение точности определения координат взрыва и энергетических характеристик боеприпаса при испытаниях. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области высокоточного позиционирования с помощью спутниковых систем GPS/ГЛОНАСС, позиционирования объектов на удаленных, труднодоступных территориях в северных широтах для навигации судов, мониторинга ледовой обстановки, плавучих платформ, полярных станций, разведки полезных ископаемых, объектов на железных дорогах и других. Технический результат состоит в высокоточном позиционировании объектов за счет использования эфемиридно-временных поправок глобального действия, передаваемых по каналам цифрового телевидения. Для этого введены передающее оборудование федерального телецентра, приемник цифрового телевидения, сервер ввода навигационных данных, сервер криптозащиты, сервер биллинга, NTRIP-сервер, формирователь корректирующей информации, NTRIP-кастер, межсетевой экран, NTRIP-клиент, блок обработки информации, блок выделения корректирующих поправок, блок обработки навигационной информации по методу РРР, FTP - сервер оперативных данных орбит и FTP - клиент. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах морской навигации. Технический результат - повышение быстродействия. Для этого выставку морской бесплатформенной инерциальной навигационной системы (БИНС), обеспечивающей уменьшение погрешностей начальной выставки в условиях качки без увеличения времени готовности, осуществляют за счет использования поправок к сигналам акселерометров, формируемых по информации об угловых скоростях, угловых ускорениях и расстоянии между центром БИНС и центром качания корабля. 5 ил.

Способ относится к радиолокации и радионавигации и предназначен для определения оценок местоположения подвижных источников радиосигнала на дорожной сети. Достигаемый технический результат - расширение возможностей обеспечения однозначного местоопределения подвижного объекта на множестве возможных конфигураций дорожной сети. Указанный результат достигается за счет того, что в различные моменты времени из одного измерительного пункта, положение которого известно, измеряют углы прихода электромагнитной волны (пеленги) по сигналам, излучаемым подвижным источником радиосигнала и содержащим его опознавательный код. Одновременно с излучением сигнала в момент времени t на подвижном источнике радиосигнала измеряют скорость его перемещения вдоль элемента дорожной сети. Сигнал, пропорциональный измеренной скорости, кодируют и полученный код передают по радиоканалу передачи данных на измерительный пункт, на котором после приема и декодирования получают значение измеренной скорости. Определяют длину пройденного пути за время Δt. По измеренному пеленгу αизм(t) и параметрическим моделям пеленга, заданным в функции натурального параметра для каждого элемента дорожной сети, определяют значения натурального параметра, соответствующие точкам пересечения линии положения для измеренного пеленга и элементов дорожной сети. Для каждого из этих элементов определяют расчетные значения пеленгов, соответствующие перемещению подвижного источника радиосигнала на соответствующее расстояние. Из условия минимального рассогласования между ними и повторно измеренным пеленгом αизм(t+Δt) определяют номера элементов дорожной сети, на которых может находиться подвижный источник радиосигнала. Одновременно с излучением сигнала в момент времени t на подвижном источнике радиосигнала измеряют угол наклона касательной к элементу дорожной сети, на котором находится подвижный источник радиосигнала. Сигнал, пропорциональный измеренному углу, кодируют и полученный код передают по радиоканалу передачи данных на измерительный пункт, на котором после приема и декодирования получают значение измеренного угла. По параметрическим моделям углов наклона касательных к элементам дорожной сети, заданным в функции натурального параметра, для каждого элемента дорожной сети и значениям натурального параметра, соответствующим точкам пересечения линии положения для измеренного пеленга и элементов дорожной сети, для каждого элемента дорожной сети определяют расчетные значения углов наклона. Из условия минимального рассогласования между ними и измеренным углом наклона касательной к элементу дорожной сети определяют номера элементов дорожной сети, на которых может находиться подвижный источник радиосигнала. Из сравнения этих номеров с номерами, полученными из условия минимального рассогласования между расчетными значениями пеленгов и повторно измеренным пеленгом, определяют номер элемента дорожной сети, на котором находится подвижный источник радиосигнала. Соответствующие координаты местоположения подвижного источника радиосигнала определяют как координаты точки пересечения линии положения, соответствующей измеренному пеленгу (αизм(t) или αизм(t+Δt)), и выбранного элемента дорожной сети. 4 ил.

Изобретение относится к области технических средств регистрации и контроля рейсов подвижных объектов. Технический результат - осуществление контроля за выполнением графика заданного маршрута движения. Система регистрации и контроля рейсов подвижных объектов содержит контролируемые подвижные объекты, радиочастотные метки, содержащие пьезокристалл, микрополосковую приемопередающую антенну, электроды, две шины, и набор отражателей, и пункт контроля. На подвижном объекте установлены: датчики давления, положения кузова, расхода топлива, пройденного пути, элемент И, блок кодирования, передатчик, генератор высокой частоты, фазовый манипулятор, усилитель мощности, приемопередающую антенну, циркулятор, усилитель высокой частоты, фазовый детектор, сумматор, таймер и формирователь кода. На пункте контроля установлены: приемная антенна, усилитель высокой частоты, блок поиска, две гетеродины, два усилителя, два смесителя, два усилителя промежуточной частоты, амплитудный детектор, два перемножителя, узкополосный фильтр, фильтр низких частот, панорамный приемник, дешифратор, блок регистрации, элемент запрета, формирователь длительности импульсов, два ключа, коррелятор, пороговый блок, частотомер, счетчик расхода топлива, счетчик пройденного пути и дополнительный блок регистрации. 4 ил.
Наверх