Мультипликативный разностно-относительный способ стационарно-мобильного определения координат местоположения источника радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) путем измерения его уровня сигнала с помощью двух стационарных постов радиоконтроля и одного мобильного в М точках (первый вариант) или двух мобильных постов радиоконтроля (второй вариант) в M1 и М2 точках их положения при независимом перемещении по нелинейной траектории без привлечения уравнений линий положения. Способ основан на сравнении отношений расстояний от точек измерения до местоположения источника радиоизлучения и обратных отношений измеренных уровней сигналов Для этого составляются мультипликативные функции разностей указанных отношений. Для обработки этих функций предложен дихотомический способ, в основе которого лежит принцип последовательного определения параметров местоположения ИРИ. 1 табл., 3 ил.

 

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения (ИРИ), сведения о которых отсутствуют в базе данных (например, государственных радиочастотных служб или государственных служб надзора за связью). Изобретение может быть использовано при поиске местоположения несанкционированных средств радиосвязи, как возможных источников помех связи.

Известны способы определения координат ИРИ, в которых используются пассивные пеленгаторы в количестве не менее трех, центр тяжести области пересечения выявленных азимутов которых на фронт прихода волны принимается за оценку местоположения. Основными принципами работы таких пеленгаторов являются амплитудные, фазовые и интерферометрические [1, 2]. К их недостаткам следует отнести высокую степень сложности антенных систем, коммутационных устройств и наличие многоканальных радиоприемников, а также необходимость в быстродействующих системах обработки информации.

Наличие в федеральных округах государственной радиочастотной службы взаимосвязанных через центральный пункт разветвленной сети радиоконтрольных постов, оборудованных средствами приема радиосигналов, измерения и обработки их параметров, позволяет дополнить их функции и задачами определения местоположения тех ИРИ, сведения о которых отсутствуют в базе данных, не прибегая к использованию сложных и дорогостоящих пеленгаторов. Из известных способов наиболее близким аналогом (прототипом) предлагаемого способа по технической сущности является способ [3], заключающийся в приеме сигналов источников радиоизлучений в полосе частот ΔF перемещающимся в пространстве измерителем. При перемещении измерителя измеряют уровни сигналов в N (Ν≥4) точках, последовательно вычисляют Ν-1 отношений уровней сигнала, по вычисленным отношениям строят Ν-1 круговых линий положения и определяют координаты источников радиоизлучения как точку пересечения Ν-1 круговых линий положения. Для повышения достоверности определения местоположения используют статистику.

Основные недостатки прототипа:

1. Алгоритмическая противоречивость и незавершенность его реализации во времени. Действительно, утверждение о нахождении координат источников радиоизлучения как точки пересечения Ν-1 (Ν≥4) круговых линий положения вступает в противоречие с необходимостью уточнения этих координат статистическим путем. Так как N в формуле изобретения сверху не ограничено, то координаты ИРИ как координаты точки пересечения неограниченного количества круговых линий положения будут определяться с неограниченно высокой точностью. И, следовательно, в статистическом уточнении не нуждаются. Но, если утверждается, что необходимо статистическое уточнение местоположения, то тем самым отрицается возможность пересечения в одной точке неограниченного количества круговых линий положения. И последнее ближе к действительности, так как приборов и способов измерения с неограниченно высокой точностью не существует.

2. Принципиальная трудность нахождения координат точки пересечения Ν-1 (Ν≥4) круговых линий положения путем непосредственного решения системы уравнений, их описывающих. Действительно, согласно [4, с. 66] общее уравнение окружности в декартовых прямоугольных координатах имеет вид:

И при этом «все окружности, проходящие через действительные или мнимые точки пересечения двух окружностей, определяются уравнением:

где λ - параметр».

Пусть окружности заданы уравнениями:

Эта система трех уравнений любых окружностей, в том числе и Аполлония, о котором упоминается в [3], имеет одно решение, то есть окружности пересекаются в одной точке только в том случае, если детерминант системы равен нулю. А это возможно согласно источнику [4, с. 66], если одно из трех уравнений получено из двух других указанным образом. При этом коэффициенты этого производного уравнения, пусть для определенности это будет уравнение Scd, должны определяться как:

A3=(Α1+λА2)/(1+λ), В3=(В1+λВ2)/(1+λ), С3=(С1+λС2)/(1+λ).

Детерминант такой системы

действительно равен нулю, а следовательно, третья окружность может пройти через точку пересечения первых двух окружностей только при строго определенной связи с ними.

Предыдущее утверждение подкрепляется и положением, основанным на том, что дуги окружностей в окрестности точки их пересечения (или касательные к окружностям в этой точке) могут рассматриваться как три пересекающиеся прямые. В этой связи согласно [4, с. 59, п. g] высказывание: «Для того чтобы три прямые А1х+В1у+С1=0, А2х+В2у+С2=0, А3х+В3у+С3=0 пересекались в одной точке или были параллельны, необходимо и достаточно, чтобы

т.е. чтобы левые части уравнений были линейно зависимы», - действительно подкрепляет предыдущее утверждение. Решение системы уравнений трех окружностей без наложения указанных условий может быть достигнуто, но только на других принципах, один из которых, как наиболее простой, предлагается авторами настоящей заявки;

3. Количество точек измерения уровней сигналов N≥4, что для получения одного отсчета координат местоположения является избыточным.

4. Наличие сингулярности круговых линий положения (окружностей Аполлония Пергского) при близких значениях уровней сигналов в точках их измерения, приводящее к большой погрешности определения координат местоположения ИРИ.

5. Прототип не позволяет определять координаты местоположения ИРИ в пространстве.

Целью настоящего изобретения является разработка способа определения координат местоположения на существующих радиоконтрольных постах Радиочастотной службы Российской Федерации, в котором устранены недостатки прототипа. Эта цель достигается с помощью признаков, указанных в формуле изобретения: Мультипликативный разностно-относительный способ стационарно-мобильного определения координат местоположения источника радиоизлучения, основанный на измерении уровней сигналов источника радиоизлучений (ИРИ) в нескольких точках пространства, не лежащих на одной прямой, сканирующими радиоприемными устройствами, перемещающимися в пространстве, отличающийся тем, что для измерения уровней сигналов ИРИ применяют два стационарных поста радиоконтроля, а мобильный пост радиоконтроля используют в качестве базового, соединяют со стационарными постами линиями связи и перемещают по Μ≥1 точкам, на последнем составляют и мультипликативных функций, представляющих сочетания, взятые по два и по три, из вычисленных парных сочетаний (М+2) разностей отношений расстояний, рассчитанных от точек измерения до местоположения искомого ИРИ по заданным его координатам, и вычисленных парных сочетаний (М+2) обратных отношений соответствующих измеренных величин уровней сигналов источника, дихотомически или методом наискорейшего спуска изменяют значение каждого из параметров местоположения ИРИ при неизменных значениях двух других и находят точки экстремумов парных мультипликативных функций и точки перегиба мультипликативных функций, взятых по три, фиксируя после N кратного усреднения каждый найденный в этих точках параметр местоположения источника, как окончательный.

В основе способа лежит принцип последовательного определения параметров местоположения ИРИ: широты - Xi, долготы - Yi и высоты Zi по критерию минимума разностей отношений расстояний местоположения ИРИ до каждой из трех точек измерения и соответствующих обратных отношений уровней сигналов, измеренных в этих точках. Координаты при этом могут вычисляться любым из известных численных методов: либо линейным методом последовательного приближения, либо методом наискорейшего спуска, либо методом дихотомии, например методом поразрядного уравновешивания. Для его использования априори должны быть известны диапазоны D значений искомых величин. Эти диапазоны обычно известны, исходя из параметров зоны электромагнитной доступности используемых мобильных постов радиоконтроля. В соответствии с алгоритмом поразрядного уравновешивания, первоначально задают среднее из диапазона D значение определяемого параметра (например, широты) при фиксированных, но лежащих в известных диапазонах значений долготы и высоты. Вычисляют расстояния от i-го местоположения ИРИ до каждой j-й точки измерения (j≤3), Затем вычисляют парные отношения этих расстояний Эти отношения позволяют исключить зависимость вычисления координат местоположения от мощности ИРИ. Полученные отношения сравнивают с обратными отношениями уровней сигналов:

путем вычитания.

Например, для точек измерения 1 и 2 эту разность определяют как F112=(n12i-n21). Для 2 и 3 - как F123=(n23i-n32) и т.д. Если разность отношений меньше нуля, то к первоначальному значению определяемого параметра (широты) добавляют 1/4 часть диапазона. В противном случае из первоначального значения определяемого параметра (широты) вычитают 1/4 часть диапазона ее значения. Затем опять производят вычисление расстояний до постов и оценку результатов сравнения, как описано выше. При этом добавляют (или вычитают) уже 1/8 часть диапазона, затем 1/16 часть и т.д. Такие итерации продолжают до тех пор, пока результат сравнения не окажется по модулю меньше заранее заданного значения погрешности дискретизации каждого параметра местоположения где m - количество итераций. На рис. 1 показано изменение этих функций для всех трех пар точек измерения при последовательном, равномерно-ступенчатом (для наглядности) поиске. После этого фиксируют полученное значение параметра. Затем аналогично вычисляют значение долготы при найденной широте, а затем и высоты. Отметим, что данный способ для одной пары точек измерения может иметь неоднозначность результата. Устраняют ее путем нахождения экстремумов для каждой из трех функций парных произведений разностей отношений (для каждой из двух пар точек измерений), например, 1,2 и 2,3: F212.23=(n12i-n21)(n23i-n32), 1,2 и 3,1 - F212.31=(n12i-n21)(n13i-n31), 2,3 и 3,1 - F223.31=(n23i-n32)(n13i-n31) и точки перегиба функции произведения трех разностей отношений для точек измерения 1,2 и 3 F3123=(n12i-n21)(n23i-n32)(n31i-n13). На фиг. 1 показаны зависимости разностей отношений для каждой пары точек измерения, на фиг. 2 - для произведения двух пар точек измерения, фиг. 3 - произведение разностей отношений для трех пар точек.

Значения параметров, полученные во всех экстремальных точках и точках перегиба, усредняют и принимают за окончательные.

Алгоритмически способ предусматривает выполнение следующих операций:

1. Измеряют не менее чем в трех точках, включая точки траектории движения мобильного поста радиоконтроля, не лежащие на одной прямой, уровни сигналов ИРИ, перестраивая на несущие частоты сканирующий приемник постов и сохраняя в базе данных координаты точек измерения уровней.

2. Передают по линиям связи измеренные значения уровней на базовый пост, где:

1) Вычисляют отношения измеренных уровней сигналов ИРИ и обратные отношениям соответствующих расстояний от точек измерения до возможного местоположения ИРИ.

2) Составляют парных мультипликативных функций разности отношений расстояний от точек измерения уровней до возможного местоположения ИРИ и соответствующих обратных отношений измеренных уровней а также мультипликативных уравнений для всех точек измерения уровней, взятых по три.

3) Задают из предполагаемого диапазона координат возможного местоположения ИРИ два параметра координат (например, долготу и высоту), а один из параметров координат (например, широту) дихотомически изменяют и вычисляют при этом возможное расстояние ИРИ до каждой из точек выполненных измерений до тех пор, пока каждое из трех парных мультипликативных функций с заданной погрешностью не достигнет экстремального значения, а мультипликативные функции для всех точек измерения уровней, взятые по три, не достигнут точек перегиба.

4) Значения параметров, полученные в экстремальных точках и точках перегиба, усредняют и принимают за окончательные.

5) Процедуры по п.п. 3 и 4 повторяют для последовательного получения долготы, а затем и высоты местоположения искомого ИРИ.

Ниже приведена таблица оценки статистики и относительного ее увеличения (в разах) при допущении для различного количества Μ точек измерения мобильными постами.

Из таблицы видно, что при одинаковом количестве точек измерения (точек перемещения) способ обеспечивает увеличение статистики по сравнению с прототипом более чем на два порядка

В предлагаемом способе:

1) исключены какие либо сложные уравнения линий положения ИРИ со скрытыми в них ошибками сингулярности, а предложенные мультипликативные функции разности отношений конечных величин (расстояний и обратных уровней сигналов) являются гладкими и не создают сингулярных погрешностей,

2) обеспечивается определение координат местоположения ИРИ не только на поверхности Земли, но и в пространстве,

3) минимальное количество точек измерения сокращено с четырех до одной, что свидетельствует о повышении быстродействия способа по сравнению с прототипом.

Все это указывает на наличие новизны предложенного способа.

Следует отметить, что способ является наиболее универсальным, не требует сложных вычислений и может быть легко реализован.

Источники информации

1. Справочник по радиоконтролю. Международный союз электросвязи. - Женева: Бюро радиосвязи. 2002. - 585 с.

2. Корнеев И.В., Ленцман В.Л. и др. Теория и практика государственного регулирования использования радиочастот и РЭС гражданского применения. Сборник материалов курсов повышения квалификации специалистов радиочастотных центров федеральных округов. Книга 2. - СПб.: СПбГУТ. 2003.

3. Патент RU №2306579, опубл. 20.09.2007 г.

4. Е. Корн и Т. Корн. Справочник по математике. Для научных работников и инженеров/ Под ред. Арамановича И.Г. - М.: Наука. 1968.- 720 с.

Мультипликативный разностно-относительный способ стационарно-мобильного определения координат местоположения источника радиоизлучения, основанный на измерении уровней сигналов источника радиоизлучений (ИРИ) в нескольких точках пространства, не лежащих на одной прямой, сканирующими радиоприемными устройствами, перемещающимися в пространстве, отличающийся тем, что для измерения уровней сигналов ИРИ применяют два стационарных поста радиоконтроля, а мобильный пост радиоконтроля, используемый в качестве базового, соединяют со стационарными постами линиями связи и перемещают по Μ≥1 точкам, измеряют на стационарных радиоконтрольных и мобильном постах уровни сигналов ИРИ, составляют на последнем и мультипликативных функций, представляющих сочетания, взятые по два и по три, из вычисленных парных сочетаний (М+2) разностей отношений расстояний, рассчитанных от точек измерения до местоположения искомого ИРИ по заданным его координатам, и вычисленных парных сочетаний (М+2) обратных отношений соответствующих измеренных величин уровней сигналов источника, дихотомически или методом наискорейшего спуска изменяют значение каждого из параметров местоположения ИРИ при неизменных значениях двух других и находят точки экстремумов парных мультипликативных функций и точки перегиба мультипликативных функций, взятых по три, фиксируя после N кратного усреднения каждый найденный в этих точках параметр местоположения источника как окончательный.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретения относятся к радиотехнике и могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности оценивания углов крена α, азимута θ и тангажа β ЛА.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов источника радиоизлучения и одновременно отраженных сигналов с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов).

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к области обнаружения в атмосфере объектов, преимущественно малозаметных, и их координатометрии. Согласно способу дальнего оптического обнаружения по признакам конденсационного следа в атмосфере обеспечивают оптимальные условия обзора с размещением приемных постов угломерной системы координатометрии на бортах барражирующих выше облаков беспилотных вертолетов.

Изобретение относится к обнаружению сигналов с линейной частотной модуляцией (ЛЧМ). Достигаемый технический результат - повышение достоверности обнаружения ЛЧМ-сигналов и возможность определения их характеристик в случае обнаружения.

Изобретение относится к гидроакустическим системам навигации подводных аппаратов относительно судна обеспечения и может быть использовано для определения координат буксируемого подводного аппарата (БПА), осуществляющего гидролокацию рельефа дна.

Способ предназначен для определения оценок местоположения объектов на дорожной сети (ДС). Достигаемый технический результат - обеспечение возможности однозначного определения подвижного объекта, привязанного к ДС.

Изобретение относится к области навигационного приборостроения морских подвижных объектов. Достигаемый технический результат изобретения - повышение точности и помехоустойчивости системы.

Изобретение относится к радиопеленгации и может быть использовано в комплексах радиоконтроля для определения местоположения источников излучения коротковолнового диапазона с ионосферным распространением радиоволн.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации, спутниковый способ навигации и дальномерный способ навигации. Изобретение может быть использовано при осуществлении навигации высокодинамичных ЛА в сложных навигационных условиях. Новизна способа состоит в том, что формируют дополнительную базу данных, включающую диаграммы направленности антенны спутникового приемника и бортовых антенн приемопередатчика дальномерных сигналов, после приема сигналов навигационных спутников (НС) параллельно с определением навигационных параметров по спутниковому способу навигации (ССН) выделяют состав рабочего созвездия и угловые координаты НС, выделяют отношения сигнал/шум спутникового приемника и формируют корреляционную матрицу ошибок ССН, затем формируют векторы направления НС и определяют весовые коэффициенты НС из состава рабочего созвездия по ориентации ЛА, уточненному положению ЛА, угловым координатам НС и диаграмме направленности антенны спутникового приемника, корректируют состав рабочего созвездия спутников по весовым коэффициентам НС, корректируют навигационные параметры по откорректированному составу рабочего созвездия НС, далее формируют ориентированную корреляционную матрицу ошибок ССН, учитывающую ориентацию ЛА на основе откорректированного состава рабочего созвездия и учета весовых коэффициентов НС, параллельно по дальномерному способу навигации (ДСН) формируют корреляционную матрицу ошибок ДСН, формируют векторы направления и определяют весовые коэффициенты наземных радиомаяков (НРМ) из рабочего состава НРМ по ориентации ЛА, уточненному положению ЛА, координатам НРМ из рабочего состава НРМ и диаграмме направленности упомянутой бортовой антенны приемопередатчика, корректируют рабочий состав НРМ по весовым коэффициентам НРМ, формируют ориентированную корреляционную матрицу ошибок ДСН, учитывающую ориентацию ЛА, на основе откорректированного рабочего состава НРМ и учета весовых коэффициентов НРМ формируют соответственно ориентированные навигационные параметры по ССН и ДСН и используют их в бортовом вычислителе для формирования комплексных навигационных параметров, при этом выходные результаты представляют в виде уточненного положения ЛА, откорректированного с учетом ориентации ЛА. Предлагается вариант способа, использующий для определения данных по ориентации ЛА оператор ориентации, вычисляемый в инерциальном способе навигации. Предлагается также вариант способа, определяющий выбор диаграммы направленности антенны одной из бортовых антенн приемопередатчика дальномерных сигналов. Предлагается также вариант способа, учитывающий зависимость диаграммы многолучевости ЛА от ориентации ЛА и корректирующий определение положения ЛА в зависимости от уровня многолучевости. Результатом использования способа является повышение надежности и точности систем навигации, снижения вероятности авиационных катастроф. 3 з.п. ф-лы, 5 ил., 3 прил.

Изобретение относится к геофизике и может использоваться в системе мониторинга окружающей среды, сейсмического и инфразвукового мониторинга, МЧС России, контроля околоземного космического пространства для диагностики положения эпицентральной зоны потенциальных источников протяженных перемещающихся ионосферных возмущений (ПИВ). Достигаемый технический результат - повышение точности и надежности определения скорости распространения ПИВ и положения эпицентральной зоны источника ПИВ. Способ определения положения эпицентральной зоны источника и скорости распространения ПИВ заключается в том, что: принимают сетью рассредоточенных по поверхности Земли навигационных приемников, синхронизированных по времени, электромагнитные сигналы от группировки космических аппаратов (КА); передают принятые данные в центр обработки с ПЭВМ оператора на базе процессора с устройством отображения информации, где: рассчитывают время прохождения электромагнитных сигналов от каждого КА к каждому навигационному приемнику; рассчитывают характеристики псевдопозиционирования навигационных приемников; рассчитывают ошибки и изменения ошибок позиционирования навигационных приемников; определяют время прохождения фронта ПИВ, при этом: время получения сигнала о прохождении фронта ПИВ устанавливают отдельно для каждого навигационного приемника и определяют его по времени появления в течение нескольких секунд сочетания знакопеременных экстремумов ошибок его позиционирования; скорость распространения ПИВ определяют путем осреднения скоростей перемещения ПИВ между парами из трех любых заранее выбранных навигационных приемников, а положение эпицентральной зоны источника ПИВ определяют по зоне пересечения прямых, направление которых определено векторами осредненных скоростей, полученных для каждых трех заранее выбранных навигационных приемников. 7 ил.

Изобретение относится к области радиотехнической разведки. Достигаемый технический результат - оперативная оценка наличия и характер траектории полета воздушного объекта (ВО). Указанный результат достигается за счет того, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных пеленгов по времени их поступления, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае принимают за маневр, при этом формирование начальной оценки приближенного вектора параметров траектории воздушного объекта и ковариационной матрицы ошибок на приемных постах производят по первому пеленгу, поступившему от одного из информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию отдельных пеленгов воздушного объекта по времени их поступления производят определенным образом. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области навигационных систем и может быть использовано для позиционирования удаленного объекта на основе нескольких пространственно разнесенных дальномерно-угломерных приборов (ПДУ). Достигаемый технический результат - повышение точности и скорости позиционирования, обеспечение надежности и живучести системы позиционирования. Указанный результат достигается за счет того, что дальномерный узел наводчика наводит свой ПДУ на объект и определяет расстояние и угловые координаты объекта, по этим измерениям вычисляют первое приближение координат объекта, которые передают на остальные дальномерные узлы, которые по этим координатам прицеливают свои ПДУ и определяют расстояния до объекта, затем по измеренным расстояниям вычисляют второе приближение координат объекта, используя для этого расстояние от дальномерного узла наводчика и множество сочетаний расстояний от дальномерных узлов до объекта, взятых попарно, и передают координаты объекта на остальные дальномерные узлы, которые по этим координатам заново прицеливают свои ПДУ и определяют расстояния до объекта, затем по измеренным расстояниям вычисляют третье приближение координат объекта и так далее, пока разница в определении координат объекта в двух соседних, по порядку выполнения, приближениях координат объекта не станет менее порогового значения. Для дальномерных узлов, расстояния которых до объекта определяют координаты объекта, отклоняющиеся от приближений координат объекта более, чем на величину порогового значения, выполняют дополнительное прицеливание ПДУ путем их пробных угловых перемещений, при этом расстояния от дальномерных узлов до объекта, определяющие координаты объекта, отклоняющиеся от приближений координат объекта более, чем на величину порогового значения, исключают из вычислений координат объекта. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области испытательной и измерительной техники, а именно к способам определения пространственных координат и энергетических характеристик взрыва боеприпасов. Способ определения координат взрыва и энергетических характеристик боеприпаса при испытаниях включает размещение на испытательной площадке геодезически привязанных к системе ее пространственных координат нескольких видеорегистраторов (видеокамер) с устройством временной синхронизации их работы, реперных знаков в поле обзора видеорегистраторов, последующую регистрацию объекта при его срабатывании посредством скоростной фотосъемки с нескольких позиций. Скоростную фотосъемку осуществляют методом, обеспечивающим визуализацию фронта воздушной ударной волны, с последующей раскадровкой отснятого материала и выбором для определения координат взрыва двух снимков, полученных с наиболее дальней дистанции относительно точки взрыва, соответствующих одному моменту времени с начала съемки. Достигается повышение точности определения координат взрыва и энергетических характеристик боеприпаса при испытаниях. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области высокоточного позиционирования с помощью спутниковых систем GPS/ГЛОНАСС, позиционирования объектов на удаленных, труднодоступных территориях в северных широтах для навигации судов, мониторинга ледовой обстановки, плавучих платформ, полярных станций, разведки полезных ископаемых, объектов на железных дорогах и других. Технический результат состоит в высокоточном позиционировании объектов за счет использования эфемиридно-временных поправок глобального действия, передаваемых по каналам цифрового телевидения. Для этого введены передающее оборудование федерального телецентра, приемник цифрового телевидения, сервер ввода навигационных данных, сервер криптозащиты, сервер биллинга, NTRIP-сервер, формирователь корректирующей информации, NTRIP-кастер, межсетевой экран, NTRIP-клиент, блок обработки информации, блок выделения корректирующих поправок, блок обработки навигационной информации по методу РРР, FTP - сервер оперативных данных орбит и FTP - клиент. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах морской навигации. Технический результат - повышение быстродействия. Для этого выставку морской бесплатформенной инерциальной навигационной системы (БИНС), обеспечивающей уменьшение погрешностей начальной выставки в условиях качки без увеличения времени готовности, осуществляют за счет использования поправок к сигналам акселерометров, формируемых по информации об угловых скоростях, угловых ускорениях и расстоянии между центром БИНС и центром качания корабля. 5 ил.

Способ относится к радиолокации и радионавигации и предназначен для определения оценок местоположения подвижных источников радиосигнала на дорожной сети. Достигаемый технический результат - расширение возможностей обеспечения однозначного местоопределения подвижного объекта на множестве возможных конфигураций дорожной сети. Указанный результат достигается за счет того, что в различные моменты времени из одного измерительного пункта, положение которого известно, измеряют углы прихода электромагнитной волны (пеленги) по сигналам, излучаемым подвижным источником радиосигнала и содержащим его опознавательный код. Одновременно с излучением сигнала в момент времени t на подвижном источнике радиосигнала измеряют скорость его перемещения вдоль элемента дорожной сети. Сигнал, пропорциональный измеренной скорости, кодируют и полученный код передают по радиоканалу передачи данных на измерительный пункт, на котором после приема и декодирования получают значение измеренной скорости. Определяют длину пройденного пути за время Δt. По измеренному пеленгу αизм(t) и параметрическим моделям пеленга, заданным в функции натурального параметра для каждого элемента дорожной сети, определяют значения натурального параметра, соответствующие точкам пересечения линии положения для измеренного пеленга и элементов дорожной сети. Для каждого из этих элементов определяют расчетные значения пеленгов, соответствующие перемещению подвижного источника радиосигнала на соответствующее расстояние. Из условия минимального рассогласования между ними и повторно измеренным пеленгом αизм(t+Δt) определяют номера элементов дорожной сети, на которых может находиться подвижный источник радиосигнала. Одновременно с излучением сигнала в момент времени t на подвижном источнике радиосигнала измеряют угол наклона касательной к элементу дорожной сети, на котором находится подвижный источник радиосигнала. Сигнал, пропорциональный измеренному углу, кодируют и полученный код передают по радиоканалу передачи данных на измерительный пункт, на котором после приема и декодирования получают значение измеренного угла. По параметрическим моделям углов наклона касательных к элементам дорожной сети, заданным в функции натурального параметра, для каждого элемента дорожной сети и значениям натурального параметра, соответствующим точкам пересечения линии положения для измеренного пеленга и элементов дорожной сети, для каждого элемента дорожной сети определяют расчетные значения углов наклона. Из условия минимального рассогласования между ними и измеренным углом наклона касательной к элементу дорожной сети определяют номера элементов дорожной сети, на которых может находиться подвижный источник радиосигнала. Из сравнения этих номеров с номерами, полученными из условия минимального рассогласования между расчетными значениями пеленгов и повторно измеренным пеленгом, определяют номер элемента дорожной сети, на котором находится подвижный источник радиосигнала. Соответствующие координаты местоположения подвижного источника радиосигнала определяют как координаты точки пересечения линии положения, соответствующей измеренному пеленгу (αизм(t) или αизм(t+Δt)), и выбранного элемента дорожной сети. 4 ил.

Изобретение относится к области технических средств регистрации и контроля рейсов подвижных объектов. Технический результат - осуществление контроля за выполнением графика заданного маршрута движения. Система регистрации и контроля рейсов подвижных объектов содержит контролируемые подвижные объекты, радиочастотные метки, содержащие пьезокристалл, микрополосковую приемопередающую антенну, электроды, две шины, и набор отражателей, и пункт контроля. На подвижном объекте установлены: датчики давления, положения кузова, расхода топлива, пройденного пути, элемент И, блок кодирования, передатчик, генератор высокой частоты, фазовый манипулятор, усилитель мощности, приемопередающую антенну, циркулятор, усилитель высокой частоты, фазовый детектор, сумматор, таймер и формирователь кода. На пункте контроля установлены: приемная антенна, усилитель высокой частоты, блок поиска, две гетеродины, два усилителя, два смесителя, два усилителя промежуточной частоты, амплитудный детектор, два перемножителя, узкополосный фильтр, фильтр низких частот, панорамный приемник, дешифратор, блок регистрации, элемент запрета, формирователь длительности импульсов, два ключа, коррелятор, пороговый блок, частотомер, счетчик расхода топлива, счетчик пройденного пути и дополнительный блок регистрации. 4 ил.
Наверх