Способ изготовления жаростойких теплоизоляционных изделий


 


Владельцы патента RU 2562646:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дагестанский государственный технический университет" (RU)

Предлагаемый способ предназначен для получения теплоизоляционных изделий, используемых для теплоизоляции строительных конструкций и тепловых агрегатов, эксплуатируемых в условиях высоких температур (800…1300°C). Техническим результатом настоящего изобретения является снижение топливно-энергетических ресурсов и повышение физико-механических свойств теплоизоляционных изделий. Способ изготовления теплоизоляционных изделий включает мокрый помол шамота с безводной натриевой силикат-глыбой при соотношении, мас.%: шамот 70-90, силикат-глыба 10-30, до удельной поверхности Sуд=2500-3000 см2/г при температуре 80-90°C до полного растворения силикат-глыбы, затем охлаждение до комнатной температуры путем перемешивания полученного вяжущего с шамотом при соотношении, мас.%: вяжущее 20-40, шамот 60-80, с получением однородной высоковязкой массы, приготовление пеномассы путем перемешивания с пеной, затем окончательное упрочнение при 195±5°C. 1 табл.

 

Изобретение относится к производству теплоизоляционных изделий, в частности к теплоизоляционным изделиям используемых для теплоизоляции строительных конструкций и тепловых агрегатов, эксплуатируемых в условиях высоких температур (800…1600°C).

Известны способы получения керамических теплоизоляционных материалов и изделий [1, 2].

Недостатком известных способов является: технология многодельна, высокоэнергоемка, многокомпонентна и т.д.

Наиболее близким техническим решением к изобретению по технической сущности и достигаемому результату является технология пенокерамических изделий, включающая следующие технологические операции: подготовку сырья; приготовление пенокерамической массы; формование из нее изделий путем заливки в формы; стабилизацию пористой структуры изделий посредством сушки; образование пористого керамического черепка обжигом высушенного сырца [3, с.281-300].

Однако этот способ усложняет и удорожает технологию на 40-50%: предусматривает обжиг при 900-1500°C (в зависимости от вида изготовляемого пенокерамического изделия), большая продолжительность технологического цикла, многокомпонентен, низкие физико-технические свойства.

Техническим результатом настоящего изобретения является снижение топливно-энергетических ресурсов и повышения физико-технических свойств пенокерамических теплоизоляционных изделий.

Данный технический результат достигается тем, что часть огнеупорного наполнителя, из которого изготавливается теплоизоляционный материал и безводные силикаты натрия (силикат-глыба) в определенных соотношениях размалываются путем мокрого помола до удельной поверхности Sуд=2500-3000 см2/г при температуре 80-90°C до полного растворения силиката натрия в нем и придания вяжущих (адгезионных) свойств этой композиции, после чего вводится остальная часть огнеупорного наполнителя. В полученный таким образом раствор после его охлаждения и приобретения высокой вязкости (концентрация раствора по расплыву конуса должна составлять 106-115 мм) при одновременном перемешивании в течение 4-6 мин вводится пена (плотностью 50-60 кг/м3) с целью получения однородной гомогенной пеномассы.

Затем пеномассу разливают в металлические формы. Заформованные таким образом изделия подвергаются ускоренному режиму сушки при температуре 195±5°C для окончательного упрочнения (для приобретения когезионной прочности) высокопористой структуры.

Примеры и их составы, и основные физико-технические свойства пеношамотных изделий средней плотностью 800 кг/м3 приведены в таблице.

Полученные данные свидетельствуют о том, что практически из любого приведенного состава можно получить безобжиговые теплоизоляционные изделия, превышающие по своим физико-техническим свойствам обжиговые теплоизоляционные изделия.

1. RU 94039039 А1 19970420. Легковесный огнеупор и способ его производства.

2. RU 94041503 А1 19960920. Способ изготовления легковесных высокопористых керамических изделий.

3. Ю.П. Горлов. Технология теплоизоляционных и акустических материалов и изделий. - М: Высшая школа, 1989. - с.281-300.

Способ изготовления теплоизоляционных изделий, включающий помол огнеупорного наполнителя - шамота; приготовление пеномассы путем перемешивания с пеной, формование из нее изделий заливкой в формы; стабилизацию пористой структуры изделий сушкой и окончательное упрочнение, отличающийся тем, что осуществляют указанный помол мокрым помолом с безводной натриевой силикат-глыбой при соотношении, мас.%: шамот 70-90, указанная силикат-глыба 10-30, до удельной поверхности Sуд=2500-3000 см2/г при температуре 80-90°C до полного растворения силикат-глыбы, затем охлаждение до комнатной температуры путем перемешивания полученного вяжущего с шамотом при соотношении, мас.%: вяжущее 20-40, шамот 60-80, с получением однородной высоковязкой массы, а окончательное упрочнение осуществляют при 195±5°C.



 

Похожие патенты:
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 88,5-93,5, размолотый до удельной поверхности 2000-2500 см2/г доломит 6,0-10,0, подмыльный щелок, предварительно разведенный в горячей воде с температурой 85-90°С, 0,5-1,5.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов для жилищного и гражданского строительства.

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 88,5-90,5, размолотый до удельной поверхности 2000-2500 см2/г уголь 0,5-1,0, кварцевый песок 8,0-10,0, мылонафт, предварительно разведенный в воде, 0,5-1,0.

Группа изобретений относится к строительным материалам, а именно к строительной смеси и способу получения из нее теплоизоляционного легкого бетона, и может найти применение при изготовлении облегченных строительных конструкций различного назначения.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов для жилищного и гражданского строительства.
Изобретение относится к области строительных материалов и может быть использовано для изготовления неавтоклавного композиционного ячеистого бетона естественного твердения.

Изобретение относится к области производства пористых строительных материалов, в частности к пенообразователям, полученным на основе органических материалов и неорганических промышленных отходов.

Изобретение относится к строительным декоративно-акустическим материалам и может быть использовано при устройстве элементов подвесных потолков и облицовки других строительных систем (стен и полов).
Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства.

Изобретение относится к промышленности строительных материалов, а именно к составам теплоизоляционных ячеистых материалов. Ячеистая фибробетонная смесь включает, мас.%: портландцемент марки 500 43, кварцевый песок с модулем крупности 1,7 8-28, пенообразователь "ПБ-Люкс" 1,0, стеклянное волокно диаметром 15-35 мкм и длиной 12-15 мм 2,0, суперпластификатор "Полипласт - СП-3" 0,4-0,6, аппретированные полые стеклянные микросферы марки МС-ВП-А9* диаметром 20-160 мкм 8-28, воду - остальное. Технический результат - увеличение прочности на сжатие и растяжение при одновременном увеличении коэффициента конструктивного качества ячеистого фибробетона. 1 табл.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков. Бетонная смесь содержит, мас.%: портландцемент 25,0-27,0, золошлаковый наполнитель 35,89-41,87, крошку пенополиэтилена с размером частиц до 10 мм 0,03-0,05, смолу воздухововлекающую экстракционно-канифольную 0,06-0,1, керамзитовый песок 8,0-10,0, воду 25,0-27,0. Технический результат - повышение коэффициента конструктивного качества бетона: снижение плотности бетона при увеличении его прочности. 1 табл.

Изобретение относится к составам сырьевых смесей для неавтоклавных конструкционно-теплоизоляционных пенобетонов и может быть использовано для изготовления мелкоразмерных блоков, монолитного строительства. Сырьевая смесь для получения эффективного пенобетона включает, мас.%: портландцемент 27,9-34,9, микрокремнезем с фильтров пылеулавителей ЗАО "Кремний" г. Шелехов с химическим составом, мас.%: SiO2 - 80,0; SiC - 6,5; Ссвоб - 8,0; Na2SO4 - 0,8; AL2O3 - 1,6; CaO - 1,0; Fe2O3 - 1,6; MgO - 0,5, 34,9-41,8, пенообразователь "Пента Пав 430А" 0,090-0,095, гиперпластификатор "MC-Power-Flow-3100" 0,90-0,98, воду 29,205-29,23. Технический результат - повышение прочности неавтоклавного пенобетона без увеличения его средней плотности, утилизация промышленного отхода. 6 табл.

Изобретение относится к промышленности строительных материалов, в частности к производству изделий из ячеистых бетонов, которые могут быть использованы в качестве защитных экранов для изоляции строительных конструкций от воздействия высоких температур, возникающих при пожарах, авариях на производстве, сбоях в работе технологического оборудования. Сырьевая смесь для получения пенобетона включает, мас.%: портландцемент 30,0-33,0, пенообразователь ПБ-2000 0,2-0,25, мелкозернистый заполнитель 39,75-48,3, крошку пенополистирола с размером частиц 2-3 мм и насыпной плотностью 12-15 кг/м3 1,5-2,0, воду 20,0-25,0. Технический результат - повышение теплостойкости пенобетона, полученного из сырьевой смеси. 1 табл.

Группа изобретений относится к области получения пенобетона. В способе получения пенобетона, включающем приготовление технологической смеси путем перемешивания концентрата пенообразователя, воды, вяжущих, заполнителя, добавок и аэрацию смеси сжатым воздухом в смесителе, получение пенобетона осуществляют непрерывно в три этапа: на первом этапе ведут перемешивание-активирование вяжущих компонентов с водой, заполнителем и добавками в смесителе-активаторе со скоростью 1500-3000 1/мин вращения рабочего органа с кавитационным эффектом до получения жидко-твердой дисперсии вяжущих в тиксотропном метастабильном состоянии с уменьшением вязкости до 50-500 Па·с, в другом смесителе-активаторе ведут перемешивание-активирование концентрата пенообразователя с добавлением воды до получения жидко-жидкой дисперсии пенообразователя в тиксотропном метастабильном состоянии с уменьшением вязкости до 10-200 Па·с, на втором этапе в смесителе-аэраторе со скоростью вращения рабочих органов 1000-1500 1/мин ведут перемешивание непрерывных потоков обеих ранее активированных дисперсий с одновременной их аэрацией сжатым воздухом при избыточном давлении 0,25-2,5 МПа, а на третьем этапе полученная в смесителе-аэраторе пеномасса непрерывно поступает в канал пеномассопровода-структурообразователя в виде диффузора, совмещающего непрерывное транспортирование пеномассы в опалубку и ее бездефектное структурирование в режиме свободного движения под действием разности давлений 0,25-2,5 МПа на входе в канал и 0,01-0,1 МПа на его выходе при ограничении максимальной линейной скорости потока и минимального времени пребывания пеномассы в канале. Установка для получения пенобетона по п.1 включает смеситель-активатор вяжущих компонентов с заполнителем и добавками, смеситель-активатор пенообразователя, смеситель-аэратор пеномассы при избыточном давлении, пеномассопровод-структурообразователь, представляющий собой цилиндрический канал транспортирования пеномассы в опалубку, систему автоматического управления отдельных устройств и установки в целом, а также автоматические дозаторы всех компонентов пеномассы, емкости-накопители активированных дисперсий, насосы, воздушный компрессор, при этом дозатор вяжущих компонентов, дозатор заполнителя, дозатор ускорителей, пластификаторов и других добавок, дозатор воды соединены со смесителем-активатором вяжущих компонентов с заполнителем и добавками, который связан в свою очередь с емкостью-накопителем активированной дисперсии вяжущих и далее через насос вяжущих соединен со смесителем-аэратором пеномассы, которая через пеномассопровод-структурообразователь поступает в опалубку, одновременно дозатор концентрата пенообразователя и дозатор воды соединены со смесителем-активатором пенообразователя, который связан в свою очередь с емкостью-накопителем активированной дисперсии пенообразователя и далее через насос пенообразователя соединен со смесителем-аэратором пеномассы, дозатор армирующих добавок соединен с входом и/или выходом канала пеномассопровода-структурообразователя. Изобретения развиты в зависимых пунктах формулы изобретения. Технический результат - повышение однородности структуры, прочности, снижение теплопроводности пенобетона. 2 н. и 5 з.п. ф-лы, 7 ил.

Технологическая линия для производства пенобетонных изделий включает установленные в технологической последовательности и связанные транспортными средствами бункеры и питатели-дозаторы для сухих компонентов - цемента, песка и фиброволокна, емкость с водой и управляемым устройством для подачи воды, активатор, емкость с дозатором для раствора пенообразователя, насос, пеногенератор и устройство для подачи сжатого воздуха в пеногенератор, пенобетоносмеситель. Пульт управления соединен с резательным комплексом для получения пенобетонных изделий. В технологическую линию дополнительно введены бункер для хранения и подачи комплексного органоминерального ультрадисперсного модификатора, бункер для хранения и подачи золошлаковых отходов с блоком сортировки по размерам частиц, блоком сепарации и блоком классификации золошлаковых частиц, бункер для хранения и подачи детоксиканта, бункер для хранения и подачи наноматериалов, бункер для хранения и подачи пеноконцентрата, ультразвуковой смеситель, аккумулирующая емкость с питателем на выходе, устройство для дозировки пеноконцентрата. Все питатели-дозаторы, блоки и устройства соединены с пультом управления. 1 ил.

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент 63,65-65,93, пенообразователь 0,44-0,51, углеродистую добавку - пиролизную сажу с размерами частиц в пределах 10-3-10-6 мм 0,66-0,72, воду для получения пены 18,79-19,21, воду для затворения 14,18-15,91. Технический результат - повышение прочности при сжатии и снижение коэффициента теплопроводности пенобетона, полученного из смеси. 2 табл.

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве ячеистых бетонов, содержащих волокнистые наполнители. Сырьевая смесь для изготовления пенобетона содержит, мас.%: портландцемент 22,0-22,4, песок 35,6-36,0, базальтовые волокна диаметром 15-20 мкм и длиной 8-22 мм 0,41-0,84, пенообразователь Reniment SB31L в концентрации 4%, обеспечивающей плотность пены 75 г/дм3, 0,10-0,15, молотый известняк 22,1-23,0, полипропиленовые волокна диаметром 15-20 мкм и длиной 8-22 мм 0,13-0,27, вода - остальное. Сырьевая смесь в качестве молотого известняка может содержать минеральный порошок МП-1. Технический результат - повышение прочности пенобетона на изгиб, снижение расхода цемента при сохранении высокой прочности на сжатие, снижение стоимости сырьевой смеси и расширение сырьевой базы для изготовления пенобетонов. 1 з.п. ф-лы, 1 табл.
Группа изобретений относится к неорганическому отвержденному пеноматериалу для остановки протечек с поверхности в районе добычи угля из пласта неглубокого залегания и способу получения неорганического отвержденного пеноматериала. Неорганический отвержденный пеноматериал для остановки протечек с поверхности в районе добычи угля в пласте неглубокого залегания содержит, мас.ч.: воду 40-60, угольную золу 100, гашеную известь 5, цемент 20, порошок из бычьих рогов 0,15-0,3, алюминиевую пудру 4, оксид меди 1-3,5, полифосфорную кислоту 0,4-1,4, гидроксид алюминия 0,04-0,1, гидроксипропилметилцеллюлозу 0,8-1,2, стальные волокна 3, причем оксид меди характеризуется размером, соответствующим размеру ячейки сита, равному 300 меш. Способ получения указанного выше пеноматериала, в котором вязкая жидкость, образованная порошком из бычьего рога, способна понижать поверхностное натяжение водосодержащей жидкости, равномерно распределять твердые частицы в суспензии и улучшать стабильность пены; при этом алюминиевая пудра и гашеная известь вступают в химическую реакцию с образованием газа, причем они составляют систему, самостоятельно генерирующую газ для суспензии; оксид меди, полифосфорная кислота и гидроксид алюминия составляют неорганическую связующую систему, а время затвердевания является регулируемым путем подбора соотношения этих трех компонентов; при этом способ производства включает следующие стадии: стадия 1: 35-55 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 0,8-1,2 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести добавляют в специальную емкость для перемешивания и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы; стадия 2: 5 мас.ч. воды и 0,15-0,3 мас.ч. порошка из бычьего рога добавляют в специальную емкость для перемешивания В и перемешивают мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости; стадия 3: вязкую жидкость с порошком из бычьего рога, находящуюся в специальной емкости для перемешивания В, добавляют в суспензию на основе угольной золы в специальной емкости для перемешивания А и перемешивают мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора; стадия 4: добавляют смесь, полученную из 1-3,5 мас.ч. оксида меди, 0,4-1,4 мас.ч. полифосфорной кислоты и 0,04-0,1 мас.ч. гидроксида алюминия в перемешанный раствор и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора; стадия 5: добавляют 4 мас.ч. алюминиевой пудры в перемешанный склеивающий раствор и перемешивают мешалкой со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного пеноматериала для герметизации поверхностных трещин в угольной шахте. Технический результат - получение пеноматериала, обладающего высокой способностью проникать в трещины, хорошей термоизоляцией, высокой прочностью на сжатие и термостойкостью. 2 н.п. ф-лы, 2 пр.
Наверх