Способ определения частоты трехфазного напряжения



Способ определения частоты трехфазного напряжения
Способ определения частоты трехфазного напряжения
Способ определения частоты трехфазного напряжения
Способ определения частоты трехфазного напряжения
Способ определения частоты трехфазного напряжения

 


Владельцы патента RU 2562692:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Согласно способу для определения частоты F используют цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti-1). Причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<<T. При этом определяют проекцию Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле U x ( t i ) = ( U c ( t i ) U b ( t i ) ) 3 2 , проекцию Uy(ti) на ось абсцисс Y вращающегося поля U(ti) - U y ( t i ) = ( 2 U a ( t i ) U b ( t i ) U c ( t i ) ) / 2 , модуль вращающегося поля U(ti) - U ( t i ) = [ U 2 x ( t i ) + U 2 y ( t i ) ] . Определяют зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле: |dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1)]}, и определяют знак dφi по следующему алгоритму: если |Ux(ti)|≤| Uy(ti)|, то знак dφi равен знаку величины Uy(ti)·[Ux(ti-1)-Ux(ti)], если |Ux(ti)>|Uy(ti)|, то знак dφi равен знаку величины Ux(ti)·[Uy(ti)-Uy(ti-1)]. Среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti определяют по формуле F ( t i ) = ( k = 0 n 1 d φ ( t i k ) ) / ( 2 π n d t ) , где n - целое значение. Технический результат заключается в повышении точности определения частоты трехфазного напряжения. 3 ил.

 

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях.

Известен способ определения частоты при помощи цифрового измерителя частоты (Патент 1290190 РФ, МПК G01R 23/00. 1987, бюл. №6). Цифровой измеритель частоты содержит формирователь интервала измерения, генератор образцовых частот, счетчики импульсов, сумматор, блок индикации, элемент задержки, RS-триггер, ключ, регистр, D-триггер, двухвходовой элемент И.

Недостатком способа определения частоты и измерителя является значительное время усреднения (счета), необходимое для получения требуемой точности измерений.

К аналогам предлагаемого технического решения также относится способ измерения частоты при помощи устройства для измерения частоты синусоидального сигнала (Патент РФ №2169927, МКП G01R 23/00, 2001, бюл. №18). Устройство для измерения частоты синусоидального сигнала содержит генератор импульсов, распределитель импульсов, счетчик импульсов, регистр, цифровые индикаторы, входной формирователь импульсов, выпрямитель, n входных формирователей импульсов, (n+1) выходных формирователей импульсов, источник опорных напряжений, элемент ИЛИ.

Недостатками данного способа измерения частоты и устройства являются значительное время измерения, а также невысокая точность.

Прототипом является способ измерения частоты трехфазного напряжения при помощи устройства измерения частоты (US №8190387 B2, МПК G01R 23/00, 29.05.2012), предназначенный для измерения промышленной частоты 50 или 60 герц, в котором подсчитывается амплитуда переменного напряжения U(t) методом действующего значения, длину хорды, соединяющей вершины вектора напряжения U(t) в момент времени t и вектора напряжения U(t+dt) в момент времени (t+dt) с помощью метода действующего значения, фазовый угол dφ поворота вектора напряжения U(t) за время dt, откуда подсчитывают частоту F(t), вычисляют динамическую частоту для определения скорости изменения частоты для каждого шага dt.

Недостатком данного способа и устройства является то, что для определения фазового угла dφ поворота вектора напряжения U(t) за время dt используется одно напряжение U(t) промышленной частоты и используется метод действующего значения для подсчета амплитуды и длины хорды данного напряжения. При определении амплитуды и хорды метод действующего значения корректно работает только для сигнала, имеющего форму идеальной синусоиды. При любом отклонении формы сигнала напряжения U(t) от синусоидальной метод действующего значения будет давать ошибку.

Задача, решаемая изобретением, - повышение точности определения частоты трехфазного напряжения за счет отказа от метода действующего значения, а также использование для определения частоты сигналов всех трех фаз промышленного трехфазного напряжения.

Указанный технический результат достигается благодаря тому, что в способе определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<<T, согласно изобретению определяют проекцию Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:

определяют проекцию Uy(ti) на ось абсцисс Y вращающегося поля U(ti):

Uy(ti)=(2·Ua(ti)-Ub(ti)-Uc(ti))/2,

определяют модуль вращающегося поля U(ti):

,

определяют зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:

|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1,)]},

определяют знак dcpj по следующему алгоритму:

- Если |Ux(ti)|≤|Uy(ti)|, то знак dφi равен знаку величины

Uy(ti)·[Ux(ti-1)-Ux(ti)],

- Если |Ux(ti)|>|Uy(ti)|, то знак dφi равен знаку величины

Ux(ti)·[Uy(ti)-Uy(ti-1)],

определяют среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:

, где n - целое значение.

Существенным отличием предлагаемого технического решения является то, что весь процесс определения частоты производится в цифровом виде, используя выходные цифровые сигналы Ua(ti), Ub(ti), Uc(ti) АЦП, на вход которого подаются три фазы Ua, Ub, Uc промышленного трехфазного напряжения, где i - целое значение, измеренные в моменты времени ti, оцифрованные с периодом дискретизации dt=(ti-ti-1), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения dt<<T.

Предлагаемый способ определения частоты трехфазного напряжения поясняется с помощью прилагаемых чертежей (фиг. 1-3), на которых сделаны следующие обозначения.

- Катушки статора двигателя фазы А (1), В (2), С (3), к которым подключено трехфазное напряжение Ua, Ub, Uc.

- Катушки статора двигателя А (1), В(2), С(3) намотаны на магнитопровод статора 4.

- Токи, протекающие по катушкам 1, 2, 3 создают в роторе 5 вращающееся поле U (6).

- Три вектора напряжения Ua (7), Ub (8), Uc (9), между которыми имеется угол 120 градусов, создают проекции на прямоугольную систему координат с осями X (10), Y (11).

- Проекции векторов Ua (7), Ub (8), Uc (9) на оси X (10), Y (11) создают координаты Ux (12), Uy (13) вращающегося вектора U (6), который имеет угол φ (14) относительно оси X (10).

Сущность изобретения заключается в следующем.

Принцип работы промышленных трехфазных сетей 50 герц связан с подачей на двигатель трехфазного напряжения Ua (7), Ub (8), Uc (9). Токи, протекающие по катушкам фаз А (1), В (2), С (3) статора 4 двигателя, к которым подключено трехфазное напряжение Ua (7), Ub (8), Uc (9), создают в роторе 5 двигателя вращающееся поле U (6), последнее и вращает ротор 5 двигателя.

Соответственно частотой F трехфазной сети является частота вращения поля U (6), угол φ (14) которого относительно оси X (10) непрерывно увеличивается с вращением поля U (6). Увеличение угла φ (14) на угол 2π происходит за один оборот поля U (6), или за период T частоты F=1/T. Подсчитав скорость изменения угла φ (14), найдем частоту F трехфазного напряжения Ua (7), Ub (8), Uc (9).

Координаты Ux (12), Uy (13) вращающегося вектора U (6) получаются из проекций векторов Ua (7), Ub (8), Uc (9) на оси X (10), Y (11):

Ux=(Uc-Ub)·√3/2,

Uy=Ua-(Ub+Uc)/2.

Модуль (длина) вектора U (6) определяется из координат Ux (12), Uy (13):

U=√(U2x+U2y).

Для определения частоты F трехфазного напряжение Ua (7), Ub (8), Uc (9) в микропроцессорных терминалах используются цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti-1). Причем величина dt значительно меньше периода T наибольшей частоты Fb=1/T диапазона измерения частоты F, dt<<T.

В каждый момент времени ti определяется проекция Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:

,

определяется проекция Uy(ti) на ось абсцисс Y вращающегося поля U(ti):

Uy(ti)=(2·Ua(ti)-Ub(ti)-Uc(ti))/2,

определяется модуль вращающегося поля U(ti):

,

определяется зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:

|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1)]}

Приращение dφi, вычисляемое с использованием тригонометрической функции arcos(), будет всегда положительным. Поэтому для определения знака dφi проведем дополнительные вычисления.

если |Ux(ti)|≤|Uy(ti)|, то знак dφi равен знаку величины

Uy(ti)·[Ux(ti-1)-Ux(ti)],

если |Ux(ti)|Uy(ti)|, то знак dφi равен знаку величины

Ux(ti)·[Uy(ti)-Uy(ti-1)].

Для повышения точности измерения частоты F(ti) определяется среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:

, где n - целое значение.

Предлагаемый способ определения частоты трехфазного напряжения будет работать всегда, когда трехфазное напряжение формирует вращающееся поле, и не будет работать, если вращающееся поле не формируется (например, при потере двух фаз напряжения из трех).

Таким образом, предлагаемый способ определения частоты трехфазного напряжения позволяет за короткий интервал времени определить частоту трехфазного напряжения, которое непосредственно вращает роторы двигателей. При этом за счет использования всех трех фаз промышленного напряжения 50 герц повышается точность измерения частоты.

Способ определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti-1), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<<T, отличающийся тем, что
определяют проекцию Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:
U x ( t i ) = ( U c ( t i ) U b ( t i ) ) 3 2 ,
определяют проекцию Uy(ti) на ось абсцисс Y вращающегося поля U(ti) по формуле:
U y ( t i ) = ( 2 U a ( t i ) U b ( t i ) U c ( t i ) ) / 2 ,
определяют модуль вращающегося поля U(ti) по формуле:
U ( t i ) = [ U 2 x ( t i ) + U 2 y ( t i ) ] ,
определяют зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:
|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1)]},
определяют знак dφi по следующему алгоритму:
если |Ux(ti)|≤| Uy(ti)|, то знак dφi равен знаку величины
Uy(ti)·[Ux(ti-1)-Ux(ti)],
если |Ux(ti)>|Uy(ti)|, то знак dφi равен знаку величины
Ux(ti)·[Uy(ti)-Uy(ti-1)],
определяют среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:
F ( t i ) = ( k = 0 n 1 d ϕ ( t i k ) ) / ( 2 π n d t ) , где n - целое значение.



 

Похожие патенты:

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях.

Изобретение относится к электроэнергетике для определения частотной характеристики изолированной энергосистемы. На основании измерений частоты энергосистемы определяют зависимость среднего числа пересечений уровней отклонения частоты в единицу времени от значений уровней этих отклонений, и по расчетным формулам определяют зависимость среднего числа пересечений уровней отклонений мощности нагрузки в единицу времени от величины отклонений мощности нагрузки.

Изобретение относится к области цифровой обработки сигналов и информационно-измерительной техники и может быть использовано для спектрально-временного анализа в системах обработки данных.

Изобретение относится к области измерительной техники и может быть использовано для измерения частоты периодических сигналов. Способ измерения частоты заключается в том, что подсчитывают число периодов образцовой частоты за каждый период измеряемой частоты и получают соответствующие коды, которые последовательно запоминают без изменения порядка их появления, получая исходную последовательность кодов, которую анализируют, определяя коэффициенты цепной дроби отношения периода образцовой частоты к периоду измеряемой частоты, начиная с нулевого коэффициента, после определения очередных кодов коэффициента цепной дроби ai и знаменателя цепной дроби pi вычисляют код знаменателя цепной дроби qi, значение подходящей цепной дроби отношения периода образцовой частоты к периоду измеряемой частоты под номером i и относительную максимальную погрешность измерения отношения периода образцовой частоты к периоду измеряемой частоты.

Изобретение относится к области систем обработки информации и измерительной технике и может быть использовано для определения параметров широкополосного синусоидального сигнала.

Заявленная группа изобретений относится к области измерительной техники и предназначена для определения параметров сигналов. Способ включает процедуры синхронизации по несущей частоте сигнала, обнаружения отрезка несущей сигнала и установления ее границ с определенной точностью.

Изобретение относится к измерительной технике и автоматике и может использоваться для прецизионного измерения отклонений частоты от номинального значения в определенном диапазоне частот.

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа.

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения частоты, амплитуды, фазы и начальной фазы непрерывного или импульсного гармонического сигнала по одному и тому же минимальному набору исходных данных.

Изобретение относится к радиотехнике и может найти применение в системах радиосвязи. .

Изобретение относится к измерительной технике и может быть использовано при различных физических исследованиях. Способ основан на формировании внутри измерительного временного интервала, равного целому числу периодов исследуемого сигнала, вспомогательных временных интервалов, которые заполняют счетными импульсами, число которых в каждом последующем вспомогательном интервале умножают на весовые коэффициенты, увеличивающиеся каждый раз на единицу до среднего из n вспомогательных интервалов с последующим уменьшением каждый раз на единицу. При этом внутри измерительного временного интервала формируют чередующиеся друг с другом нечетные и четные вспомогательные интервалы, которые при последовательном суммировании взвешенных нечетных и вычитании четных временных интервалов определяют усредненное значение длительности входного временного интервала. Технический результат заключается в расширении диапазона измерения длительностей временных интервалов с повышенной точностью и помехоустойчивостью без увеличения общего времени измерения. 3 ил.

Изобретение относится к электротехнике, в частности к электрооборудованию, установленному на электрических станциях и подстанциях в системах производства, передачи и потребления электроэнергии, и может быть использовано во всех электроустановках, использующих цифровую обработку данных. Способ определения угла сдвига фаз между двумя синусоидальными сигналами путем измерения N/2 раз в течение полупериода Т/2 и в каждый текущий момент времени tj, j=1, 2, …, N/2 мгновенного значения одного из двух синусоидальных сигналов a(tj), изменяющегося во времени t по следующей зависимости: a(t)=A m sin(ωt). При наступлении момента выполнения условия, при котором мгновенное значение a(tj)=0, осуществления измерения и фиксации мгновенного значения другого синусоидального сигнала - b(tj)|а=0 той же частоты, изменяющегося во времени t по следующей зависимости: b(t)=B m sin(ωt+φ). Определяют значение угла сдвига фаз φ: где φ - угол сдвига фаз между двумя синусоидальными сигналами a(t) и b(t); b(tj)|а=0 - значение синусоидального сигнала b(t) в течение одного полупериода Т/2 в момент времени tj, когда значение синусоидального сигнала a(t) равно нулю, единицы измерения сигнала b(t); Вm - амплитудное значение синусоидального сигнала b(t), единицы измерения сигнала b(t), взятое со знаком плюс, если выполняется условие где b(tj-1) - предыдущее мгновенное значение синусоидального сигнала b(t), измеренное в момент времени tj-1, и со знаком минус, если Технический результат заключается в повышении быстродействия и точности определения сдвига фаз. 4 н.п. ф-лы, 3 табл.

Изобретение относится к радиотехнике и связи и может быть использовано в устройствах обработки информации, в системах автоматического контроля и регулирования. Технический результат - осуществление допускового контроля частоты входного сигнала. Устройство допускового контроля частоты содержит общую шину, входную шину, два резистора, два конденсатора, два буферных каскада, два компаратора, два одновибратора, два устройства выборки-хранения, делитель, сумматор, формирователь одиночного импульса и выходной формирователь, шину питания. 1 з.п. ф-лы, 3 ил.

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты и вида модуляции сигналов, принимаемых в заданном диапазоне частот. Технической задачей изобретения является расширение функциональных возможностей устройства путем распознавания сигналов с амплитудой и частотной манипуляцией. Устройство содержит приемную антенну 1, входную цепь 2, блок 3 поиска, гетеродин 5, смеситель 6, усилитель 7 промежуточной частоты, амплитудный детектор 8, 13, 28, 29 и 33, видеоусилитель 9, устройство 10 формирования частотной развертки, ЭЛТ 11, ключи 12, 24, 37, 40, 41 и 42, фильтры 14, 27 и 32 верхних частот, фильтры 15, 19 и 26 нижних частот, квадраторы 16 и 20, делители 17 и 22 напряжений, частотный детектор 18, блоки 23, 30, 34, 39 и 49 сравнения, фазовый детектор 25, интегратор 35, пороговый блок 36, измеритель 38 частоты, блок 43 памяти, преобразователи 44, 47 и 50 аналог-код, блок 46 клиппирования, анализаторы 21, 45 и 48 спектра, фазоинверторы 51 и 52, элементы совпадения 53, 54, 55 и 56. 2 ил.

Изобретение относится к радиотехнической области промышленности и может быть использовано при приеме нескольких совмещенных по времени разночастотных сигналов. Способ определения частоты в матричном приемнике, в котором ко входу j-й ступени приемника, имеющей Lj каналов, подключают устройство измерения частоты, измеряющее частоту сигнала в диапазоне рабочих частот j-й ступени, и сопоставляют номера сработавших индикаторов каналов ступени с измеренными значениями частоты. Устройство измерения частоты содержит усилитель-ограничитель, K каналов обработки и устройство обработки. Каждый канал содержит последовательно включенные полосовой фильтр, частотно-зависимое устройство и детектор. С выходов каналов сигнал подается на устройство обработки. Технический результат заключается в повышении вероятности однозначного определения частоты, исключении регистрации ложных значений частоты и пропуска сигналов. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может использоваться в информационно-измерительных устройствах для измерения частоты гармонических сигналов прецизионных кварцевых и квантовых стандартов частоты. Осуществляют аналого-цифровое преобразование измеряемого и опорного сигналов с интервалом временной дискретизации, определяемой частотой сигнала дискретизации, формируемого из опорного сигнала, запоминают полученные в результате аналого-цифровых преобразований цифровые выборки в следующих одна за другой тетрадах моментов времени, осуществляют преобразование цифровых выборок тетрад в значения фаз измеряемого и опорного сигналов и определяют искомую разность частот опорного и измеряемого сигналов. Устройство содержит последовательно соединенные генератор измеряемого сигнала, первый аналого-цифровой преобразователь, первое оперативное запоминающее устройство и процессор цифровой обработки сигналов, связанный шиной обмена данными с персональной вычислительной машиной. Вход синхронизации первого аналого-цифрового преобразователя соединен с выходом синтезатора частоты сигнала квантования, сигнальный вход которого соединен с выходом генератора опорного сигнала, а вход управления - с управляющим выходом процессора цифровой обработки сигналов. Устройство также содержит второе оперативное запоминающее устройство, выход которого соединен с вторым входом процессора цифровой обработки, и второй аналого-цифровой преобразователь, сигнальный вход которого соединен с выходом генератора опорного сигнала, вход синхронизации соединен с выходом синтезатора частоты сигнала квантования, а выход соединен с входом второго оперативного запоминающего устройства. Технический результат заключается в повышении точности измерения частоты гармонического сигнала при расширении диапазона частот сличаемых сигналов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники и предназначено для использования в среднеорбитальном сегменте космической системы поиска и спасения терпящих бедствия судов, летательных аппаратов, отдельных людей или групп. Согласно способу измерения производятся с использованием всей длительности сигнала посылки радиобуя (440 мс), а не только по участку длительностью 160 мс - участку излучения чистой несущей частоты радиобуя, и соответственно всей энергии сигнала. Для этого производится модуляция принятых наземной станцией (станцией приема и обработки информации со среднеорбитальных ИСЗ систем «Глонасс», GPS и Gallileo) сигналов аварийных радиобуев достоверной цифровой информацией, заложенной в сигналы, передаваемые тем же самым аварийным радиобуем и выделенной из принятого сигнала в процессе его демодуляции и декодирования, взятой с обратным знаком (ремодуляция сигнала). Это преобразует весь принятый сигнал посылки этого радиобуя в немодулированную синусоиду, чем и обеспечивается получение минимально возможной ошибки измерения его частоты. Технический результат заявленного изобретения заключается в повышении точности измерений частоты сигналов радиобуев. 1 з.п. ф-лы, 4 ил.
Наверх